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Abstract

In this paper we discnss reasoning about reasoning in a mul-
tiple agent situation. We consider agents that are perfect
reagoners, loyal, and that can tzke advantage of both the
knowledge and ignorance of other agents. The knowledge
representation formalism we use is (full) first order predi-
cate caleulus, where different agents are different theories
and reasoning about reasoning is realized via a meta-level
representation of knowledge and reasoning, The frame-
work we provide is pretty general: ‘we illusirate it by show-
ing a solution to the three wisemen puzzle.

The solution we present relies on an appropriate organiza-
tion of each wiseman knowledge into units: his own knowl-
edge about the world and his knowledge about other wise-
men are units containing object-level knowledge; a unit
containing meta-level knowledge embodies the reasoning
about reasoning features and realizes the link among the
units,

1 INTRODUCTION

One of the goals of Ariificial Intelligence is the construc-
tion of an artificial agent that astonomously behaves in the
real world. To this end, a major issue, among the many rel-
evant ones, is the understanding of what it means for an in-
telligent agent, to gather knowledge via observation of the
world and perception of utterances from other companion
agents, Of course, these forms of observation entail an ac-
quisition of knowledge on the side of the agent, that hence-
forth updates its knowledge base and is enabled 1o use the
newly acquired knowledge in its own reasoning activity.

This process implies the existence of a knowledge repre-
sentation formalism that the agent uses to build its own
symbolic representation of the world, including the fellow
agents, and a deductive apparaws. An intelligent agent has
to be capable of reasoning using its own knowledge, rea-
soning about its own knowledge and reasoning activity, and
about other agents” knowledge and reasoning.

The main issue we address in the paper is the interaction
process that happens among agents: each agent has its own
view of the surrounding world, the other agents being part
of such a world, and can reason about it. Agents "listen” to

one another and are able to vse conclusions drawn by others
in a non trivial way; that is to say, an agent, by knowing that
another agent has a viewpoint on the world different from
its own, gathers information about the world seen from this
other viewpoint.

The sitwation we have depicted so far is not one of coop-
erative agents that, for instance, aim to achieve a common
goal, because in that case one should imagine that the com-
munication among the agents is perfect and total, so as to
make almost pointless to take into consideration the exis-
tence of various viewpoints. Conversely, this situation can
be described as one of loyal agents that are perfect reason-
ers: when asked a question, an agent tells the truth, to the
best of its knowledge. An agent does not cheat both on the
nature of its conclusion, and on its ability to draw one (Le.
it does not say "I don’t know" if it does know). Itis of par-
ticular interest that an agent can reason on another agent’s
conclusions, hence coming to know. even things that the
other agent has not explicitly communicated, and to reason
about "I don’t know" conclusions of another agent, hence
gathering knowledge even from another agent’s ignorance.

The problem described so far is very well illustrated by a
simple puzzle, known in the Al community as the three
wisémen problem: a king wishing to know which of three
wisemen is the wisest, puts a white hat on each of their
heads, and tells them that the hats are black or white and
that at least one of them is white. Each wiseman can see
the other wisemen’s hats but not his own. The king asks the
first wiseman to tell the color of his hat, The man answers
that he does not know. The second man gives the same an-
swer to the same question. The third one instead answers
that the color of his hat is white.

This puzzle exemplifies the problem of loyal agents that
are not cooperative: they simply provide an answer to the
question they have been asked, without providing explana-
tions on their reasoning process that could help the other
agents.

In the paper, we propose an architecture for representing
situgtions with multiple agents, each one being able to rea-
son about the world, w ake advantage of what it "hears"
from other agents, to acquire knowledpe relevant toits own
goals and reason about it



The knowledge representation formalism chosen for our
soludon is (full) first order predicate calculus, where dif-
ferent agents are different theories and reasoning about rea-
soning is realized via a meta-level representation of knowl-
edge and reasoning. The framework we provide is prety
general: we illustrate it in Section 2 by showing a solution
to the three wisemen puzzle.

The solution we present, which improves on the one we
illustrated in [4], relies on an appropriate organization of
each wiseman knowledge into units: his own knowledge
about the world and his knowledge about other wisemen are
units containing object-level knowledge; a unit containing
meta-level knowledge embodics the reasoning about rea-
soning features and realizes the link among the units,

The proof we present for the three wisemen puzele has been
machine checked using a version of Weyhrauch’s FOL sys-
temn [28]. The relevant features of FOL are sketched in Sec-
tion 3, while the description of the proof is reported in Sec-
tion 4,

The three wisemen puzzle has often been a vehicle for dis-
cussing reasoning about reasoning. In Section 5 we relate
our solution to the other ones proposed in the lterature, in
particular those realized in Prolog [8,21], in OMEGA [3]
&nd with modal logics [10,17), pointing out the advantages
of our approach.

2 FORMALIZATION IN FIRST ORDER LOGIC

In this section we provide a formalization of the three wise-
men puzzle in first order logic, as a set of theories and meta-
theories (i e. theories about thepries), which are interre-
lated by means of linking rules.

More precisely, we describe the knowledge of each wise-

man as a structure composed by three object-level theores, -

and a meta-level theory, We call this strecture, which is
shown in fig. 1, an agenr. The first object-level theory,
called own3, contains the agent’s own knowledge, and the
remaining two, called T¥, contain the knowledge that the
agent A; knows to be owned by the other agents (specified
by the superscript j). In addition, each agent has a meta-
theory, called ATy, whers the (meta-) knowledge for rea-
soning aboot the other agents® knowledpge and reasoning, is
represented.

MT1

l

ownT1 Ti2 T13

- Fig.1 The architecture of the agent Al
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The relationship between meta and object-level theories is
established by the following reflection principle [11]: if
THEQOREM ("w') holds in the meta theory, w can be de-
rived in the theory, and viceversa. Conventionally, 'n' is
the name in the meta-theary for the object n of the theory.
In the direct formulation such principle can be interpreted
as an auxiliary inference rule, which allows to derive a log-
ical consequence of the theory by applying a specialized
deduction procedure defined in the meta-thoory.

The agents’ meta-theory is connected with each of the ob-
ject-level theories, and the reflection principle holds be-
tween each pair < MT;,T: >. In fact, the meaning of
the connection is very different in the case of the swnT;
and T{: in the first one, it allows to derive the agent’s own
beliefs, while in the case of T/, it allows to draw the con-
clusions that other agents could possibly derive. Such con-
clusions are not necessarily belisved by the agent, and may
even be inconsistent with the agent's beliefs.

2.1 The object-level axioms

The object-level theories contain axioms representing the
knowledge available (or known to be available) to the wise-
men. Each of them contains the axiom expressing the con-
straint that at least one of the wisemen has a white hat:

atleast : whitel V while2 V white3

where the constant white 1, for example, is interpreted as:
the color of the hat of the first wiseman is white. We pro-
vide names to axioms for later reference.

Furthermore, each ownT} represents what the wisemen can
see. For example, ownl} also containg the axioms:

whitel
whited

The knowledge about the other wisemen, represented by
TY, is initially limited to the axiom atleast; in fact this is
the only fact known by all the agents and that all the agents
know to be common knowledge.

2.2 The meta-level axioms

In the meta-theory we formalize the reasoning about
knowledge and reasoning.

The predicate TH EQOREM (T, w') is used to denote that
a formula w is a logical consequence of the axioms of the
theory T In particular, according to the reflection princi-
ple, if the formula w is asserted in the theory T, the formula
THEOREM(T, w') holds in the meta-theory.

The predicate KNOWS( A, w') describes the agent's
knowledge relative to the other agents; K NOW S never
refers (o the agent’s own knowledge, which is explicitly rep-
resented in its ownT}.

In the following, we introduce the meta-level axioms, with
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the convention that all the variables refer to meta-theory
symbols, and that the subscript £ means that the axiom i3
in the meta-theory of each agent, with the occurrences of §
replaced by the agent’s number, 1, 2 and 3 respectively,

Enows : Wiw, KNOWS(A;, w)A
~T'HEOREM(T], mknot(w))
= THEOREM(T! ,w)

This axiom links the knowledge about other agents, expres-
sed by the predicate K NOW S, to the corresponding the-
ory T7; it is used when the reasoning about other agents”
kmowledge leads to conclusions that can be explicitly rep-
resented in the TY, and used for future derivations.

confidénce : Viw KENOWSE{ A, w) A
~T'HEQOREM( ownT}, mknot({ w))
= T'HEOREM (ownT}, w)

This axiom is used when an agent comes to believe the con-
sequences that it has drawn reasoning about another agent's
knowledge. Both the axiom gnows and confidence have
the form of the axiom for necessity in modal systems, Ka
= a. In fact, they state more specific properties of reason-
ing about reasoning: the former is needed to maintain the
representation of other agents' knowledge; the latter is used
1o infer facts known from other agents® reasoning.

reason : Wiwlw2, = KNOWS( A4, wl)a

: CANPROVEIF(w2,T!,wl)A
ACCEPTVIEW( A;,w2)
= K NOWS{ Ay, minot{w2))

The formula —JL NOWS( Ay, wl) is used to represent the
“I don't know" answer, given by the agent A, when asked
about the color of his hat. CAN PROV EIF(w2,T{, wl)
is interpreted as: wl can be deduced in the theory TY ex-
tended by the formula w2 . In this ease the notion of prov-
ability refers to a theory, which is not explicitly represented
within the system, and therefore it is not directly expressed
via the predicate TH EOREM.

The axiom reason’ defines a way of reasoning by contra-
diction upen the deductions that can be performed by other
agents. For instance the reasoning of the second wiseman
about the first ong, is the following: "If the first wiseman
does not know whitel and I know that he should be able to
prove whitel if he sees two black hats then, I can deduce
that he knows they aren't both black".

K NOWS(4;,wl) NCANPROV EIF(w2,T! ,wl)
VThis fvt can uctually be degived from mare primitive statements about the

compledeness of particalar subtheories, as it ks shown in [4]. Due to the lsck of
space the details are not presented here, hence we introduce it as an axiom.

Is the condition that implies the non provability of w2 in
T{, because T} is consistent and faithfully, even though not
completely, represents the knowledge of 4;. The definition
of reason requires the completencss of the theory If or
close world assumpiion, since the non provability of w2
leads to the assumption —w2.

In fact, the theories representing the knowledge of the wise-
men are not complete because, for example, in ownTy we
can prove neither whitel nor —whitel; but the condition
om the completeness of the theories can, in this case, be
weakened by verifying that w2 expresses an acceptable
point of view of the agent A;. This allows to avoid circu-
larities; the formula w should not refer to the agent whaose
reasoning is being considered. For example, the reasoning
done by As about the hypotheteal reasoning of A, can not
be based on the hypothesis that 4, knows the color of his
own hat.

some : Yw. ENOWS( A, w)n
SAMEVIEW( Az, A1)
= THEOREM(T},w)

The axiom same is necessary in order for As to reason
about the reasoning that A3 has performed uporn the "Tdon't
know" answer given by A;. In fact Ay reaches the same
conclusions as A3, when reasoning about A, ; therefore, As
can assume that A; has reasoned upon 4;. The condition
SAMEVIEW({ Az, A1) reads as: Thave the same view as
Az upon A,;. This is one of the hypotheses of the puzzle.
Actually the axiom same can be made available also in
Ay and in Ay, relatively 1o their views of the other agents,
we do not introduce them since they &re not needed in the
solution of this puzzle.

Any axiomatization based on a language allowing self-re-
ferenciality poses the problem of consisiency. For a full
treatment of this issue see [24,25], and the approach dis-
cussed in [9]. In the present formalization meta-level ax-
foms always refer to formulas of the object-level theory,
Therefore the problems of inconsistency caused by the sclf-
references do not arise,

2.3 The proof

In this section we present the proof, which provides the so-
lution to the puzzle. The style of the presentation is in-
formal; & complete formalization in the FOL system is de-
scribed in the next sections. The answer to the question
"which is the color of your hat?", posed to the first wise-
man, is simply obtained by trying to prove the predicate
THEOREM (ownDy, whitel'). Since the proof fails,
Az and A3 get to know =K NOWSE( A4, whitel”).

Note that, in order to increase the readability of the proof,
we use object-level exprossions within guotes to stand for
meta-level names of the corresponding chiject-level formu-
las. Hence, for instance, "—{ —white2 A —white3)' stands



for mknot( mkand( mknot{ white2), mknot(white3))),
which is the explicit meta-level denotation for the object-
level expression —(—~whiteZ A ~white3).

The second wiseman reasons as follows,
1--KNOWS A, whitel?)

2- KNOWS( A - ~twhite? A —iwhite3)')

by the axiom reason applied to A; and the wifs ‘whitel’,
and "white2 A —white3’. The condition

CAN PROV EIF("—white2 A ~white3', T3 ' whitel")
can be easily verified, as well as the condition
ACCEPTVIEW( A1, —white2 A ~whited).

3-THEOREM(T} ~(~white2 A ~awhite3)")

by the axiom knows.

4 -THEOREM{ ownls [ ~whitel A —white3)")

by the axiom confidence.

At this point the proof of T'H EQO BEM ( ownTy | white2 )

iz atternpted, and A answers "Tdon’t know". Az notes that
K NOWS( Az, white2'), and its proof is as follows:

1--KNOWS( 4, whitel”)

2-THEOREM (ownTs, —(—white2 A —white3)’)
obtained by the same reasoning done by A;.

3-THEOREM (T2, ~{ —~white2 A -white3)")
by the axiom same, where the condition
SAMEVIEW Az, Ay) is verified by hypothesis.

4--HANOWS(Ax, white2")

5- ENOWS{ Az, —(—~whited)")

by the axiom recaon applied 1o As, and the wifs ‘white2’,
and '—whited’. The condition

CANPROV EIF('—whited', T2 ' white2") can be eas-

ily verified, as wellas ACCEPTV IEW ( Az, ~white3").

6-THEOREM(T},' ~(—white3)")
by the axiom knows.

T-THEOREM{ownls; ~(~white3)")
by the axiom confidence.

At this point T H BEOREM (ownTy ' whited") can be
proved by As.

3 THE META-LEVEL ARCHITECTURE

Several meta-level architectures have been proposed so far,
the reader can find references in [2,3,7,13,20). Oursolution
to the three wisemen puzzle has been carried out within the
FOL system [28], Although much of the discussion about
the use of a fneta-level architecture for reasoning about rea-
soning and knowledge applies independently of the par-
ticular system, the FOL meta-level architecture embodies
several distingnished features, which are presented in this
section. :
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In the three wisemen puzzle we need to represent the knowl-
edge of the three wisemen as well as their reasoning, In
FOL the knowledge base of each wiseman is represented
by a base level or object-level context. The reasoning of
the wisemen is represented at the meta-level by means of
meta-contexis. Contexts and meta-contexts have the same
structure: in fact the atiribute meta simply emphasizes that
& context contains a description of another context. It is
therefore possible to build hierarchies of contexts where
meta-contexts are deseribed by meta-meta-contexts and so
on, :

A context provides a finite representation of a first order
theory. In this theory the knowled ge can be expressed in the
form of axioms in a first order logic language, and by defin-
ing a partial model of the theory, called simulation struc-
ture. The simulation structure associates an interpretation,
expressed as functons and data structures of a LISP-like
applicative language, with some of the symbols of the the-
ory .

Given this twofold form for expressing knowledge, the de-
duction must take into account both specifications, that in
FOL are termed synfactic and semantic. In fact FOL, pro-
vides different types of reasoners, called evaluators, which
allow to draw conclusions from the symtactic and seman-
tic knowledge, separately, Syntactic evaluators implement
standard deduction procedures for fitst order logic, such as
equation rewriting and tautology checking. The semantic
evaluator checks for satisfiability in the partial model de-
fined by the interpretations associated with the symbols of
the theory,

A very powerful reasoning tool is the FOL eveluator, which
makes use of both syntactic and semantic knowledge, by
combining the semantic evaluation with syntactic rewrit-
ing. A detailed description of the FOL evaluator can be
found in [22]. :

A meta-coniéxt, as any other context, has both a syntactic
and a semantic component, but since it refers to parts of
the system itself, the data structures used in the simulation
structure can be those actually implementing the system.
For instance, in the specification of a meta-coniext , a con-
stant symbol of sort wif can be given an interpretation in
the simulation strueture by means of the data structure in-
ternally created by the system to represent a context, Other
meta-level architectures define different naming relations
between the symbols of the meta-level and the objects rep-
resenting the base level (sce for example [7,14]). FOL is
unique in that it characterizes the data structures manipu-
lated at the object-level as the partial model of the mets-
theory represented by the meta-context. Therefore the re-
lation between the object-level and a meta-level is not just
a naming relation, but the object-level data structure are
given a cognitive account in terms of the interpretations of
the symbols in the meta-context.
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FOL contexts can be linked through the simulation struc-
ture and the reflection mechanism. This allows to generate
a proof step in the object context by making a derivation
in the meta-context. The consistency of the result of such
an inference is ensured whenever the relationship between
the meta-context and the chject context is well defined (see
[22] and [28] for a deeper discussion).

4 - THE FOL AXTOMATIZATION

In this section we present the solution implemented in the
FOL system, it closely follows the one just described. Each
agent A; is realized within FOL as a system S; consisting
of a meta-level context and three object-Tevel contexts, cor-
responding to ownl} and the two TY, respectively. In the
FOL axiomatization we represent the three object-contexts
in the simulation structure of the corresponding meta-con-
fext. We name the thres meta-contexts as metal, metal
and meta3.

4.1 Building the meta-contexis
We start by defining the first meta-context, metal.
NAMECONTEXT metal;

At the meta-level we have the definifions of the data stroe-
tores for manipulating contexts and well formed formulas
{wifs). The definition of a data structure is given by declar-
ing a symbol to denote the sort of the elements of its do-
main, symbals of constants representing domain elements,
function symbols operating on them, and variable symbols
ranging over the defined sort.

DECLARE SORT AWFF WFF:

MOREGENERAL WFF <« AWFF =;

DECLARE INDVAR wwl w2[ W FF1;

DECLARE INDCONST whitel white2 white3
[AWFFT;

For example here we define the sort for wifs and atomic
wifs (awffs); the command MOREGENERAL builds a lat-
tice of sort definitions, in this case every awff is a wif as
well; w is a variable symbol ranging over WEFF.

DECLARE FUNCONST mkand mkor mkimp
(WFF,WFF) = WFFLINFI;
DECLARE FUNCONST mknci{ W FF) = WFF;

The functions mkand, mkor, mkimp and minot are the
wif consmructors we need, INF means we use these func-
tons in infix mode, These definidons are given in the sim-
ulation structure by associating with each symbol the LISP-
function implementing it. The names of the functions used
in the simulatdon structure have the prefix [ standing for
interpretation.

ATTACH mkand TO I-mkand;
ATTACH mker TO I-mkor;
ATTACH mkimp TO I-mkimp;
ATTACH mknot TO [-mknot;

DECLARE INDCOMNST atleast black23[ W FF1;
LET atleast = {whitel mkor white2) mkor whited;
LET Mack23 = mknot{ white2) mkand mknot (white3);

The command LET links the constant symbol on the left
side of equality with the evaluation, in the simulation strue-
ture, of the expression on the right side. In this case, the
constant atleast is defined in the simulation structure in
terms of a formula representing the fact that at least one hat
is white and black23 by the formula representing the fact
thar the second and third wisemen have black (not white)
hats.

Below we give the definidon of the data somructores for sys-
tems and contexis,

DECLARE SORT CONTEXT SYSTEM;

DECLARE INDCONST S283[SVSTEM];

DECLARE INDCONST C0 emptyC ownC1 C12 C13
[CONTEXTI;

DECLARE INDVAR zC[CONTEXTT;

DECLARE FUNCONST declsent const
(AWFF,CONTEXTY=CONTEXT;

DECLARE FUNCONST addfact
(WFFCONTEXT) = CONTEXT,;

The function declsentconst takes an atomic wif and a con-
text and returns A new context with the declaration of a
sentential constant. This is the meta-level description of
the effect of the command DECLARE SENTCONST is-
sued at the object-level. The function addfact takes a wit
and a context and returns a new context with a new fact
in it. Both the functions and the constant empiyC are de-
fined in terms of the corresponding element of the simula-
tion structure. The constant emptyC is associated with the
LISP-structure representing an empty context.

ATTACH emptyC TO empty;
ATTACH declsentconst TO I-declsentconst;
ATTACH addfact TO l-addfact;

The objects defined in the simulation stueture for constant
symbols have the same name as the symbol. In the fol-
lowing, the commands for the definition of the simulation
structure will be omirted,

In the axiomatization we need 1o use some predicates to
formalize the hypotheses of the puzzle and the relations be-

tween contexts and systems,

DECLARE PREDCONST CANPROVE
(CONTEXT,WFF);
DECLARE PREDCONST ACCEPTVIEW



(SYSTEM,WFF);
DECLARE PREDCONST K NOW S
(SYSTEM,WFF);
DECLARE PREDCONST SAMEVIEW
(SYSTEM,SYSTEM):
DECLARE FREDCONST HOLDS
(CONTEXT,WFF);

The first two predicates are defined in the simulation strue-
ture, CAN P ROV E checks if the wif can be derived in
the context; it is implemented via the system procedure for
checking tautologies. ACCEPTY IEW checks if a wif
is an acceptable view for a system; a wif is an acceptable
view for a system if it does not contain references to the
color of the hat of the wiseman represented by the system,
this because & wiseman cannot see his own hat. For exam-
ple, ACCEPTVIEW(S1,w) is rue if white]l does not
occur in w. The predicates K NOWS and SAM EVIEW
are exacily equivalent to the ones defined in Section 2. In
arder to express the linking rule between the meta-context
and the object-contexts we define the predicate FOLDS
and the function updatects. To avoid inference rules that,
when trying to prove w, look from the object-level con-
text at the meta-level for a proof of FOLDS(C! w'), we
explicitly assert at the object-level any fact w which cor-
responds to the argument of FOLDES( O w'). Therefore
whenever HOLDS(C,' w') is derived at the meta-level,
the context C is updated through the command LET and
the function updatects.

DECLARE FUNCONST updatects
(CONTEXT, WFF);
AXIOM update : Vw 2C. updatectz( =0, w) =
IF HOLDS( 2O, w)
THENaddfact{w, x()
ELSE =

The declarations in meta2 and mete3d areidentcal to those
just shown, but for the subscripts that decorate systems and
ConExIs,

42 Building the object-contexts

“The object-level contexts are built by means of the com-
mand LET, which constructs a data structure and associates
it with the symbol of the meta-context. To shomen the con-
struction, we first define a context (0, and then build all
the other contexts on it.

LET 0 = declsentconsi{ white3,
declserdconst( whitel |
declsenteonst( whitel, emptyC)));

After the execution of this command, the constant symbal
C0 of the meta-context has an interpretation in the simu-
lation structure as the data structure representing a context
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with three sentential constants (cotresponding to whitel,
whited, white3).

LET ownCCl = addfact( atleast,

addf act{white3,
addfact{white2 , 0)));

LET C12 = addfact{ atleast, C0);
LET C13 = addfact{ atleast, C0);

The contexts ownC'1, 12, (713 describe the fact that the
first wiseman knows that the hats of the two other wisemen
are white and that at least one of the three hats is white. He
also knows that the other two wisemen know that ar l=ast
one hat is white. Analogous constructions are performed
to set up the object-contexts for the systems $2 and 53,

4.3 The meta-level axioms

The meta-level axioms are the same used in the solution
described in Section 2.

AXIOM knows2 : Y K NOWS(SZ, w)A
SCANPROVE(C12, mknot{w))
= HOLDS(C12 w);

AXIOM knows3 : Yu ENOWS( 83, win
SOANPROV E(C13, mknot{w))
= HOLDS(C13,w);

AXIOM confidence2 : Yuw. K NOWS(S2, w)A
=CANPROV E( own1, mknot{ w) )
= HOLDS(ownC1,w);

AXIOM confidenced : Yuw K NOWS(S3, w)A
~CANPROV E{ownC1, mknot( uw))
= HOLDS{ own1, w);

AXIOM reasonl : Vwlw2.

SENOWSE(S2, wl)n

CANFPROV B(eddfact(w2, C12), wl) A
ACCEPTVIEW(S2,w2)

= KENOWE(52, mbnot{w2));

AXTOM reasond : Vulw?2,
=KENOWSE(83 wl)A
CANPROV E(addfact(w2, C13), wl) A
ACCEPTVIEW(S3, w2)
== ENOWS(53, mbnot(w2));

' This completes the axiomatization for metal. Tn the other

meta-contexts the axioms are the same except for the names
of conrexts and systems. In addition in meta3 we have the

axiom same.

AXIOM same : Vi ANOWS{S1,w) A
SAMEVIEW(S52,51)
= K NOWS{ 52, w);
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4.4 The proof steps

FOL. is an interactive proof checker, and every proof step is
accomplished by the application of an inference rule, such
as the natural deduction rules, as well as powerful auto-
matic proof checking procedures (e, g, the evaluator). The
proof presented below requires context switching in order
to simulate the reasoning carried on by the agents. Here
we give an outline of the proof of the puzele done inter-
actively; a proof sirategy for automatic proof gencration
conld be devised at the meta-meta-level. The proof is or-
ganized along the reasoning that the three wisemen perform
when attempting to answer the question of the king "which
is the color of your hat?". (FOL:: is the FOL prompt, while
the generated facts are progressively numbered).

FOL:z: SWITCHCONTEXT metal;

FOL:: EVAL CAN PROV E(ownC'1, whitel);
1--CANPROV E{ cwnC1, whitel)

The first wiseman iries to prove whitel in cwnC1, but
fails, The second wiseman hears the answer of the first one
and tries to understand why he could not answer.

FOL:: SWITCHCONTEXT meta2;

FOL:: ASSUME not K NOWS( 51, whitel);
1--KENOWS(51, whitel}

FOL:: EVAL O AN PROV E{ addf act( black23, C21),
whitel);
2 - AN P ROV B addf act( block23, 021}, whitel)

FOL:: EVAL ACCEPTVIEW( 5], black23);
3- ACCEPTVIEW(S1,black23)

By modus ponens applied to the axiom reasonl, instanti-
ated with whitel and black23, we obtain:

4 - ENOWS( 51, mbnot{black23)) .

FOL:: EVAL CANFPROVE(C21,
mknoi mknot{ black23)));
5 - ~(PANFP ROV E(C21, mbknot{ miknot({ Mack23) )}

By modus ponens applied to the axiom knowsl, instanti-
ated with mbnot( black23), we obtain:

6 - HOLDS(C21, mknot( black23))

At this point we update (21; this is done with the func-
tion updatects and the command LET, using the axiom

iupdate.

FOL:: LET 021 = updatectz{ C21, mknot( black23))
BY {update};

By modus ponens applied to the axiom confidencel, in-
stantiated with mknot( black23), we obtain:

7- HOLDS(ownC2, menot(black23))

FOL:: LET own(2 = updatects{ ownl2
mknot( black23)) BY {update};

The sccand wiseman updates his knowledge and the knowl-
edge he has about the first one. Now he res to prove
white2 with his own knowledge.

FOL:: EVAL CAN PROV E(ownC2, whitel);
8 - =CANPROV E{ cwnC2Z , whitel)

The second wiseman has not enough knowledge 1o prove
white , therefore his answer is "1 don’t know". The third
wiseman hears the answer of the second one and starts his
reasoning.

FOL:: SWITCHCONTEXT meta3;

FOL:: ASSUME SAM EVIEW(S82,51);
I-SAMEVIEW(52,51)

FOL:: ASSUME =K NOWS(51, whitel);
2-=KNOWS(51, whitel)

FOL:: ASSUME -K NOW S( 52, whitel);
3-~ENOWS(51,whiteZ)

With the same reasoning of the second wiseman about the
first one the following steps are generated.

4- KNOWS(51, mknot(black23))
3- HOLDS(C3, mk_ﬂat{b!m:kﬂj}

'FOL:: LET €31 = updatect={ 031, mknot{ lack23))

BY {update};
6 - HOLDS{ ownC3, mknot( block23))

FOL: LET swnl'3 = updatectz{ownl3,
mknot( black23)) BY {update};

The third wiseman, before reasoning about the answer of
the second one, needs to update his view of the knowledge
of the second one. By modus ponens applied to the axiom
same, instantated with mknot( Mack23), we obtain:

7- KNOWS(S2, mknot(black23))

By modus ponens applied to the axiom knows2, instanti-
ated with minot({ black23), we obtain:

- HOLDS(C32 , mknot( black23))

FOL:: LET (32 = updatect=( 032,
méknot(black23)) BY {update};



Now, after the update of /32, the third wiseman can rea-
son about the answer given by the second one. By modus
ponens applied to the axiom reason?, instantated with
white? and mbnof( mknot{ whited)), we obtain:

9- K NOWS( 82, mbknot{ mknot{ white3)))

By modus ponens applied to the axiom knowa2 , instant-
ated with minot( minot( white3)), we obtain:

10- HOLDS( 032, mknot( mknot(white3)))

FOL:: LET 32 = updotectx( 032,
mknot( mknot{ white3)) ) BY {update};

By modus ponens applied to the axiom confidence2, in-
stantiated with mknot{ mbEnot{ white3)), we obtain:

11 - HOL DS ownC3, mknot( mknost( white3)))

FOL:: LET ownC3 = updetectz{ own3,
miknot{ mEnct(white3))) BY {update};

At this point, the third wiseman tries to answer the question
of the king, and finally succeeds.

FOL:: EVAL CAN PROV E{ ownC3  white3);
12 - CANFP ROV E(ownC3, white3)

§ DISCUSSION

We have presented an architecture for reasoning about rea-
soning in a multi-agent scenario; it is based on a represen-
tation of knowledge in first order logic and has been ex-
perimented using Weyhrauch’s FOL for solving the three
wisemen puzzle. In our solution, each agent is represented
as & FOL system consisting of a meta-level context, where
the knowledge relative to reasoning about reasoning is rep-
resented, and three object-level contexts, where the agent’s
own knowledge and its understanding of the other agents’
knowledpge is reprasented.

This architecture is more general and flexible than the one
we presented in [4]. In that proposal, the knowledge rela-
tive to reasoning about reasoning of all the agents is repre-
sented in a single meta-context and the object-level knowl-
edge of each agent is represented in & scparate context,
divided into a "private" and a "visible" part. The private
knowledge is only accessible 1o the agent that owns it, the
visible knowledge is accessible also to the other agents.

Actually, the generality of the architecture proposed in the
present paper is not fully exploited in the solution of the
three wisemen puzzle, because the knowledge bases of the
three wisemen are identical, but for the constant symbols
denoting the variouws agents. Nevertheless, it can also be
used in formalizing problems where each agent has his own
meta- knowledge, different from the other oncs, and has
different views on the knowledge of the others.
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The three wisemen puzzle has often been used s an exam-
ple 1o illustrate various approaches to the formalization of
reasoning about redsoning. In the following we compare
our proposal with others that recently appeared in the liter-
atore,

Modal Jogic has been proposed as the representation for-
malism for problems related 1o knowledge and belief; both
Konolige [12,17] and Farinas del Cerro [10], have solved
the three wisemen puzzle using a modal system.

The modal approach has the merit of identifying the es-
sential feamres of the problem; the logic chosen is spe-
cific to a limited class of problems and it is not evident
how to deal with situatons where not ail the agents are
perfect reasoners or use different deducton strategies. A
modal solution would require a different set of modal oper-
ators, which practically means to use a different system, A
meta-level architecture allows to specify modal operators
ag meta-level knowledge associated with different agents,
therefore providing a great degree of Bexibility. Modal op-
erators are expressed as meta-level predicates: once the
problem has been formalized it reduces to a set of con-
texts lnked to one another, and the reasoning process is
performed by means of the standard deduction mechanisms
of first order logic.

Our point in favoor of a meta-level architecture based on
first order logic is reinforced by considerations about other
representation problems such as: inference control, non-
monotonic and default reasoning, self- evaluation and self-
modification, etc. (see [2] for a general discussion, [15]
and [19] for examples of use of a meta- level architecture
for non-monotonic reasoning and belief revision, respec-
tively). A meta-level architecture allows 1o build a system
where such different issues can be dealt with in a unified
framework,

The three wisemen puzzle has been proposed as an exam-
ple of the use of knowledge base management facilities de-
seribed by Coscia et al. in [8]. Their solution presents a
structure of meta-descriptions, based on different types of
links that can be established among theories. In particular,
the common knowledge can be inherited by the theories
representing the three wisemen. The proposed deduction
is obtained by a meta-level program written in an extended
PROLOG. The code implicitly deals with many aspects of
the problem that are instead expressed explicitly in our so-
lution. For example, the implications of the "I don’t know"
answers given by the wisemen are not explicitly deduced by
the others, but simply asserted in each theory; furthermore,
ingide each theory there is no distinction between what is
own knowledge and knowledge about the others. -

An analogows solotion based on Horn Clause Logic has
been proposed by Nait Abdallah [21], who, instead of re-
lying on an amalgamation between object-level and meta-
level knowledge, uses spocial operators to deal with local-
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ity of proofs, His notion of locality somehow corresponds
10 QT CONTEXTS,

Another solution to the puzzle has been given within the
framework of the OMEGA system [5]. In this case, the
kmowledge of the thres wisemen is represented by thres
viewpoints, and the deduction is done according to a set of
tules that specify general properties of the viewpoints. This
provides a clean specification, but we think there may be a
problem with the application of the Indirect Proof axiom,
which is a property of the viewpoints comresponding to the
closed world assumption. In fact, the axiom should only be
applied to what we called acceptable views, ie. the second
wiseman cannot assume that the first one knows the color
of his hat, becanse otherwise an inconsistency is obtained.

Our solution to the three wisemen puzzle brings up a gen-
eral architeciure for representing agents capable of reason-
ing about other agents’ knowledge and reasoning. In par-
ticular, the axiom confidence captures the notion of loyal
agent, while the axiom reason describes a method for rea-
soning by contradiction.

We believe that a very important notion, not yet fully ex-
ploited, is that of agent. Agents have been characterized
as a set of theories and meta-theorics linked together, and
implemented using FOLsystems. While in the solation
of the puzzle we explicitly referred to agent/system com-
ponents, a more general framework should allow to reason
about agents as a whole, In parteular, this would allow
us to provide & suitable formalization of properties about
agents such as the one expressed by the axiom same; in
such a framework this axiom can be derived from more
primitive statements abour agents. In this case, a meta-
meta-lavel {5 needed in order to specify the structure of
agents/systems.
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