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Abstract

This paper contains a discussion of current re-
search issues for meta-programming in Logic Program-
ming. First, varous difficulties with the way meta-
programming is handled by Prolog are presented. It
s shown that the cause of these problems can be traced
to inadequacies in the way Prolog represents object pro-
grams at the meta-level and it is indicated how these
problems can be overcome. A list of research problems
in meta-programuming i presented. The paper concludes
with some remarks about the need to create improved

Logic Programming languages.

1 Introduction

The quality of & programming language depends mainly
on two factors: its expressiveness and its semantics. A
programming language which iz highly expressive allows
programmers to easily and quickly write their programs
at a conveniently high level. A programming language
which has a simple and elegant mathematical seman-
tics allows programmers to more easily verify and debug
Lheir programs and to be assured of the correctness of
program transformations, optimisations, and so on.
Prolog's success is undoubtably due to its very high
expressiveness. In a wide variety of application areas,
programmers are able to get the job done more easily
and quickly in Prolog than in other languages. Prolog's
importance and widespread use is well justified by these
advantages. However, Prolog's semantics (and by Pro-
log, we mean the practical programming language as it
is embodied in currently available Prolog systems, not
the idealised pure subsets studied in [L1o87], for exam-
ple) is much less satisfactory. The problems with the
gemantics are numerous and well known: lack of occur
check, unsafe negation, undisciplined use of cut, assert
and retract, and so on. These so-called “impure” aspects
of Prolog cause many practical Prolog programs to have
no declarative semantics at all and to have unnecessarily
complicated procedural semantics. This means that the

verification, (systematic) construction, transformation,
optimisation, and debugging of many Prolog programs
is practically impossible. '

The solution to these problems is to take more seri-
ously the central thesis of Logic Programming, which is
that

s a program is a (first order) theory, and’

« computation is deduction from the theory.

It is erucially important that programs be interpreted
directly as thecries. When this iz the case, they have
simple declarative semantics and can be much more eas-
ily verified, transformed, debugged, and so on. Each of
the impure aspects mentioned above causes difficulties
precisely becanse it creates an impediment to the under-
standing of & program as a theory. A Prolog program
which cannot be understood in some simple way as a
theory has only a procedural semantics. This leaves us
in no better position to understand the program than if
it was written in 2 conventional procedural language.

Let us now concentrate on meta-programming and
see what properties are desirable in a Logic Program-
ming language for meta-programming and fo what ex-
tent Prolog satisfies these properties. Although thereis
no clear consensus on precisely what meta-programming
is about, its essential characteristic seems to be that
& meta-program is & program which uses another pro-
gram (the object program) as data. In any case, by
any definition, meta-programming techniques enderlie
many of the applications of Logie Programming. For
example, knowledge base systems consist of a number
of knowledge bases {the object programs), which are
manipulated by interpreters and assimilators (the meta-
programs). Other important kinds of software, such
s debuggers, compilers, and program (ransformers, are
meta-programs.

There is mow a wast literature on various as-
pects of meta-programming in Logic Programming,
For example, papers concerned with the application
of meta-programming to knowledge base systems in-
clude [Bow85), [BWES], [CFL*88], [LS87a], [MEK*E3],
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[OHas], [SB86], and [TF86]. The textbook of Sterling
and Shapiro [S586b] contains a discussion of the pro-
gramming techniques relevanl io meta-programming.
Only a few papers discuss the theoretical foundations
of meta-programming. These include [BK82], [Esha6],
[HL&8], [SubB8]. Other aspects of meta-programming
are discussed in [NeuBG], [S586a], [SRP*88], and
[Ven84]., A collection of recent papers on mefa-
programming is contained in [L1o88],

However, in spite of the fact that meta-programming
technigues are widely and successfully used, the founda-
tions of meta-programming and the meta-programming
facilities provided by most currently available Prolog
systems are by no means satisfactory. For example,
on the theoretical side, some important representation
(that is, maming) and semantic issues are normally
glossed over. Furthermore, most currently available Pro-
log systems do not make a clear distinction between the
object level and meta-level, do not provide explicit lan-
guage facilities for representation of object level expres-
sions at the meta-level, and do not provide important
meta-programming software, such as partial evaluators.

As we show below, Prolog’s meta-programming prob-
lemns can be traced to the fact that it doesn’t handle the
representation requirements properly. A consequence
of this is that it is not possible to (directly) interpret
most Prolog meta-programs as theories and hence they
do not have a declarative semantics. The most obvious
symptom of this is with wer, which has no declarative
semantics at all in Prolog. However, the major point
to be made in this paper is that once an appropriate
representation is used, there are no theoretical impedi-
ments to obtaining a satisfactory declarative and proce-
dural semantics for the meta-programming facilities of
Prolog. Within the framewerk of the appropriate repre-
sentation, a meta-program is a (typed) first order the-
ory and the meta-logical predicates, such as var, have
straightforward definitions, which provide simple and el-
epant declarative and procedural semantics.

We now point out precisely where Prologs meta-
programming problems lie. The first problem is con-
cerned with an important and largely neglected repre-
sentation issue, which is illustrated by one of the best
known meta-programs, the standard solve interpreter.
This interpreter consists of the following definition for
solve

solve(empiy) +
solve(zdey) « solve(z) A solve(y)
solve(z) « clause(z,y) A solue(y)

together with a definition for clause, which is used to
represent the object program. For example, if the object
program contains the clause

plz,y) = q(z,2) Ar(z,¥)

then there is a corresponding clause of the form
clause{p(z,v), qlz,z)&r{z,¥)) —

appearing in the definition of clause.

This interpreter is sometimes called the vanilias in-
terpreter [SBB6). Many important meta-programs are
extensions of one kind or another of the vanilla inter-
preter. See, for example, [S586a], [SB86], and [SS86h].

Howewer, the declarative meaning of the vanilla inter-
preter is by no means clear. The problem is that the
variables in the definition of clause and the variables
in the definition of selve intuitively range over different

" domains. (Informally, the variables in clawse range over

elements of the domain of the intended interpretation
(based on a pre-interpretation J, say) of the object pro-
gram, while the variables in solve range over conjunc-
tions of J-instances of atoms.) Thus the intended inter-
pretation is simply not & model of the program. This is
not just a minor mathematical odditv. In particular, the
problem certainly cannot be solved by simply asserting
that each kind of variable is just a “logical variable®.
What is at stake here is whether it is possible to give a
simple and precise semantics to the vanilla interpreter
and other meta-programs. Without such a semanties, il
is impoasible, for example, to verify them or prove the
correctness of transformations performed on them.

If the different kinds of variables are intended to range
over different domains, then there is a clear solution. 'We
should introduce types (also called sorts) into the lan-
guage underlying the meta-program. This was called the
typed representation in [HL8E]. Then, for example, using
an appropriately typed version of the vanilla interpreter,
it is possible to prove its soundness and completeness for
both the declarative and procedural semantics.

However, the typed representation introduces another
problem refated to the fact that an ebject level variable
is represented by 2 meta-level variable. This leads o se-
vere semantic problems with the meta-logical predicate
var [S586L]. With this representation, there seems to
be no way of giving a declarative semantics to var. To
see the difficulty, consider the goals

— var(z) A solve(p(z))
and
= solve(p(z)) A var(z)

If the object program consists solely of the clause p{a)+—,
then {using the “leftmost literal” computation rule) the
first: E¢a.] succeeds, while the second gﬂa.] fails.

These considerations lead to another representation
scheme in which object level expressions are represented
by ground terms at the meta-level. In such a repre-
sentation, an object level variable is represented by a
meta-level constant, say. This kind of representation,



which was called the ground representation in [HLS8), is
a standard tool in mathematical logic. Using the ground
repredentation, it 3 possible to give appropriate defini-
tions for the meta-logical predicates of Prolog. It is also
poasible to give an interpreter which captures the pro-
cedural sermantics of normal programe and goals given
by SLDNF-resolution. .

In the next section of this paper, we indicate how the
representation problems can be solved. We describe the
typed and ground represemtations, and briefly discuss
two interpreters, one based on the typed representation
and one based on the ground representation. We also
indicate how the meta-logical predicates of Prolog can be
defined. This section is substantially based on [HLSS],
which was written in collaboration with Pat Hill. In the
third section, we discuss a variety of research problems
in meta-programming in the hope of stimulating further
research. We conclude with some remarks about the
need to create improved Logic Programming languages,

2 Representation Issues

A representalion ' is a mapping from one language
to another which is used to represeot (that is, name)
terms and formulas of the first language by terms in the
second language. In this section, we ocutline two basic
reprezentations (the typed and ground representations),
which are schemes for representing the quantifier-free
formulas of & (typefree) language £ in a typed lan-
guage L. The typed representation seems to have been
first defined explicitly in [HL88). The ground represen-
tation is closely related to the kind of representation
(usually called “Godel numbering”) employed in math-
ematical logic. The first mention of the ground repre-
sentation in the Logic Programming lilerature seems to
be in [Kow73].

First, we discuss the typed represeatation. L' has
two types 0 and y. Given a constant a in £, there iz
a corresponding constant o' of type o in L. Given a
varizble 2 in £, there 15 a corresponding variable z° of
type o in £'. Given an n-ary function symbol f in £,
there is a corresponding n-ary function symbol f/ of type
Bx s ¥ o= oin £ Given an n-ary predicate symbol
pin L, there is a corresponding n-ary function symbol
P oftypeox - x o= uin £ Weassume that the
mappings & —+ a', £ — 2, f — ', and p — p' are all
injective. The language £’ has a constant empty of type
p. In addition, £' contains the funclion symbels &, ¢ f,
and not of type p x p — g, px g — g, and g — p,

1A representation is not to be confused with the (slightly re-
lated) concepts of representable relation and representable fone-
tion from mathernatical logic. Note that the term *naming rela-
tion" rather than “representation™ has more commonly been used

in the Logis Programming literature [BK82], [Esh28], [KowTd].
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respectively. Finally, £* has two predicate symbols solve
and clouse of type p.

If & is a constant, = is & variable, f is a function sym-
baol, and p is a predicate symbol in £, then we represent
abya', zby ', fby f, and p by ¢ in £ We define
the representation of terms indoctively. If f{f,..., 1)
is a term in L, we represent f{ty,...,%.) by the term
F, .o ) of type o in L', where ,...,1, are the
representations of 4,, ... 1, respectively. Hp(t;,... 1)
iz an atom in £, we represent p{t;,...,¢,) by the term
i, ..., 1) of type g in £'. We also define the repre-
sentation of quantifier-free formulas inductively. If the
quantifier-free formulas.F and & in £ are represented by
F'and &, respectively, then =F, FAG, and F — & are
represented by the terms not{F'), F'&G', and F'if &,
respectively, of type p in £, _

The typed normal program V, based on the languspe
L', consists of the following definition for solve.

sofve{ emply) +—

Wz, y solve(zdey)
solve(z) A
solve(y)

Y.z solve(not(z)) —

=solve(z)

W,y solve(z) +—
clause(z if y) A
solve(y)

" Given a normal program P, based on the language
L, the program Vp consists of the above program V,
together with a clause of the form

Wok]. -, 2y clause(A'if Q) —

for every clause A + @, with variables #,,... 3, in P,
and a clause of the form

Verl,. .o, x) clause( A’ if empty) —

for every clause A «, with variables zq,..., 3, in P.

The mest important properties of the vanilla inter-
preter, including its soundness and compleleness, are
given by theorem 3.1, corollary 3.2, and theorem 3.3 in
[HL&8].

We now diseoszs the ground representation, which is
similar to the typed representation, except for the rep-
resentation of variables. In the ground representation,
a variable ¢ in L is represented by a constant ' of type
o in L' (in contrast to the typed representation, where
z' is a variable). Otherwise, the ground representation
is similar to the typed representation. The details are
given in [HLES)].

Next we discuss an interpreter useful for implementing
co-routining, which was presented in [HLS8] and is based
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on the ground representation. This interpreter captures
the procedural semantics of normal programs and goals
given by SLDNF-resolution and is a descendant of the
“demo” interpreter first given in [BEK82). The main dif-
ferences with [BK82] are that the interpreter handles
pegation and it (implicitly) obtains computed answers.
The use of this kind of interpreter for implementing co-
routining s discussed, for example, in [OH28].

The typed program G, based on the language L', con-
sists of the following definition for solve,

Y.z, ¥ solve(z,y) —
succeed(x if =, v if emply)

and the following definitions for succeed, fail,
and head_formula, together with definitions for
conjunction_o f Jiterals and derive (and predicate sym-
bels upen which derive and conjunclion_of literals de-
pend).
Yz succeed(z if empty, z if emply)
head_formula(z)

W, r s, uv,wy, 2 succeed(z if y,2)
select(y, I, positive(s), r,u) A
clause(w) A
derive(resultant(z, I, 5,7), w, v} A
suceeed(v, ) '

Vol r s, 4,2,y 5 succeed(z if y,z) —
select(y, I, negative(s),r, u) A
Fuail{empty if s) A

succesd(x if u,z)

Vudyr,styy fail(empty if y) —
selecty, |, positive(s), r,u) A
W,z (fail(z) + elause(w) A
derive(resuliant(empty, [, 5, r), w, z))

Vo, r,s,u,y fail(emptyif y)
select(y, |, negative(s),r,u) A
succeed{empty if s,empty if empty)

Vul,ry8,u,y fail{emply if y) —
select(y, I, negative(s), v, u) A
fail{empty if 5) A
faillempty if u)

head_formula{empty) +

¥,z head formula(z) +—
eonjunetion_of _literals(z)

Given a normal program P, based on the underlying
language £, the program Gp consists of the above pro-
gram 3, together with definitions for clause, seleet, and
predicate symbols upon which select depends.

We define clause as follows. There is a clause of the
form

clause(A'if Q') —
for every clause A +— @ in P, and a clause of the form
clause( A’ i f empty) —

for every elause A +— im P.
Informally, the intended meanings of the predicate

" symbols fail and succeed in the program Gp are as

follows. The predicate symbol succeed is intended to
be true when the first argument represents a resultant?
R, the second argument represents a resultant G+ and
there is an SLDNF-refutation of PU{ R} with final resul-
tant Q+. The predicate symbel fail is intended to be
true when the argument represents a normal goal G
and P U {+~Q} has a finitely failed SLDNF-tree.

The intention is that derive be a system predicate
and that select be user defined. A version of select
which (safely) implements the Prolog “leftmost literal”
computation rule is given in [HL88].

Various basic properties of Gp are given in theo-
rem 4.1, theorem 4.2, corollary 4.3, and theorem 4.4
in [HL88].

It is worth emphasising that the theories Vp and Gp,
and their corresponding intended interpretations, are
very different. Vp is best regarded as a thin layer on top
of the object program P and, as can be seen from theo-
rem 3.1 in [HLA8], it inherits its intended interpretation
from the intended interpretation of P. In contrasi, as
theorem 4.2 in [HL88| shows, the declarative semantics
of Gp is intimately related to the procedural semantics
of P. In fact, as indicated above, the intended inter-
pretation of Gp is given by SLDNF-resolution (and, in
pacticular, is unrelated to the intended interpretation of
P).

We now indicate how to give the definition of the
meta-logical predicate symbol var and some other pred-
icate symbols which the definition of var requires. Def-
initions of other meta-logical predicate symbols may be
found in [HL88]. These definitions are all based on the
ground representation. We assume that £ contains the
constants aq, .. ., 4y, and the function symbols fi,..., fm
of arity ki, ..., kn, respectively.

We begin with the predicate symbol constant of type
o in £', which is intended to be true when its argument
is the representation of a constant in £. The definition
of comstant is as follows.

constant(a]} ~—

Eﬂ;slﬂnﬂaﬂ —

The definition of the concept of a resultant and its ussfulness
for meta-programming is explained in [HL8S).



The definition of the predicate symbol ronvar of type
o, which is intended to be true when its argument is Lhe
representation of a non-variable term in £, is as follows.

¥.r nonuvar(z) —
eonstani(z)

Vainyeoey 2y monvar(fi(z,.. . 35 )) —

Wally oo s Sk momuar(fixy, ... o)) =

The definition of the predicate symbol var of type o,
which is intended to be true when its argument is the
representation of a variable in £, is as follows.

Wor var(z)
—nonvar(r)

This definition provides a satisfactory declarative and
procedural semmentics for var which avoids the kind of
problem referced to in the first section,

It is possible to identify two different kinds of use of
var in Prolog. The first is the “meta-level” use which
can be understood as above. This use of var is exem-
plified by the unification algorithm given on page 152
of [5586h]. The other use is the “control” use, which is
exemplified by the program for plus given on page 147
of [S586b]. This control use of var is confusing because
it appears necessary to give some kind of dedlarative se-
mantics to the corresponding var atoms appearing in
the program. In fact, no such declarative semantics is
necessary or even possible (as was pointed out in the first
section). It would be preferable to disallow this vse of
var and replace it by explicit control annotations, which
achieve the same effect. '

There are at least two other ways of defining var, The
most obvious way is to have a fact of the form var{z') +,
for each constant =’ in £ which represents a variable z
in £. Since there are infinitely many variables in £, this
definition of ver contains infinitely many facts. This
method of defining var is the most direct, but it canses
a problem with the completion of the definition. An al-
ternative definition invelves using certain ground terms
in £' to represent the variables in £, Let a be a distin-
guished constant of type o and s & distinguished unary
function symbol of type 0 — o in £'. Then we can rep-
resent the variables yp, 23, T9,... in £ by the ground
terms a, s(a), sls({a)),... of type o in £'. The definition
of var is as follows.

var(a)
Vo var(s(z)) + var(z)

This definition avolds the previous problem with the
completion. However, it leads to some complications
with the definition of nonvar.

613

3 Research Problems

In this section, we discuss various research problems
in meta-programming.

3.1 Typing

While Prolog systems have traditionally not had any
typing, it is clear that meta-programming is greatly fa-
cilitated by baving a type system. This requirement of
a type system for Prolog is evident from many cther
points of view as well, so it is not necessary to give any
further justification here.

What kind of type system does meta-programming
require? At the very least, we require a many-sorted
logie upon which the typed and ground represenfation
schemes are based. Beyond this, the ability to define
lattice structures on the sorts and also some form aof
polymorphism in the type system are often useful.

3.2 Representation

Prolog systems should make the typed and ground
representations explicitly available to the programmer.
In other words, some convenient notation should be
available to refer to what we have denoted here by o',
£

In this respect, the question of the relative merits of
the typed representation versus the ground representa-
tion is an interesting one. Of those papers which atudy
interpreters, the great majority employ the vagilla inter
preter and its various enhancements, which are all based
on the typed representation. There seem to be good rea-
gons for the popularity of the vanilla interpreter. It is
simple, short, easy to understand, and lends itself cas-
ily to various enhancements. However, we believe the
actual situation is not nearly so straightforward as thé
papers expounding this viewpeint claim. The problem
is that the example interpreters appearing in these pa-
pers are usually rather shork and simple. In practice,
interpreters based on these ideas are more complicated
in that they use a variety of meta-logical predicates. As
we have already pointed out, this is when the trouble
starts, since interpreters based on the vanilla interpreter
and using meta-logical predicates, such as var, do not
have any declarative semantics, In other words, the ap-

- parent simplicity of this approach actually hides serious

difficulties. The interpreters are more or less achieving
the desired effect, but at the price of giving up the logic
in Logic Programming. This is too high a price.

For these reasons, we argue that the current research
effort being put into the vanilla interpreter and ils en-
hancements is largely misplaced. It would be better to
gtart with an interpreter based on the ground represen-
tation. A good candidate is the interpreter G, which
also lends itself to various variations, refinements, and
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enhancements. This approach aveids the semantic prob-
lems with the mete-logical predicates,

3.3 Implementation

The major meta-programming requirements of a Logic
Programming system are that

1. it should make available the typed and ground rep-
resentations .

2, it should make available the various meta-logical
predicates (including those defined in [HL38]), and

3. it should achieve 1. and 2. efficiently.

Implementing 1. and 2. is easy, but doing it efficiently
is a major research problem. The naive implementation
of the ground representation leads to a substantial over-
head in handling object level variables. How can we
avoid this overhead? One possible approach is to im-
plement the ground representation by the trick of repre-
senting object level variables by meta-level variables (in-
stead of constants). Provided these meta-level variables
are carefully handled, they will not cause any problems
and, most of the time, will act like constants. How-
ever, it should then be possible Lo implement potentially
expensive meta-logical predicates, such as derive and
unify, by passing to the system’s underlying unification
algorithm, It should also be possible to exploit the Pro-
log system's low level representation of variables, rather
than directly use the definition of var given above, but
do this in such a way as to preserve the declarative and
procedural semantics of var given by this definition.

Thus the implementation we have in mind is via a
compilation process, whereby a meta-program is com-
piled (safely!) into a lower-level program similar to what
Prolog programmers currently write. This compiled pro-
gram can then be run directly and efficiently on current
Prolog systems. From this perspective, one can regard
current Prolog meta-programs as written in a Jow-level
machine or assembler language and that we wizh to al-
low programmers to program at a much higher level.

3.4 Arbitrary Programs and Goals

We have confined attention to providing representa-
tion schemes suitable for handling normal programs and
goals. However, ultimately we want to be able represent
{arbitrary) programs and goals [Llo87). Programs are
such that the body of a program statement can be an
arbitrary first order formula. Similarly, the body of a
poal can be an arbitrary first order formula. The in-
creased expressiveness of programs and poals is useful
for expert systems, deductive database systems, knowl-
edge base systems, and general purpose programming.

The use of programs and goals means that we must
have some way of representing formulas with quantifiers.
For the ground representation, this can be handled by
what appears to be a very straightforward extension of
the framework and results of [HL88]. (See [LIoB7] for
an application of this extension to a declarative error
diagnoser.) However, for the typed representation, the
representation of formules with quantifiers takes us out-
side first arder logic into some kind of higher order logic
with A-terms [MN86]. This path is also werth follow-
ing as a move to the greater expressiveness of higher
order logics will probably be generally beneficial, not
just for meta-programming. Other work closely related
to this issue, but using first order logic, is contained in
[SRP*88].

3.5 Systematic Construction of Meta-
Programs

One can divide the task of building expert systems into
two phases: the knowledge elicitation phase, in which
the expert knowledge is somehow gathered, and the soft-
ware engineering phase, in which the design and con-
struction of the software component of the expert sys-
tem is carried out. Knowledge elicitation is currently
a black art and is likely to remain so for a long time.
However, in contrast to the current, largely ad hoc ap-
proaches in the Al community, the software engineering
phase ought to be susceptible to systematic construction
techniques.

Meta-programming techniques offer the possibility of
building a theory of expert system shells. Indeed, it is
possible that a calculus of operations on meta-programs
could be the basis of such a theory. One can easily
imagine an expert system foolbox containing provably
correct components for performing certain tasks. For
example, the toalbox could centain a variety of inter-
preters each with & single funetion, such as construct-
ing a proof tree, performing some kind of uncertain
reasoning, and so on (the flaveurs of [SB26]), together
with useful utilities such as partial evaluators. Suppose
now Lthat a programmer wanted to write an interpreter
combining several of the functicns. It would be conve-
nient if it were possible to write {or, better still, choose
from the toolbox) separate interpreters, each with one
of the functions, and then have these interpreters auto-
matically combined into the required inferpreter, which
would then be guaranteed to be correct. This process
would also require automatic partial evaluation of the
combined interpreter with respect to the object theory
to produce an efficient result.

Currently, il is only possible to combine simple inter-
preters which have a strong structural similarity [SL28).
However, these ideas are certainly very promising and



deserve much greater attention, both from the theoret-
ical and practical perspective, than they have had so

far.

3.6 Variants of the Interpreter G

The interpreter G was designed to implement the defini-
tions of SLDNF-refutations and finitely failed SLDNF-
trees. Consider the following variant of this interpreter.

Wz succeed(z if emply, z if emply) —
head_formula(z)

Valyros,wv,w o,y 2 succeed{z if g, z) -
seleci(y, [, positive(s), r,u) A
clouse(w) A
derive(resultant(z, ], 5,7), w,v) A
succeed(v, 2}

Wol,roeu, w2 suceeed{z if g, 2) —
select(y, |, negative(s), r,u) A
—succeed(empty if 8, empty if empty) A
succeed(T if u, z)

The difference between G and the variant is that G
handles negation with the predicate fail while the vari-
ant handles negation with —succeed. In [HLBS], it was
conjectured that this variant interpreter captures the
procedural semantics of stratified normal programs and
normal goals given by SLS-resolution [Prz87). Tt would
be interesting to prove analogous resulis for this variant
to those obtained in [HL388] for G.

3.7 Partial Evaluation

Partial evaluation is another topic which has recently
attracted great interest. Iis application te meta-
programming is now well known. (See, for example,
[CFL*88], [LS87a), [LS87b], [Neus6), [OH88), [S586a),
[SB86], [TF86] and [Ven84).) For the typed representa-
tion, the usefulness of partial evaluation is elear from the
proof of theorem 3.3 in [HLB8], where partial evaluation
is used Lo remove a layer of inkerpretation by eliminating
the calls to elause. In the case of the vanilla interpreter,
{a subprogram of ) the partially evaluated version of Ve
is actually “isomorphic” to P.

As was pointed out in [Owe88), most papers study-
ing partial evaluation of interpreters have considered
only simple interpreters, usually modest extensions of
the vanilla interpreter. However, [Owe88] presents four
more complicated interpreters for which partial evalo-
ation seems to be much meore difficult. For example,
the partial evaluation of these interpreters seems to re-
quire the introduction of new predicates and their defi-
nition, and the use of the fold operation. In this regard,
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the theoretical foundations of partial evaluation given in
[L587h] need to be extended to cover the introduction
of new predicates and folding.

The interpreters in [OweB8|, if presented formally,
woitld be based on the ground representation. Thus they
raise the general issue of the partial evaluation of meta-
programs based on the ground representation, which is
is not at all clear at the moment and needs further in-
vestigation.

3.8 Explanation Facilities

Explanation facilities are an important component of
expert systems. However, only a few papers have been
concerned with explaining answers which invelve reason-
ing with negation. T'wo recent papers which do handle
negation are [BH8E| and [Y588). However, ultimately
we want to be able to give explanations in systems
where the knowledge base is an (arbitrary) program.
Since SLDNF-regsolution for (arbitrary) programs is im-
plemented by first transforming the program to normal
form [L1o87], the problem i to relate the explanation
extracted from the SLDNF-refutation or finitely failed
SLDNF-tree back to the original program as written by
the programmer.

3.9 Dynamic Knowledge Bases

The semantics of assert and retract is a continuing prob-
lem in Logic Programming. A recent paper on this topic
is [Sub&8], in which a semantics for the MetaProlog sys-
tem [BWE3] is given. However, this problem deserves
much greater attention from theoreticians.

Closely related to this is the general issue of updat-
ing knowledge bases, which is also poorly understocd.
A general setting for the update problem 13 as follows.
Given an (arbitrary) program, satisfying some integrity
constrainls, and a closed first order formula, which is
{resp., is not) a logical consequence of the completion
of the program, find a way to change the program so
that the formula is no longer (resp., is} & logical conse-
quence of the completion of the modified program and
so that the modified program also satisfies the integrity
constraints. This problem can be regarded as a gener-
alisation of the well known view update problem from
relational databases,

Special cases of this problem can easily be solved, For
example, if the program is deflinite and we want o delete
an atem, wecan run the atom as a goal and then system-
atically look for ways of cutting the success branches of
the search tree by deleting facts in the program. Those
collections of deletions of facts in the program which also
satisfy the integrity constraints give ways of achieving
the deletion of the atom. Once negation is intreduced
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the problem becomes rouch mors subtle, but this kind
of approach can be extended.

3.10 Program Transformation

Program transformation is an area of Logic Program-
ming which hasn't attracted sufficient interest comsid-
ering its potential importance and practical application,
There have only been a modest number of papers on this
topic which have usually restricted attention to definite
programs and are usually only concerned with the re-
stricted semantics of the least Herbrand model. For the
systems languages, such as Parlog, Concurrent Prolog
and GHC, this may be an appropriate setting. However,
for the applications langnages, negation iz vital and can-
not be ignored. What is required here is a systematic
study of program transformation in the setting of (ar-
bitrary) programs. The major theoretical questions are
then of the form: Does a particular transformation {or
series of transformations) produce a transformed pro-
gram with the same correct answers (or computed an-
swers or completion) as the original program. The ma-
jor practical problem is to provide sufficient control to
the transformer so as to obtain the desired transformed
program with the least possible intervention by the pro-
grammer,

3.11 Abstract Interpretation

Abstract interpretation is another area of great promise.
However, almost all papers have been confined to the
setting of definite programs. What is required here is
a systematic study of abstract interpretation in the set-
ting of normal programs. It may be necessary o restrict
attention to stratified, or more generally, call-consistent,
normal programs, for which the mapping T, and pre-
sumably also its abstract counterparts, have a useful
monotonicity property (proposition 17.3 of [L1e87]).

4 Beyond Prolog

In this paper, we have examined the deficiencies in the
meta-programming facilities provided by Prolog. In &
similar way, we could have given an analysis of Prolog's
other deficiencies, such as lack of occur check, unsafe
negation, undisciplined use of cut, assert, retract, and
so on. Taken together, these deficiencies provide com-
vincing evidence that the Logic Programming commu-
nity must make a serious effort now to build a successor
to Prolog. .

The successor to Prolog that we have in mind will
have much the same expressive power as Prolog, but
will have significant improvements in the declarative un-
derstanding of programs. Fortunaiely, all the research

done so far on Prolog implementation will be applicable
to the new language, But we have to face the fact that
the improvements in the language will probably involve
some overheads compared to Prolog. For example, it
is likely that the implementation of appropriate meta-
programming facilities, along the lines of those described
here, will incur some overhead.

Undoubtably, Prolog has served a useful purpose. It
has demonstrated the viability of logic as a programming
language, it has motivated numercus research projects
concerned with the next generation of computing sys-
tems, and it has attracted large numbers of able people
to the field. The language is currently being standard-
ised, which will ensure that, warts and all, it will be
with us in its present form well into the next century.
However, while there are sound reasons for standardising
Prolog, there is no excuse for thinking that it is a close
approximation to the best that can be achieved, On
the contrary, Prolog is best regarded as the Fortran of
Logic Programming languages. It will take a great deal
of hard work and commitment from the Logic Program-
ming community fo achieve the goal of creafing really
satislactory Logic Programming languages.
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