PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1988,
edited by ICOT. &€ ICOT, 1988

565

PROGRAM TRANSFORMATION
APPLIED TO THE DERIVATION OF SYSTOLIC ARRAYS

Norihiko Yoshida

Department of Computer Science and Communication Engineering
Eyushu University
Hakozaki, Fukuoka 812, JAPAN

ABSTRACT

In this paper, we propose a new approach to the
derivation of systolic arrays from recurrence equa-
tions, which is based on program transformation,
and we also introduce a new representation for sys-
tolic arrays, which we call Relational Representa-
tiom.

Relational Representation is & subset of concur-
rent logic language, and it has two eminent charac-
teristics, One is that it can express recurrence
equations, inner-cell operations and cell configura-
tions, all in an integrated form. The other is that a
program in it can be easily translated into a coneur-
rent logie program, and we can simulate the behav-
ior of a systolic array by executing the translated
one. This is an approach to exeentable hardware
deseription.

Transformational derivation of a systolic array is
to transform one relational program corresponding
to a given recurrence equation (namely a specifica-
tion} to another relational program corresponding
to a systolic array (namely an implementation).
Based on the unfold/fold transformation of logie
programs, we have formalized several transforma-
tion tactics, so as to promote well-formed ofganiza-
tion and easy augmentation of the derivation, We
have succeeded in deriving several implementa-
tions of systolic arrays, such as pipelines, orthogo-
nal grids and trees, from their respective specifica-
tions in recurrence equations.

1. INTRODUCTION

For deriving sequential algorithme systematical-
ly, several formal techniques have been proposed.
Among them, program transformation in particu-
lar is bearing fruitful results. It is, in its essence, a
technique to transform one program into another
equivalent one. Using it, program implementa-

tions is derived from their respective specifications,
A get of transformation roles has been established,
and many transformation tactics have been formal-
fzed.

On the other hand, highly paralle]l ar¢hitectures
are now pervasively researched and developed. But
designing highly parallel algorithms or hardware
algorithms iz siill a very hard job. Some systematic
methodology is strongly required for designing
both a large collection of fine-grained process cells
connected to each other and the various operations
of each cell.

Our research aims at developing a systematic
technigue for designing hardware algorithms, and
for this aim, we applied program transformation.
In this paper, we propose a new approach to the
derivation of systolic array implementations from
their respective specifications in recurrence egus-
tions.

In order to apply program transformation to de-
riving systolic arrays, we should have a formal rep-
resentation of them which can express recorrence
equations, inner-cell operations and cell configura-
tions, all in an integrated form. We, therefore, in-
troduce a restricted subset of concurrent logic lan-
guage, which we call Relational Representation.

Chapter 2 introduces Relational Representation
after briefly reviewing systolic arrays, and also
notes its translations. Chapter 3 deseribes program
transformation applied to relational programs, and
formalizes several transformation tacties for deriv-
ing systolic arrays. Chapter 4 gives an example of
the transformational derivation of systolic arrays.
Chapter 5 contains concluding remarks.

2, RELATIONAL REPRESENTATION OF
SYSTOLIC ARRAYS

2.1 Bystolic Arrays

566

First, we review systolic arrays. There is, in fact,
no strict definition of them. They are a class of pro-
cessor arrays with the following characteristics :

A} a regular (recursively-defined) eonfiguration ;
B) lpeal connections of cells by channels ;

C) lock-step synchronization of the system ;

D} determinisiic operations of cells,

Here is an example of a8 matrix-matrix multipli-
cation. Figure 1 shows a systolie array multiplying
two matrices in the case sizes are 4 by 3, where a
box denotes a cell, and an arrow denotes a channel,
When receiving data, each cell sends data out after
& small duration, which is called a beat. This array
has mutnally crthogonal input and cutput streams,
and each set of input streams is skewed with in-
cremental delay cells in oreder to control data syn-
chromization.

A gystolic array is usually specified in guch an in-
formal manner. Understanding its behavior intui-
tively or formally is difficult, and simulation by
hand is often reguired. Some systematic tech-
nigues for designing systolic arrays have been pro-
posed (Moldovan 1983, Li and Wah 1986, Lam and Mostow

[=]
[= R

0
0 0 0 [H
o ¥iz Vil ;
—] K11 M K21 B %31 » X1t P
- Y2z Y21 = > = =+
Xi2 P K22 o ®az Pl Kap p—ip
. 1"-3‘2 ?31 b - - "IL‘
FIBLI| 13 [P *23 [—P| X3z [—h| Xa3 —P

E T Zp T3 Ty
Z13 Z3p Z31

Zyp Zn

Zi1 z

i

4

¥Yin = —p Yout = Yin

+—

_ *
Zomt = Z4p + X" Y4p

Figure 1. A Systolic Array of
Matriz-Matriz Multiplication.

1985, Huang and Lengauer 1987}, but few are widely
used. Many systolic arrays were just invented, not
systematically designed.

2.2 Relational Representation

In order to apply program transformation to the
derivation of systolic arrays, we should have a for-
mal representation of them. There are some re-
gquirements for it.

Firstly, it should be able to express both inner-
cell operations and cell eonfigurations of a systolic
array in an integrated form. They together should
meake a uniform program to be transformed. If a
program would be composed of digjoint parts in two
different forms, applying transformation to it
would be diffienlt. Secondly, it should have an in-
ductive nature, A recurrence equation as a specifi-
cation of a systolic array can be expressed in a re-
curaive form. A perpetual process cell can be ex-
pressed in a tail-recursive form (Heare 25), and a reg-
ular configuration of cells can also be expressed in a
recursive form.

One form which meets all these requirements is a
funetional language with stream programming (Ida
and Tanake 1984, 1985). Another is a so-called eoncur-
rent logic language such as Concurrent Prolog and
Guarded Horn Clauses. Both use, as their bases,
gtream interpretation of lists with lazy evaluation.
As the representation, we chose the latter, since it
can express multiple outputs more simply.

In concurrent logic languages, a program for a
systolic array is composed of some uniform predi-
cates with different interpretations. A predicate
may be interpreted as an inner-cell operation. A
tail-recursive predicate may be interpreted as a
cell, possibly with its local variables as its internal
states (Shapiro 1963), With its body goals interprated
as cells, a predicate may be interpreted as a cell
configuration, with shared variables as channels to

connect cells,

A= mentioned in Chapter 3, a set of transforma-
tion rules has only been established so far for a
restricted class of coneurrent logic programs, not
for the general class yet. We, therefore, introduce a
subset of coneurrent logic language with the follow-
ing restrictions ;

A) Specify the input/output mode of arguments ;

B} Allow no nondeterminacy (namely no guard).

These restrictions together mean that a clause to
execute in a predicate is fized as soon as all its in-
put arguments are instantiated. They do not spoil

the ability of concurrent logic languages to express
systolic arrays.

We call this subset Relational Representation, or
RR for short. The word relational is preferable to
logic here, since relations between inputs and out-
puts are of concern, while logic features such as
backtracking are not.

As for notation, we basieally follow Prolog. We
only modify a notation of clanses, in order to distin-
guish the mode of arguments, as follows :

Q:: Py, Pe . P
where F;, @ = (I3, «.., ImIP{O1, ..., O}

.In this, Py's {i= 1.1} and Q denote terms, P is a predi-
cate symbol, |s (i=1..m) are input arguments and
Oy's (k= 1.n) are output arguments.

The followings are two programs of the same
meaning, each in RR and in GHC respectively, for
comparison

<RR program:
(S.DXPODP(IYIYYD) <
(ST, Y), (TXp(YY).

<GHC program>
p(S.IX[XX], YYO) :- true [YYO = [Y[YY],
f(S. X, T.Y), p(T. XX, YY)

As in concurrent logic languages, a cell is ex-
pressed by a tail-recursive predicate in RR. For ex-
ample, a cell p performing an operation f with an
input channel XX, an output channel YY and an in-
ternal state transition 5 — T (without delay con-
sidered here) is expressed as :

(S XPODR(IYTYD) o2 (SX(T,Y), (TXKp(YY).

Conversely, a predicate expresses a cell when
satisfying the following set of conditions (C1}:

A) It is tail-recursive ;

B) Every input is s list constructor or a variable ;

C) Every output is a list constructor.

A eonfiguration of cells is also expressed by a
predicate, For example, a pipeline pp of the same
cells p (without delay considered here) is recursive-
1y expressed as:

(00pplZZ) :: XOP(YY), (YY)pp(ZZ).

2.3 Delay

An RE program has no concept of delay in its es-
sence, while a systolic array utilizes delay in order
to control the flow rates of its streams.

In a systolic array, a cell sends outputs at the
next beat after receiving inputs, and the next cell

567

receives them almost immediately. Now, imagine
the situation where a cell sends outputs immediate-
1y upon receiving inputs, and the next cell receives
them at the next beat. This consideration proves
that a delay along a channel wounld be the equiv-
alent of a delay in & cell, This means that every
channel, instead of every cell, must have one or
more beat{s) of delay.

A beat of channel delay can be expressed by a
shift of a list. For ezample, a pipeline of cells p and
q connected by a channel YY is expressed, with
delay considered, as :

(O0pg(Z2) o POOR(YY), ([LYYNa(ZZ).

where “1" denotes the so-called bottom. If any
input is the bottom, a cell bypasses all its inputs to
outputs with no operation. 'We introduce an oper-
ator “ + * to denote this shift of a list :

300 = [L]xX] ;
+ 001,02, = [+3001, +32,..]
if ¥ is & stream,

8.4 Translations

We can translate a recurrence equation into an
RR program in a straightforward manner, since
both are of an inductive nature. 'We can also trans-
late a systolic array into an RR program, as shown
in the previous sections. Every systolic array can,
in principle, be translated into an RR program,
while an RE program can be translated into a sys-
tolic array, only if it satisfies the condition set C1
shown in Section 2.2. Lastly, we can transiate an
RR program directly into a concurrent logic pro-
gram, By executing & translated program, we can
simulate the behavior of a systolic array. RER can,
therefore, be considered as an executable hardware
description.

3. TRA NSFORMATION OF PROGRAMS
IN RELATIONAL REPRESENTATION

3.1 Program Transformation

For transformation of logic programs, the unfold/

" fold transformation has been established (Tamaki

and Sato 1984), It is correct (semantics-preserving)
for concurrent logic programs which imply well-
formed causalities and do not have so-called don't
care nondeterminacy (Furukawa and Ueda 1985). RR is
a restricted subset of coneurrent logic language, so
as to specify causalities (by the mode of arguments)
and not to allow nondeterminacy. We, therefore,
can apply the unfold/fold transformation for logic

568

programs to HR programs with no medification, if
we are careful with their causalities.

In order to apply program transformation to prac-
tical problems, we should strueture transformation
sequences, This is done by formalizing transforma-
tion tactics, each of which iz a specific combination
of primitive rules like a macro. By doing it, we can
transform a program with more specific and ab-
stract tactics, instead of primitive minute rules. In
this case, primitive rules serve as axioms for prov-
ing the correctness of the tactics.

The assorted tactics for the transformational de-
rivation of systolic arays are of three types : for de-
riving cell configurations, for cascading channels,
and for introducing delay, Here, we show some typ-
ieal tactics, using a form of “initial program schema
= final program schema®. The outline of their
proofs bazed on the primitive unfold/fold rules are
found elsewhere (Yoshida 1988).

3.2 Tactics for Deriving Cell Configurations

The essence of a tactic for deriving a cell configu-
ration is mapping an inner-cell operation in the ini-
tial program onto a cell configuration in the final
program, This mapping is practically done by mak-
ing a more inner (or lower) predicate express a cell,
as shown below :

1) Tactics for Deriving Pipelines

The simplest pipeline iz compozed of two consecu-
tive cells. A tactie for deriving it is as follows
(IXPOIPP((ZIZ2]) :: (XFF(Z), (OXPP(Z2).
(IFF(Z) o2 POFIY), (YIF2(2).

b
(XXOPP(ZZ) :: POOPI(YY), (YY)P2(ZZ).
(DXPODPUTYYYD) =2 OFI(Y), POOPI(YY). .
(IYPYYDP2([2|22]) :: (Y)F2(Z), (YY)P2(ZZ).

In this, XX and ZZ are the input and outpui chan-
nels respectively. In the initial program, PP ex-
presses a cell, since it satisfies the condition set C1,
and FF expresses an inner-cell operation as a se-
quence of F1 and F2, In the final program, P1 and

Cell PP

»0P»0» +c+o+
¥

Cell P1 Cell P2
»OPO F1|bo+ F2|$o+m

Figure 2. Derivation of a Simple Pipeline,

P2 express cells respectively, and PP expresses a
cell confignration as a pipeline of P1 and P2 with an
intermediate channel YY. . The sequence of F1 and
F2 is mapped onto the pipéline of P1 and P2. Figure
2 shows this transformation, It is the converse of
the loop fusion (or the combining) tactic (Feather
1982) and the process fiesion (Furukawa and Ueda 1985).

‘We can easily generalize this tactic to the deriva-
tiom of pipelines of more than two cells, and more-
over, recursive pipelines,

2) Tactics for Deriving Parallelizsms

The simplest parallelizm is composed of two adja-
cent cells. A tactic for deriving it is as follows :

(DO PP(IZS|ZZ]) o2 (Xs)FF(Zs), (XX)PP(ZZ).
((X1X2DFR{Z1,22]) 2 (X)F1(27), (X2)F2(Z2).

d
{(OPP(ZZ) ::
{HHKE(HNs), (WHs)PP'(ZEs), (ZZsH(ZZ).
(X1 20020PP([221,222]) ::
()P 1(ZZ7), (KX2)P2(ZZ2).
(IXPOXDPA{[Z[ZZ]Y :: (XNF1(2), (XXP1(Z2).
((XXXDP2([2]2Z]) :: (X)F2(Z), (XX)P2(22Z).

where the predicate t transposes a list of lists as :
([[1.21.[3.4L.[5.6L..04([1,3,5,.1.[2,4,6,..1])

In the initial program, the cell which PP expresses
operates on a stream of paired items. In the final
program, the stream is separated into two, and the
cells P1 and P? operate on each of them. PP' ex-
presses a configuration as their parallelism. Fig-
ure 3 shows this transformation.

‘We can easily generalize this tactic to the case of
more than two cells, and moreover, recursive paral-
lelisms.

8) Tactics for Deriving Trees

Cell PP
{0\, (O IR}
Yoio?) weh [iolio?
¥
Cell P1
O O¥ F1|DD+D+
Celi P2
FORPOMFZBOR0OS

Figure 3. Derivation of a Simple Parallelism.

The base methed for deriving a tree of cells is
called the recursive doubling (Eogge and Stone 1873),
which introduces a bi-linear recursion as follows

(IXsPOIPP(Z]Z2]) =: (XSIFF(Z), (XX)PP(Z2).
{[FF(E). % E is the identity of F.
([X|XSIFF(Z) =: (Xs)FF(Y), (OGIXY), O, YIF(Z).

4
DOGPP(ZZ) = LOOLHOGE), OGIPPY(ZZ).
(IXXNPP'(22) @2 (XX)P1(ZZ).
{[XXs1@XXs21)PP'(Z2) ::
DX TIPP(YY1), (XXs2)PP'(YY2),
(YY1,YY2)P2(2Z).
(XPOAP([Z}ZZ]) =2 (X)G(Z), (XX)P1(ZZ).
(Y 1Y 1LIv2)YY2DP2([2Zj22]) =
(Y1,Y2)F(Z), (YY1,YY2)P2(ZZ).

where the operator “[@]” divides a list into two as:
['t r2:3 !‘l er] = [[1 ‘.2'31@ [4.' EIEI] .

This tactic iz applicable only when F is associative,
Figure 4 shows this transformation.

3.3 Tactics for Cascading Channels

One of the tactics for cascading channels frans-
forms outflow channels to cascade ones. This is ex-
actly the same as the recursion removal (Huet and
Lang 1978) for sequential programs, and transforms
recursion into tail-recursion prior to the configura-
tion-deriving tactics. Itis as follows:

{((DP(E).
(IXPDP(Z) 22 POGP(ET), (XZ)F(Z).

1
OR(2) :: (LE)P'(Z).
0,2y (2).
(XL, ZPHE") 22 (XZIF(ZY), (XX.Z2')P'(2").

This is applicable only when F is associative.

|
~.

¥
-

Cell PP

Cell P1

—AF]

..I}D-FO-P

POPO .
POFO

Figure 4. Derivation of a Tree.

l---x-"-\
{06:- 00
.
(60;- GC

i

W
o)
b
o)
]
1%
b -

569

The other transforms branch channels to cascade
ones. Itisas follows :

e (OP(), (COP20), ..
(EXpCDPI() 2 (KR, GOOP().

1
e ORI OCY, (OCYP210OC, .
(DXPCIP{XPOCT) <2 PAFT0, POOPT(XXC).
Figure 5 shows these two transformations.

3.4 Tactics for Introducing Delay

A cell with the same smount of additional delay
along every input and output channel is equivalent
to the original cell, Namely, the following transfor-
mation is correct : :

(5,40l mIP(Oy,....OR)

i
(5, % Mers #lm)P(+ Oq,.., + Op)

We, hereafter, make an assumption that we may
ignore delay (or *+" operators) on the last output
channel. Then, the following tactics for recursive
cell pipelines, for example, become correct :

[OOPPZZ) &2 DOYPIYY), (YYIPP{ZZ).

4
POQPP(ZZ) o POOPYY), (+ YY)PP(ZZ).
(XXIPP(ZZ) :: (YY}P(ZZ), (OOPPYY).

i
OXCPP(ZZ) 12 (YYIP(ZZ), { + XX)PP(+ YY),

In these, & beat of additional delay is put along the
arguments of PP, In the former, a * +” on ZZ, which
is the last output channel, is omitted. Figure 6

Cell P
[Fp lpc:w C»
\ 4

Cell P
»orOH HFp [bmm

(a) Caseading an Outflow Channel.

+0
o CellP1g Cell P2

\)IF1 l
2

CellP1 Cell P2
»oroMFihod- poror

(b} Cascading a Branch Channel.

Figure 5. Tacties for Cascading Channels.

570

shows these two transformations, where “=" de-
notes the inverse of “+". A transformation se-
guence should end with these tactics so that every
channel is arranged to have one or more beaf(s) of
delay.

3.5 Transformation Sirategy

We should have a transformation strategy to de-
cide how to combine transformation tactics., Some
channel-cageading tactics should be applied before
configuration-deriving ones, the others should be
applied afterwards, and delay-introducing ones
should be applied last, In the case where several
configuration-deriving tactics are applicable to a
given program, we should transform its predicates
in the order “from outer to inner”. In the case
where several transformation sequences are appli-
eable to & given program, we should select one, fol-
lowing a certain eriterion.

4, DERIVATION EXAMPLE OF
SYSTOLIC ARRAYS

Transformational derivation of a systolic array is
to transform one KR program corresponding to a
given recurrence eguation (namely a specification)
to another RR program corresponding to a systolic
array (namely an implementation}, Here is an
example of the concrete derivation of a systolic ar-
ray, especially to show how a transformation se-
guence is composed of a combination of the tactics
shown in Chapter 3.

We unsually express a8 matriz-matriz multiplica-
tion in an ahstract form as :

Cefl PP

FFFFFFFFFFFFFFFFF

= =)

Celi PP

s s B

by o ey 2 Call P

Rrs B SUE M W

[T T e e s g g e e e

Figure 6. Tactics for Introducing Delay.

E=X-Y
When specifying the meaning of this, we should
express it as
Z = <<K1Y 1 XmY 1> <K Y e XY=
where X = <xi'... Xm'>'and ¥ = <yi,...¥n>

oF, more precisely, as:
zij = TXikykj
In this, *Z" is also an abstract form, When specify-

ing its meaning, we should express it in an indue-
tive form as:

Itfooll) =0
Zn+1 foa(i) = fooln + 1) + E" fooli)

In this consequence, an RR program corresponding
to the matriz-matriz multiplication is as follows :

(OO, YYY)mixmt(222) ::
(YYYIIYYY'), (O0LYYY Imxm(ZZZ).
({1, mxm([]).
(OGO, YY Yi) mxm([2ZofZZZo]) ::
(R0, Yy Yilvxm(Z2o),
(OO, Y Y Y mxm(ZZZ o).
[Dwxmill).

oKLYy il vemi([Zo|ZZo]) 1
OO0 Y Yikvew(Zo), (OO00G,YYYi)vemiZZo).

([0, Tivxw(0).

(PG TY]Y Y ivew(Zo)

_ CEXILY Y ivxw(Za), (XI,Y1,Za)f(Zo).

{Y.ZiMf(Zo) i (X,Y)*(Zb), (Zi,Zb) + (Zo).

In this, a matrix is expressed by a list of row lists,
and predicates mxm, vxm and vxv calculate “matrix
- matrix”, “vector - matriz” and “veector - vector”
respectively. Vxm satisfies the condition set C1,
which means that vem expressss a eell, while mxm
expresses a cell configuration, and vxv expresses an
inner-cell operation.

(@ First, apply a channel-cascading tactic to vxv
80 ag to transform it to a tail-recursive predicate
{we omit base terms for simplicity) :

(OOLYYYImtxmit(ZZZ) o
(Y Rr{YYY'),

(OO Y YY,I10,..1,. Imxm(ZZ2).

(DOGPXXI, Yy Y [ZZHZZZi)mxm([ZZo]ZEZo]) ::
(XXi,YYYi,ZZi)wvxm{ZZo),
COOGYYYIL,ZZZ)Imxm{ZZZ0).

OO Y YI[YYYil[ZilZZilvam{[Zo|ZZo]) ::
{0, Zivew{Za),
(300,YYY1L,2Zivem({Z20).

(IXPXX,IYIlYYi), Zivw(Zo) ::
{Xi,Yi,Ziyf{Za), (XXi,YYi,Za)vwv(Zo).

& Then, apply a pipeline-deriving tactic to vem
and v

EIKX,WY}m’Imet[ZZZ} z:
(OO YYD, IImxm{ZZZ).
(XXiPOoK], Yy i [ZzZilzzzimxm([Z2o|2ZZo]) ::
(¥, YYYI, 22D vemi(ZZ20),
(OO, YYYILZZZmam{ZZ20).
(IXIPOGLIYYilYYYi],ZZi)vxm(ZZo) ::
(3,0, 221 vev(Z2a),
OG, YYYi,ZZa)vxm({ZZo).
(4, [YiPyil [ZilZZiTvxv{[2oj220]) ::
(¥i,Yi,Zif(Zo), (00, YYi,ZZivxv(ZZa).
@ Now, the innermost predicate vxv satisfies
C1, which means that no more configuration-de-
riving tactics can be applied. Therefore, apply a
channel-cascading tactic to mxm so as to trans-
form YY to a cascade channel :

OO YYYImxmH(Z22) ::
PO, YYY,[[0,.],..)mxm(__,222).
{OKPOOGL Y Y'Y, [Z2i| 2221]y mxm
{¥YYo,|2Z0|222a]) ::
O YYYIL,ZZivxm(YYYa,Z20),
(OO0, YYa, ZZZmem(YY Yo, ZZZ0).
(DGO, LY YIY YY), ZZivxm
(IYYo|YYYo],ZZo) ::

”"—")ao
lDl
VXM
o O
Iw W

&

40
£0

571

{30, YY1, 221 v Yo, Z22a),
(0L Y L ZZavem (Y'Y Y o, Z20).

(L IYIYYILIZi[ZZiDvsv([Yi]YY o [Zof220]) ::
(X, Y, Z0f(Za), (00,YY1,2Zivev(¥ Yo, Zo).

@ Lastly, apply a delay-introducing tactie to
mxm and vxm so as to make channels YYY and
Z77 have one or more beat(s) of delay (YYYo and
ZZZo are the last output channels, so *“+™s along
them are omitted) :

(OO, YYY)mixmit(ZZ2) ::
(OOLYYY [10,...),..[Jmxm(__ 277}
{1 YYYLmon (Y YY),
(DOGPOCK], YYY1LIZZi|ZZZi)mxm
(YY¥Yo,[ZZo[zZZo]) ::
(00 YY1 ZZ N vam{YY Y s, Z20),
(X300, + YYYa, + ZZZi)mxm(YYYo,ZZZo).
([0, ZZiywxm([1,ZZi).
(DXGPOXILIYYIYYYi], ZZi)vxm
(IvYo|YYYal,ZZo) ::
(XYY, ZZvav(YYo,22a),
(XX, + YYY, + ZZavem{YYYo,ZZ0).
(i, [YilYYil[Zi|zZziDvxv([Yi]YYe),[Zo|ZZo]) ::
(Xi,Yi,Zi)f{Zo), (Xi,YYi,ZZi)vxv(YYe,2Z0).
(X, L, ZiY¥(Zi).
(X ¥i, L)L),
(XY ZiMf(Zo) 2 (X,Yi)*(Zb), (Zi,Zb} + (Zo).

Figure 7. Transition of a Matrix-Matriz Multiplication System.,

572

In this, vxv satisfies the condition set C1, which
means that viv, vxm and mxm express a cell, a
column of the cells and the whole array respective-
ly. We get an RR program which can correspond to
the systolic array of a matriz-matriz multiplication
ghown in Section 2.1. Figure 7 shows the transition
of the multipication system along the transforma-
tional derivation shown abowve.

5. CONCLUSIONS

In this paper, we proposed & new approach to the
derivation of systolic arrays from recurrence equa-
tions, which is based on program transformation,
We also introduced & new representation for sys-
tolic arrays, which we call Relational Representa-
tion. We have succeeded in deriving several imple-
mentations of systolic arrays from their respective
gpecifications in recurrence equations.

There is one open problem. If an outcome RRE pro-
gram can not correspend to any implementation, ei-
ther its specification or its transformation sequence
is not good, but we can not now say which is the
case, since we have not yet completed this transfor-
mational derivation technigue,

We believe that this work has proved the trans-
formational derivation of systolic arrays is indeed
promising.

ACENOWLEDGMENTS

The anthor would Iike to thank Professor Eazuo
Ushijima and Professor Shinji Tomita of Kyushu
University for their valuable support and encour-
agement, and also thank Doctor Jire Tanaka of
Fujitsu Ltd. for his advice concerning stream pro-
gramming,

REFERENCES

{Moldovan 1983)
Moldovan DL, “On the Design of Algerithms for VL3I Sys-
tolic Arrays", Proe. IEEE 71:1 (1952) 113-120.

(Li and Wah 1985)
LiG.~. and Wah,B,'W., “The Design of Optimal Systolic
Arrays”, IEEE Trans, C-34:1 (1985) 66-T7.

(Lam and Mostow 1985)
Lam M 8. and Mostow,J,, “A Transformational Medel of
VLSI Systolic Design”, IEEE Comp, 18:2 (1985) 42-52.

{Huang and Lengauer 1887)
Huang,C.-H. and Lengauer,C., “The Derivation of Systolic
Implementations of Programs”, Acta Inf. 24 (1987) 595-
632

(Hoare 1585)
Heare,C.AR., Communicaling Seguential Processes, Pren-
tice-Hall (1985),

{Ida and Tanalka 1863}
Ida,T. and Tanaka.l., “Functional Programming with
Streams", Proc. IFIP "83, Paris (1953) 265-270.

(Ida and Tanaka 1984}
Ida,T. and Tamaka.J., “Funetional Programming with
Streams - Part II-", New Generation Computing 2:3
(Ohme-sha, JAPAN) (1984) 261-275.

(Shapiro 1823)
SBhapire, E.Y., “A Bubset of Concurrent Prolog and Its Inter-
preter”, Tech. Report TRO03, ICOT (1983).

(Tamaki and Sato 1984)
Tamaki H. and Sato,T., “Unfald/Fold Transformation of
Logie Programs®, Proe. 2nd Logic Programming Conf.,
Uppsala (1984) 127-138,

(Furukuwa and Ueda 1985)
Furukawsa K. and Ueda K., “GHC Process Fusion by Pro-
gram Transformation”, Proe. 2nd Japan Soc. Soft. Sei. and
Tech. Conf., Tokyo (1985) 89-92, :

(¥oshida 1988)
Yoshida,N., “Transformational Derivation of Highly Par-
gllel Programs”, Proc, 3rd Int. Conf on Supercomputing
Vol.3, Boston (1888) 445-454,

(Feather 1082
Feather M.5.,, “A System for Assisting Program Transfor-
mation”, ACM Trans. Prog. Lang, Syst. 4:1 (1982) 1-20,

{Fogge and Stone 1978)
Kogge,P.M. and Stone,H.S., A Parallel Algorithm for the
Effieient Solution of a General Class of Recurrence Equa-
tions”, IEEE Trans, C-28:8 (1973) TBE-793.

(Huet and Lang 1878)
Huet, 3. and LangB., “Proving and Applying Program
Transformation Expressed with Second-Order Patterns®,
Acta Inf, 11 (1978) 31-55.

