PROCEEDINGS OF THE INTERMATIONAL CONFEREMCE
ON FIFTH GEMERATION COMPUTER SYSTEMS 1988,
edited by 1COT. © 1COT, 1988

405

HORN EQUALITY THEORIES AND COMPLETE SETS OF
TRANSFORMATIONS

Steffen Hilldobler
Universitit der Bundeswehr Milnchen, Fakultit fiir Informarik
Werner-Heisenberg-Weg 39, D-8014 Neubiberg, Germany

ABSTRACT

The idea to combine the advantages of function and logic
programming has attracted many researches. Their work
ranges from the integraticn of existing languages over
higher-order logic to equational logic languages, where
logic programs are augmented with equational theories. Re-
cently, it has been proposed to handle those eguational
theories by complete sets of transformations. These trans-
formations are extensions of the rules introduced by Her-
brand and later used by Martelli and Montanari to compute
the most general unifier of two expressions. In this paper
we will generzlize this idea to complete sets of trans-
formations for arbitrary Hom equality theories, the largest
cless of equational theories that admir a least Herbrand
model. The completeness proof is based on the observation
that each refutation with respect to paramodulation: and re-
flection can be modelled by the transformations. As certain
conditions imposed on an equational theory restrict the
search space generated by paramodulation and reflection we
can easily refine our transformations - dee to the com-
pleteness proof - if the Horn equoality theory is ground con-
fluent or canonical,

1 INTRODUCTION

In recent years many proposals have been made to
combine function and logic programming [2]. They range
from the integration of existing languages, e.g. LOGLISP
[39] or QUTE [40], over higher-order logic {e.g. [32]), 1o e-
guational logic languages, where logic programs are aug-
mented with equational theories, e.g. EQLOG [14]. These
equational theories can be handled by E-unification (e.g.
[10,351), by paramodulation or special forms of it (e.g.
[8,36,38]), by flartening and SLD-resclution (e.g. [1]), or
by complete sets of transformations [11,12,16,31]. These
transformations are extensions of the rules introduced by
Herbrand [15] and later used by Martelli & Montanari [30]
to compute the most general unifier of two expressions.

However, equational theories are not the largest class that
admit a least Herbrand model or, equivalently, an initial
semantics, This is the class of Horn equelity theories [29].
In this paper we will define complete sets of trans-
formations for arbitary Hetn equality theories. To prove

the completencss we will make use of the completeness
results known for (linear) paramodulation [9] or special
forms of it [18]. We will show by a simple proof that cach
refutation wrt (with respect o) paramodulation and reflec-
tion can be modelled by the transformations. This proof
allows to refine our transformations if the equational theory
is ground confluent or canonical in much the same way as
narrowing refines paramodulation. Finally, we will show
that for canomical theories rewriting can be applied as a
simplification rule.

In the following scction we will bricfly recall some basic
notions and in section 3 we will give an account of the
completencss results achieved for paramodulation ﬂ.‘ﬂﬂ
special forms of it. The transformations are introduced in
section 4 and the completeness proof is given in section 5.
In section 6 we will refine the transformation rules and we
will finish by comparing our approach with others.

2 PRELIMINARIES

We assume the reader to be familiar with logic program-
ming (e.g. [28]), equations, and rewrite rules (6.8 [200).
Throughout the paper we will make use of the notational
conventons laid down in the following table in the sense
that, whenever we use x, we implicitely assume that x isa
varighle. Set operators applied to multisets denote their
multiset analogs. Furthermore, Var(F) denotes the set of
variables ccenrring in F.

ab,... constructors f.g,... function symbols
E equarion St temms

EP equational program x,¥,... varables

F multiset of equations ©.8,... substilutions

An equation has the form ={s,t} or ={t}. Expressions of
the form ={st} (resp. ={t}) are interpreted as nom-trivial
{resp. trivial) equations s=t (resp. t=t). The "labelled set”
notation has been inrodoced by Sibert [41] and emphasizes

. that the order in which the terms s and t are written in an e-

quation is immaterial. For notational convenience we will
commanly use the more uspal form s=t (resp. t=t) to repre-
sent ={s,t} (resp. ={t]).

406

An equational program EP consists of a finite set of e-
quational clauses of the form I—r¢=F. The amow in the
head of an equational clavse emphasizes that equaunnal
ciauses will be used only from left-to-right. Let EP™
{r=1<=F | |=re=Fec EP}. To ease our notztion we will nﬁ:r:n
omit the curly brackets in the body of an equational clause,
The semantics of an equational program EP can be given as
the least Herbrand moedel for EP together with the axioms
of equality for EP.

A substitution is defined to be a mapping from the set of
variables into the set of terms. Substitutions are extended to
morphisms on the set of terms and equations. oly denotes
the restriction of @ to the set V of variables.

Since we will introduce several new inference rules we
assume that derivations and refutations are defined wit a set
of inference rules,

3 PARAMODULATION

Paramodulation has been invented by Robinson & Wos
[40] as a substimtion rule for first order theories with e-
quality. Forbach et al. [9] have recasted (linear) paramod-
ulation as an.inference rule for Hom cquality theores: Let
G be the goal clause =FU{E}, P = 1=9r&=F* be a new
variant of & program clause, s be a subterm of E, and E” be
the: equation obtained from E by replacing the s by . If =
and [arc unifiable with mge o, then G =
=a(FL{E"hJF*) is called paramodulant of G and P, in
symbols G —p(EsPa) G'. We will say that paramodulation
has been applied upon an element of an equation s=; iff
cither s or t has been replaced.

To express syntactic equality we have o use the axiom
of reflexivity: Let G be the goal clause <=Fus=t}. If s and
t are unifiable with mgu o, then G' = ¢=aF is called reflec-
tant of G, in symbols, G —r(s=1,0) G".

As the following example will show we need the func-
tional reflexive axioms or, equivalently, an instamtiation
rule io ensure the completeness of paramodulation: Let G
be the goal clause <=F{E}, x be a variable in E, f be an
n-ary function symbol, x1,...x5 be new varables, and ¢ =
{x&f{x1,....xn)}, then G° = =oG is called instance of G,
in symbols, G —iEm G'.

For notational convenience we will omit E, s, P, or o
when writing derivations if they can be determined by the
context. Furthermore, we will depict the selected subgoal or
subterm in boldface.

As an example consider the equational program
FUN: g—a«= (£
fle(ghe(a)) — dic(g).cla)) = ®
and the question whether there exists a substitution 0 such
that 8f{x,x}=Hd(x,x} is a logical consequence of FUN, This
question can be answered with © = {x¢<ec(g)} by the refuta-
tion in figure 1.

4=f{x,x)=d(x,x}

Sif{zectyy =Hely)oly=dciy)oly)
—nigiv-gh =Melgola)l=dic(g)clz)
—Hp(f} e=die(g)e(a))=d(c{z).c(g)
—p(g) =d(c{ghela))=dlc(g),cla))
5 o

Figure 1

The interested reader may verify that withour the instan-
tation rule a refutation of <f{xx)=d(xx) is impossible.
Formally, the need for the instantiation rule comes from the
lifting lemma, which states that, if there exists a refutation
of EP . «=0oF} with computed answer substitadon 8, then
there exists a refutstion of EPU{+=F} and, furthermore, if v
is the computed answer substitution of this refutation, then
¥ is more general than 6. In the proof of the lifting lemma
one is confronted with the case that in the refotation of
EPui{+=oF} paramoduladon is applied upen a term s which
was introduced by o. To be able to apply the respective
paramodulation step o <=F we have 1o instantiate <F. As
an example consider the parmodulation step

e={ne-e(E) JEx,x)=d{x,x)) = «=ilc(g).clg))=d(c(g),cg))

—p =fle(g)e(a))=d(e(g)e(g))
which was lifted in figure 1 wsing an instantiation and a
paramodulaton step.

This use of the instantiation rule suggest to define a new
inference rule instantiation and paramodulation (—ip): G
—Hp{g) Q" iff G" has been obtained from G be a (possibly
empty) finite sequence of instantadon steps followed by a
single paramodulation step and, if oy,...,0n are the subst-
tutions used in this derivation, then & = on...01. E.g.,

e=f(xx)=d(x,x) —ip(ixecim} <fle(ge(a))=dlclz).c(e)).
Mote, an instantiation and paramodulation step corresponds
to a paramodulation step using a "prefixed axiom" in [34].

The completeness of reflection, instantiation and para-
modulation follows immediately from [9);

Theorem 1: (Completeness of {—ip,—r})

If 8 is a correct answer substitwtion for EP and <F then
there exists a wmumd answer subsiitution & obtained by a
reftaiion of EPUEP Uife=F] wrt {=yip,—] such thar o is
more peneral than 8,

Clanses from EP' are nesded in theorem 1, since we
cannot assume in general that arbitrary equational programs
are ground confluent (see FUN). In analogy to the respec-
tive result for SLD-resolution (e.g. (28]) it can easily be
proved that refutations wrt reflection, instantiation and par-
amoduolation are independent of a computation rule, ie. a
function which apphed 1o a non-empty goal elause always
selects an ¢qununn from that clause,

Theorem 2: {Independence of the computation rule)
Let R and R be computation rules. [f there exisis a refita-
tion of EPU{<=F} wrt {—3ip,—), computed answer substi-

mtion o, and vig R, then there exists a refutation of
EPU{F) wrt {—ip,—3r), via B, and, if &' s the compused
answer substitution of the refutation via R, then o and o
are variants. Furthermore, in both refutations paramed-
ulation has been applied the same number of times.

Remark: If the computation rule selects a subgoal of the
form x=y, where x and y are variables, then we cannot only
apply reflection, but we have also to apply instantiation and
paramodulation. However, due to theorem 2, we may
choose 2 computation rule that never selects an equation of
the form x=y if it has another choice. In such a refutation
we will eventually encounter a goal clause of the form
e={xj=yi | 1=i=n} and it is easy to see that the completeness
of reflection, instantiation and paramodulation is retained
even if we apply only reflecton to solve such a goal clanse.

Of course, the search space gencrated by reflection, in-
stantiaion and paramodulation containg far 1o many redun-
dant and irrelevant inferences and it has been proposed at
first by Slagle [41] and Lankford [27] to impose certain
conditions on equational theories such that paramodulation
need not to be applied at variable occurrences. This restric-
ted form of paramodulation is often called narrowing (e.g
[21]). Obviously, instantiation is no longer needed if it suf-
fices to apply paramodulation upon non-variable terms.

In [18] these refinements of paramodulation have formal-
Iy been developed for Horn fquaﬁnna] theories. It has been
shown that ¢lavses from EF are no longer needed if the e-
quational program is ground confluent. Furthermore, (con-
ditional) narrowing (—) can be applied instead of instan-
tiation and paramoduolation if the equatonal program is &
collapse-free and ground confluent term rewriting system
and the answer substitution is normalizable, where an equa-
tional program is said to be collapse-free iff it does not
contadn a collapse clause, f.e. a rute of the form x—sr&F,
and a term rewriting system is an equational program,
where for each clavse l—=re=F we find that each variable
cecurming in F and r oceurs also in . The set of function
symbols is divided by a term rewriting system into two dis-
joint subsets, the set of defined function symbols and the
set of construectors, where f is said to be a defined function
symbaol iff the term rewriting system contains a rule for f.

Theorem 3: Ler EF be a ground confluent equational pro-
gram and R be a computation rule. If § is a correct answer
substitution for EP and «=F, then there exists an R-compur-
ed answer substinntlon o obtained by a refutation of EPU
{=F} wrt {—ip,—} such that @ is more general than 9.

Theorem &; {Strong completeness of {—ny—r})

Ler EP be a collapse-free and ground confluent term rewri-
ting system and R be a computation rule. If 8 is a normal-
ized correct answer substimrion for EP and <F, then there
exists an R-computed answer substitction @ obiained by a
refutation of EPUf<F) wrt {—p—3) such that o iz more
peneral than 6.

As a consequence narrowing and reflection is complete
for canonical conditional term rewriting systems and rewri-
ting can be applied as a simplification rule, where a goal

407

bind & variable in G. Moreover, we may apply other simpli-
fications rules such as removal of trivial equations, decom-

ition of decomposible equations [26], and elimination of
variables if the goal clause contains an equation of the form
x=t and no defined function symbol occurs in t.

4 THE TRANSFORMATIONS

As we have mentioned in the introduction the trans-
formation rules are an extension of the rules invented by
Herbrand [15] and Marelli & Montanari [30] to compute
the most general unifier of two expressions. Therefore, we
will briefly repeat these rules:

The term decomposition (—4) rule decomposss an e-
quation of the form £{s1,-..,5n)={(t1,. ..,tn) into the set of cor-
responding argurnents, ie.

P51, . .50)=f(t1,.. o tn)} —d <=Fo{si=ti | 1€ign}.

The variable elimination (—) rule applied to a goal
clause «=F{x=1} elimates the variable x by replacing each
occurrence of x by t if x does not ocour in t, i.e

s=Fu{x=t} —v(jxet}) ={xe—1}F

The rule removal of trivial equations {—) removes a
trivial equation, i.e.
=P =t} - <=F.

A reflection step can be modelled by a sequence of —,
3y, and =34 steps [30]. These transformations achieve syn-
tactic unification, whereas the following three rules are only
applicable wrt an equational program:

The lazy narrowing {(—in) rule applied to an equation of
the form f{s1,...5n)=%n+1 and using an equational clavse
f(t1,.. sIn)—*n+14=F* forces the comparison of comespon-
ding arguments and right hand sides, i.e.

=FUff(31,.. S0)=Sn+1} =0 =FUF*U]sp=t | 1<i<n+1].

We have called this rule lazy, since the corresponding argu-
ments are not immediately solved but added o the new
goal clause and, hence, can be handled according to the
overall strategy encoded in a computation rule.

The rule paramodulation upon variables (—py) applied
to an equation of the form x=s and using an egquational
clause f{t1,....,tn)—2r<F* instantiates x to f(x1,....%a) and,
then, forces the comparison of corresponding arguments
and right hand sides, i.e.

=Fu{x=8} —<pv(o) <=0FUF*U{xi=g | 1<isn}ufos=r},
where & = {xef{x1,....%p)}, X1,....%n are new variables, and
% i3 a non-variable term,

So far we cannot use collapse clauses. The rule applica-
tion of a collapse clause {—ec) applicd to an equation s=t
and using a collapse clause x—re=F* forces the comparison
of corresponding left (resp. right) hand sides, ie.

=Fls=t} —s¢e <=FUF* | s=x =t}

408

As we will learn from the proof of the completeness of the
transformation reles, nefther —n, BOr —ipy, NOT —3ce need
to be applied upon s=x anymore,

Due to the lazy nature of the tansformation rules intro-
duced so far, lazy narrowing can only be applied to the ele-
ments of an equation but not to proper subterms of these
clements. This would lead to an incompleteness of our
transformation rules: Suppose the only program clause is
f(x)}—as= and considerter the goal clause <=y=c(f(y)). In a
refutation wrt narowing and reflection, narrowing would
be applied upon f{y) yielding <=y=c(a), which can be
solved by binding cfa) to y. However, this refutation cannot
be modelled by the wansformation rules introduced so far.

The imitation {—m) rele applied to an equation of the
form x=f(t1,...trn) instantiates % to f{x1,..%n) and then
forces the comparison of comesponding arguments, i.e.

FU{x=ft1,....tn)} =im{a) =oB{xi=ot|1<isn},
where & = {xef{x1,....xa)} and %1,....%p are new variables.
In our example,

=y=c(fiy)) —imifyecmm) =z=fclz)
—n =z=a, c{z)=x
—v{{ze-al) e=c(a)=x
—¥v o,

Notation: In the sequel let TRANS = {—=d, v
—pvi—ee.—m)}

The transformation rules can be divided into three
classes; The unification rules term decomposition, variable
elimination, and removal of trivial equations, the lazy par-
amodulation rules lazy narrowing, paramodulation upon
varigbles, and applicaton of a collapse clause, and the imi-
tation rule It should be noted that we have no trans-
formation which corresponds to the instantiation rule.

Our ransformations can be regarded as an extension of
the rules BT given by Gallier & Snyder [12] to condidonal
equational theories, They differ if the selected equation is
of the form x=t: If t is a vardable, then Gallier & Snyder
provide an addidonal ransformation, which instantiates the
goal clanse by {xefix1,...%xn)}. If t is not a variable, then
Gallier & Snyder apply lazy paramodulation rules -enly
upon t. As an example consider the term rewriting system
INF = {f—c{f}+=]. Then,

=x=0(x) —n =r=fx=F =[xt =l=f - T,
and in the lazy namowing step the equational clause
cf)>fe= & INF' has been used. This is the enly way
(allier & Snyder can solve the inital goal clawse, since
paramodulation at variables cannot be applied due to the
chosen restriction, variable elimination cannot be applied
since the occur check fails, and an imitation yields & variant
of x=cfx). The strange observation about Gallier &
Snyder’s resiricred vse of lazy paramodulation rules is that
even if the equational program is ground conflonent (like
INF) they have to use equational clauses in both directions,
whereas without the resriction we find

=x=c(x) ~apy{xe-f}) =clfj=c{f} -y

It is easy to see that the transformations are sound: Each
derivation step wrt TRANS can be modelled by & sequence
of resolution steps using the axioms of equality. Therefore,
we will concentrate on the completeness proof.

5 COMPLETENESS OF THE TRANSFORMATIONS

To obtain the completencss of our transformations we
will show that esch refutation wrt reflection, instantiation
and paramadulation can be modelled by our rules. Before
we can mm to the proof irself we need some definitions
and technical propositions.

Suppose «=F" has been obtained from «F by reflection
or instantiation and paramodulation wsing substimtion o If
E & F was not the selected equation, then oE & F' is the
immediate descendant of E. If E was the selected equation
and —jp has been applied wansforming E into B°, then E' e
F’ iz the immediate descendant of E. E' is a descendant
of E iff E' is in the wansitive and reflexive closure of the
"immediate descendant relation™.

The depth of a variable is 1 and the depth of a term of
the form fit1,...,tn) is 1+max{depth(t) [I<i=n}. For each
substitation 8 the complexity D{) is defined to be the mul-
tiset {depth(r) | xe=t=8}. As an example consider the sub-
stitutions 8 = {xec(a)} and ¢ = {yea, zeb}, then D{B) =
{2} and Do) = {1,1}. Tt should be noted that D) = D{c)
whenever @ and 8 are variants.

Dershowitz & Manna [5] have shown that a well-founded
ordering < over a set § induces a well-founded ordering <<
over multisets whoss elements are taken from 3 as follows:
Let M and M" be two finite multisets ever 5. M" << M iff
M' can be obtained from M by replacing one or more ele-
ments in M by any finite number of elements taken from 5§,
each of which is smaller than one of the replaced elements.
For example, D{{xi+ti|l=i=n}) << D{{xfit1,.. ,ta)}).

We can now assign a complexity to refutations wrt re-
flection, instantiation and paramodulation: The complexity
of a refutation EPU{<=F} wrt {~p=r} and computed
answer substitution @ is <d#p,D(8)#s #e>, where #p is the
number of applications of paramodulation in the refutation,
its is the number of symbols cccurring in F, and #e is the
number of equations in F. The ordering « is defined to be
the lexicographic combination of: the < crdering on ratural
numbers, the << ordering on multisets of natural numbers,
the < ordering on natural numbers, and again the < ordering
on namral numbers. Obviously, «.is well-founded.

Proposition 5: Ler E = f{s1,...8m)=ft1,.. otm). If there
exists a refutation of EPU{<=PU{E]] wrt {—vjp,~3], com-
puted answer substitution O and complexity M =
<#ip,D{@) #sHe>, where paramodilation has never been
applied upon an element aof o descendant af E, then there
exizts a refutation of EPU{<=FUlni=t | I1<in)] wrt
{—dip.—3r), computed answer substintion B and complexity
<#fp D(6)#s-2 ferm-I> « M.

Proposition 6: Suppose there exists a refuration of
EPUf=Fufs=t]} wrt {—ip,—], computed answer substi-
tution B and complexity M = <#p D) #s e, where para-
modulation has been applied upon an element, say 5°, of @
descendant s'=t' af §=t. Let P = [—=r&F* be the program
clause used in the first of these applications. Then there
Exisis refutation of EPOfe=PUF*s=lr=t]] wrt
{=ip, =], compured anywer substitution §' and complexity
<#p-1,D(0) #5' #e'> « M such that 8 WargFufs=g) = 8.

The interested reader may verify that in the refutation of
EP . =FUF*_{s=lr=t}} paramodulation nesd not be
applied upon an element of a descendant of s=I.

Proposition 7: Suppose there exisis a refuration of
EPU{<=F} wrt {—ip,—~r], computed answer substitution ©
and complexity M. Suppose xe=f{t1,...tn) € 6 and let x;,
I<i=n, be new varigbles and y = {refix1.... a0} Then
there exises a refitarion of EPU{YF} wrt {—vip,—r), com-
puted answer substinaion 8 and complexity M such that
O'Ylvar(r) is more general than & and M’ « M.

Az an example consider the program clause fi(x)—ase=
and the refutation

e=y=c(f(y)) —p({rey}) =¥y=c(a) —rviyeca)} 2.
{ye—c{a)} iz the computed answer substinution and
=1,42},5,1> the complexity of this refutation. Now, let y =
{yec(z)}. Then

“pl{xec(z)l) =clel=ca)
—Hr{{zeal) a

with computed answer substitution {zéa} and complexity
=1{1},7,1> « <1,{2],5,1>. '

It is easy to see that, if in the refutaton of EPL{<«F}
paramodulation has never been applied upon an element of
a descendant of E € F, then paramodulation has never been
applied upon an clement of a désecendant of ¥E & ¥F in the
refutation of EPU{ &yF).

We cen now prove that for each refutation wrt paramod-
ulation, instantiation, and reflection there exists a corre-
sponding refutation wrt TRANS yielding a more general
answer substitution. Recall, in a refutation wrt reflection,
instantiation and paramodularion we may apply & computa-
tion rule which never selects an equation of the form x=y if
it has another choice. Furthermore, if the goal ¢lause con-
tains only equations of this form then it suffices to apply
reflection.

Notation: Let BY be a computation rule that obeys this
SITAtegy.

Theorem 8: IF there exists a refuration of EPU{<F} wrt
{—vip~») and computed answer substitution 8, then there
exists a refuration of EPU{<F} wrt TRANS and via R".
Furthermare, if ¢ is the computed answer substinution of
the refutation wrt TRANS, then © is more general than B,

Proof: The proof is by induction en the complexity M of
the refutation of EPU{<F} wrt {—ip,—}. The case M =

409

<0)8,0,0= being wivial we tum o the induction step and
assume that the resnlt holds for all M « M". Suppose

=Fufs=t} 2% o _ (1
wrt {—ip—tr}, computed answer substitution 8°, and com-
plexity M' = <#p”.D(8")#s" #e"=. Let s=t be the first selec-
ted equation by B™. By theorem 2 we may assume that s=t
is the first selected equation in (1),

1 If 5 and t are varables, then F' containg only equations
of the form x=y and we may assume that in (1) only re-
flection has been applied. Since reflection can be mo-
delled by the rules —, —v, and —4, the theorem
follows immediately.

In the remaining cases we assume that s or € is a non-varia-
ble term,

2 Suppose that in (1) paramodulation is applied upon an
element, say 5", of a descendant s'=t" of 5=t Let P =
l—re=F* be the program clanse used in the first such
application. By proposition 6 we find

FUfs=l=thUF* —* o (2)
wrt {~ip,~r}, computed answer substitmion 6* and
complexity M* such that 8*vayFufs=t)) = 0" and M*
a M". Recall, in {2) paramodulation need not be applied
wpon an element of a descendant of s=L.

2.1 Suppose P is & collapse clause. Let F =
FuFsu{s=1r=t}. Then,
=Fus=t) 2¢c &=F
and (2) ensures that there exists a refutation of
EPu{«=F} wrt {—¥p,~}, computed answer substi-
tution 6 = 8%, and complexity M = M* « M. The result
follows by the induction hypothesis,

In the remaining two cases we assume that P is of the
form f(I1,....Jm)—re=F*,

2.2 Suppose s is of the form fis1,....5m). Let F =
FruF*usi=l; | 1sismpu{r=t}. Then,
=Ffs=t} - &F.
By an application of proposition 6 upon'(2) we find a
refutation of EPw{eF} wrt {—p—¥}, compated
angwer substitution 8 = 8% and complexity M « M* «
M. The result follows by the induction hypothesis,

2.3 Suppose s Is a varlable. Hence, t must be a non-variable
term. Let xi, 1<iSm, be new variables, ¥ =
{ze=f(x1,...xm)}, and F = WFUF*{x=lj | 15<m
w{r=t}). Then,

<=F'us=t} =pv <F.
By an application of proposition 7 upon (2) we find
=F U s=]r=t})
= Y FUFRU{TxL,.) =E . m) e)
—=* O B |
wrt {—ip,—}, computed answer substitution #", and
complexity such that 8 Y|VariE UF*Ufsslo=t})) IS
more general that 6* and M' « M* « M". Note, in (3)
paramodulation has never been applied wpon an ele-

410

ment of a descendant of fix1,....xm)=f{l1,....Im). Hence,
by an application of proposition 5 upon (3) we find a
refutation of EPL{e=F] wnt {—ip,—}, computed ans-
wer substitution 8 = 8%, and complexity M « M*™ « M*
« M. The reselt follows by the induction hypothesis.

3 Suppose that in (1) paramodulation is never applied
upon an element of a descendant of s=t.

3,1 If reflection has been applied in the first step of (1)
then the result follows by the induction hypothesis,
since each reflection step in (1) can be replaced by a

" sequence of —, —3g, and =y steps and each applica-
tion of —¢, —¢, and —y decreases M' .

In the remaining two cases we assume that instaniiation
or paramodelation (using P = loreF*) has been
applied in the first step of (1). Recall, 5 and t cannot
both be variables.

3.2 Suppose s (resp. 1) is of the form f(s1.....5m} (resp.
E(tl,...tn}). Since in (1) paramodulaton is never
applied upon an element of a descendant of s=t we find
that f=g and n=m, Let F = F"u{si=ti | 1=i£m}. Then,

=F"us=t} =g =F
and by an application of proposition 5 upon (1) we find
& refutation of EPU{«<=F} wr {-2p,—}, computed
answer substitution 8 = 6°, and complexity M « M"
The result follows by the induction hypothesis.,

3.3 Finally, suppose that s is a variable and t is a term of
the form £(t1,...tm). Since in (1) paramodulation is
never applied upon an element of a descendant of s=t
we find a binding sef(s1,....5m) in 8", Now let xi,
1<i<m, be new variables, ¥ = {xe=f{x1,.. ,Xm)}, and F =
YWF'w{xi=ti | 15i<m}). Then, I

=F' 5=t} —im <=F.
By an application of propesition 7 upon (1) we find a
refutation of EPU{«=F} wrt {—p,—r), computed
answer substitution @, and complexity M such that
OvanF==t}) is more general than 8% and M « M',
The result follows by the induction hypothesis. ged

The proof of theorem 8 gives vus a procedure that rans-
forms refutations wrt reflection, instantation and paramod-
nlation into refitations wrt TRANS, eg this procedure
transforms the refutation in figure 1 into the refutation de-
picted in figure 2,

It should be noted that the empty clause has besn derived
in figure 2 by applying only lazy narrowing, term decompo-
siion, variable elimination, and removal of trivial equa-
tions, This is rematkable, since the FUN-example has
served to show that paramoduolation and reflection is com-
plete only if an instantiation rule is added. Since lazy narro-
wing has been applied upon f(x,x) using (f), the uninformed
nse of the instandation rule in the refutation of FUNW
{e=flax)=d(xx)} wrt {—¥ip,—} to instantiate the varizble
% has been replaced by an informed application of wrm de-
composition in the comresponding refutation of
FUN e=f{x,x}=d(x.x)]} wit TRANS,

a=Flxx)=dix,x)
—¥n{f) &=x=clg), x=c(a), d{x,x)=d{c(g)cla))
—v{[xe-cig)} clgi=cia), d(c(ghel{g))=d(c(g).cla))
- «=g=a, d(c(gheclg))=d(c{g),cla))
~d e=g=q, e(g)=c(g), c{g)=ca)
—+ =g=a, t{gl=cla)
—d =p=a, F=a
—#nfi) =a=a, =4
— =g=a
—Hnig) =a=q
-3t (s]
Figure 2

We can now show that the transformations are complate,

Theorem 9: (Strong Completeness of TRANS)

For every correct answer substitution 8 for EP and =F
there exists an B campumd answer substitution o obtained
by a refutation afEFuE.P' Ufe=F} wrt TRANS such that ¢
it more peneral than 6.

Proof: If 6 is a correct answer substitution for EP and «=F,
then we find 2 mmputﬂd answer substitution y obtained by
a refutation of EPUEP! w{e=F} wrt {—ip,—r} such that ¥
is more general then B (theorem 1). The result follows im-
mediately by an application of theorem E. qed

6 REFINIMNG THE TRANSFORMATIONS

The proof of the completeness of the ransformation rules
suggest that the refinements of paramodulation can be
carried over to refutadons wrt TRANS. In theorem 8 we
have shown that for each refutation of

EPU{+<F} wt {—ip—¥} *
and compured answer substitution 8 we can find a refuta-
tion of

EP {4=F} wrt TRANS (**}
yielding a more general computed answer substitution, If
we take a close look at the proof of this theorem we can
make the following observations:

An equational clause P is used in an —n, —dpw, OF —icc
step in (**) only if the same clause is wsed in a paramod-
ulaton step in (*). Moreover, in both refutations P is used
mﬂwsamedrﬁmon Hence, by theorem 3 clauses from
EP! are no longer needed if EP is ground confluent.

Corollary 10: Ler EP be a ground confluent equational
program. For every computed answer substitution O for EP
and «=F there exisis an RY -computed answer substitution o
obtained by a refutation of EPU{«F) wrt TRANS such that
o v more general than 8,

If paramodulation is applied upon a variable in (**), then
the computed answer substimtion is not in normal form. As
an example consider the equational clange f(x)—bé= and
the equation y=b. Then

&=y=b —pu{{yf(z)}) =2=Xb=b = ==K —v({ze-y)) O

with computed answer substitution {y+{x}}. Furthermore,
a collapse clavse is applied in (**) only if the same collap-
se clause is applied in (*). Hence, if EP is collapse free the
tule —¢e 15 no longer necded.

Mow, since namowing and reflecton is complete for col-
lapse free and ground confluent term rewriting systems as
long as we consider only normalized answer substtutions
{thecrem 4}, we conclude that in this case —pv and —sc are
onnecessary and that we have not fo restrict our computa-
tion rule:

Corollary 11: Let R be a computation rule and EP be a
collapse free and ground comfluent term rewriling system.
For every noymalized correct answer substinution 8 for EP
and &=F there exisis an R-computed angwer substirution G
obtained by a refutation of RU{+=F} wrt {—n—,—d,
—Hn,—¥im} such that o is more general than 8,

Finally, if the equational program is a canonical term
rewriting system, then the rules removal of wrivial equa-
tions, decomposition of decomposible equations, variable
elimination applied to equations of the form x=t, where no
defined function symbol occurs in t, and rewritdng can be
applied as simplification rules to refutations wrt narrowing
and reflection. Furthermore, there does not exist a refuta-
tion of EPU{«<=F} wrt TRANS if F contains an equation of
the form c{s1,...sa)=d(t1,.. .tm), Where ¢ and d are different
constructors. Such a goal clause is often called a failure,

In analogy to [17] we define a fonction simplify which

applies the above mentioned simplification rules upon a
goal clause as long as possible and tests that it is not a
failure. An s-derivation is a derivation where each goal
clanse is simplified.
Theorem 12:; Let B be a computation rule, EP be a canoni-
cal term rewriting system, and 8 be a normalized correct
answer substitution for EP and «F. Then there exises an R-
compuited answer substimition obrained by an s-vefutation of
EPU[<F] wrt {=d—w—n—im} Such that @ is more
general than 8. ’

Proof: The proof is in analogy 1o the proof of theorems 8
and 9 except that the first component #p of the complexity
used in the proof of theorem 8 must be the maximuom
number of applications of rewritng steps in the refutation
of EP«=08F} wrt rewriting and removal of trivial equa-
tions. qed

The following example shows that the imitation rule is
needed to ensure theorem 12, Let {f{x)—sa<=} be the cano-
nical term rewriting system. Then,

ay=clly)) —imi{yecmy z=ile(z))
—n e=gr=a,c{z}=x
—v([zeal) eela)=x

=ri{recEl
with computed answer substitution {yec(a)}. It should be
noted that imitation is the only inference mule which is ap-
plicable to y=c(f{y}).

411

‘7 DISCUSSION

We have generalized results obtained by Gallier &
Snyder [11,12] and Martelli et al. [31] to hold for arbitrary
equational programs (resp, conditional term rewriting
systems). Moreover, we have refined their results: To en-
sure the completeness of their sets of wansformations for
canonical term rewriting system, Gallier & Snyder as well
as Martelli et al. have modified the lazy narmowing rule o
be applicable also to arbitrary proper subterms of sn equa-
tion. This does not only violate the demand driven nature of
the wansformation rules but also expands the search space
since, in general, there are several subterms of an equation
whereupon their lazy narrowing mule can be applied. We
ensore the completencss by repeated applications of the
imitation rule as shown in the last example of section 6.

Gallier & Snyder [11,12] have pointed out that succes-
sive applications of the imitation rule upon an equation of
the form x=t, where x occurs in t, will generate an instance
of the equation and, thus, lead to & cycle. However, they
have also shown that in case of unconditional equational
theories these cycles can be avoided. We believe thar this
result holds also for Horn equaliy theories

It should be observed that, if variable elimination can be
applied as a simplification rule, the transformation rules can
be refined considerably: imitation and paramodulation upon
variables need only to be applied upon x=t if x oceurs in t.
Similarly, lazy narrowing and application of a collapse
climse need not o be applied vpon x=t if x dogs not ococur
in . Though many researches have suggested to vse varia-
ble elimination as a simplification mle [11,16,31], none of
them has been able to give a rigorous proof for it. Ooly re-
cently Hsiang & Jovannand [19] have announced such a
proof for unconditional theories.

The transformations rules presented herein can be used as
a computational method for equational logic programs as
proposed by Jaffar et al. [23,24] or Goguen & Messequer
[14] by adding a lazy resolution mule as suggested in [17].
This rule applied to a selected atom of the form P(s1,...,5q)
and a program clause of the form P{t1,....in)<=D* forces the
comparisen of corresponding arguments, ie.

s P(51,. . .50} = =DuUD®{si=t|1<i=n},
where D and D¥ are sets of atoms and equations.

There are, of course, other proposals to handle equational
theories. We have siready mentioned paramodulation and
special forms of it ke narrowing (e.g. [13,21,22,25,36,37])
or superposition [7.8]. Recently, Echahed [6] has shown
that narrowing is independent of a computation mule which
selects also & cermin redex provided that the term rewritng
system Is completely defined and strictly non-subunifiable.
It seems that the use of transformation rules cuts down the
search space since there are less alternatives, the application
is demand driven, and failures can be recognized earlier.

Another proposal is based on the idea to flanen goal and
program clanses and then to apply SLD-resolution (e.g.
[1.3.4]). The dissdvantage of this techniquoe is that rewriting

412

cannot be applied as a simplification rule anymore — in
can only be simulated by & sequence of SLD-resolution
steps using a complex computation male. However, rewr-
ting goal clauses may cot down the search space from an
infinite to a finite one, Recently, Mutt et al. [33] have
shown that narrowing and flantening can be combined in
one system leaving it to the overall strategy whether goal
clauses should be flattened or nammowing should be applied.

Unfortunately, there has been no thorough comparison
between the various techniques so far. We only know for
sure that each of them is superior to the others in certain
aspects or for centain classes of equational theories,

REFERENCES

1 R. Barbuti, M. Bellia, G. Levi, M. Marelii: LEAF: A Langua-
ge which Integrates Loglc, Equations and Functions. In:
Legic Programming (DeGreat, Lindstrom eds), Prenfice
Hall: 1986 :

2 M. Bellia, G. Levi: The Relation Between Logic and Functio-
nal Languages: A Survey. J. Logic Programming, 217-236:
1986

3 P. G. Bosco, E. Glovanettl, C. Moiso: Refined Strategies for
Semantic Unilication, LNCS 250, 278-280: 1987

4 P.T. Cox, T. Platrzykowski: Surface Deduction: A Uniform
Machanism for Logic Programming. Proc. SLP, 220-227:
1088

5 M. Dershowilz, Z. Manna: Proving Termination with Muhiset
Orderings. CAGM, 465-475; 1972

& R. Echahed: On Completeness of Marowing Strategies.
Proc. CAAP: 1988 :

7 L. Fribowry: Oviented Equational Clauees as a Programming
Language. J. Logle Programming, 165-177: 1984

& L. Fribourg: 5LOG: A Logic Programming Language [nter-
preter Based on Clausal Superposition and Rewriting. Froc.
SLP, 172-185: 1885

& L. Furbach, 5. Hilidobler, J. Schrelber: Horn Equality Theo-
res and Paramedulalion. To appear in: J. Automated Rea-
soning: 1988

10 J. H. Gallier, 5. Raalz: SLD-Resolution Methods for Hom
Clauses with Equality Based on E-Unification. Proo. SLP,
168-179; 1986

11 J. H. Gallier, W. Snyder: A General Complete E-Unitication
Procedure, LNCS 266: 1887

12 J. H. Galier, W. Snyder: Complele Sets of Transformations
lor Genmeral E-Unification. Univ. of Pennsylvania, Philaceip-
hia: 1588 '

13 E. Giovannettl, C. Moizo: A Complatengss Resull for E-LUn-
ification Algorithms based an Condilional Marowing. Proc.
Workshop on Foundations of Logic and Functional Program-
ming: 1887 5

14 J. A Goguen, J. Meseguer: ECLOG: Eguality, Types, and
Generic Modules for Logie Programming. In: Logic Program-
ming (DeGrool, Lindstrom eds.), 295-363; 1986

15 J. Herbrand: Sur la Thédorie da la Bémonsiration. Logical
Writings (Goldfarh ed.), Cambridge: 1971

16 5. Haldobler: A Unifivation Algorithm for Conlluent Thaorias.
LMCS 267, 31.-41: 1887

17 &, Holidobler: Equational Logic Programming. Proc. SLP,
335-346: 1087

18 5. Holdabler: From Paramodulation 1o Namowing. Proc.
ICLPFSLP, 327-342: 1888

19 J. Hsiang, J. P. Jovannawd: General E-Unification Revisited.
2nd. Int. Workshop on Unification, Val dAjol, France: 1988

20 G. Huet, D. C. Oppen: Equations and Rewrila Rules. In:
Formal Languages: Perspectives and Open Problems (Book
ed.), Academic Press, 1580

21 J. M. Hullot: Canonloal Forms and Unification, Prec, CADE,
318-334: 1980

22 H. Hussmann: Unification in Condifional-Equational Thea-
ries. LNCS 204, 543-553: 1985

23 J. Jaffar, J-L. Lassez, M. J. Maher: A Theory of Complate
Logie Proegrams with Equality. Proc. FGCS, 175-184; 1984

24 J. JaMar, J-L. Lassaz, M. J. Maher: A Logic Programming
Language Schems. In: Logic Programming (DeGreot, Lind-
sirom eds.), Prentice Hall, 1986

25 5. Kaplan: Fair Conditional Term Rewriling Systems: Unifi-
cation, Termination, and Conflugnce. Recent Trands in Data
Type Specification (Kreowski ed.), IFE 116, 136-155: 1986

26 C. Kirchner: A New Equational Unification Melhod: A Gene-
ralization of Marneli-Montanari's Algorithm, CADE 7. 1984

27 D. B, Lankford: Canonical Inference. Techn. Rep., Dept. of
Mathematics, Soulhwestern Univ., Georgetown, Texas: 1975

28 J. W. Uoyd: Foundations of Logic Programming. Springer:
1964

28 B. Mahr, J. A Makowsky: Characterizing Specification
Languages which Admit initial Semanlics. LNCS 158, 300-
316: 1983

30 A Martelli, U. Montanari: An Efficient Unificalion Algorithm,
ACM TOPLAS, 258-282, 1982

31 A. Martell, ©. Moiso, C. F. Rossi: An Algerithm for Unifica-
tion In Equational Theories, Proc. SLP, 180-186: 1986

32 D. Miller, G. Nadathur: A Logic Programming Appeoach to
Manipulating Formulas and Programs. Proc. SLP: 1587

33 W, Mut, P. Réty, G. Smolka: Basic Narrowing Revisited.
SEKI Report SR-87-07, Univ, Kaiserslautarn: 1987

34 P. Padawitz: Foundations of Spacification and Programming
wilh Hom Clauses. Univ. Passau: 1987

35 G. D. Plotkin: Bullding-In Eguational Thecries. In: Machine
Inteligence 7 (Meltzer, Michie ads.), 73-50; 1572

38 U. 5. Reddy: Marrowing as the Operational Semantics of
Functioral Languages. Proc. SLP, 138-151: 1885

a7 P. Rdty, C. Kirchner, H. Kirchner, P. Lescanne: MARRO-
WER: A Mew Algorithm for Unification and s Application to
Logic Programming. LMCS 202, 141-155: 1985

38 G. A Robinson, L. Wos: Paramodulation and Theorgm
Proving in Flrst Order Theories with Eguality, Maching Intel-
ligence 4 (Meltzer, Mitchia, eds.): 1965

39 J. A, Robinson, E. E. Sibert: LOGLISP: An Allernative io
PROLOG. Machine Inteligence 10 (Hayes, Milchie, eds),
392-419: 1582

40 M. Sato, T. Sakurai: QUTE: A PROLOG/LISP Type Langua-
ge for Logic Programming. Proc. Bth WCAIL, S07-513: 1883

41 E. E. Sihert: A Machine-Oriented Logic Incorporating the
Equality Relation. Machine Infelligence 4 (Meltzer, Mitchle,
eds.): 1969

42 J. A. Slagle: ATP with Bull-in Theories Including Equality,
Partial Ordering and Sets. J ACM, 622-842: 1674

