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Absatract

This paper investigates the relation between computational reflection and class-based object-oriented programming.
We study the relation between the abstraction mechanism provided by a closs language and the reflective technic
intreduced by B.C. Smith.

We chserve that object-criented programming promotes the encapsulation of a structure and of a behavior to
represent uniformly - as an object - all the entities manipulated by the language whereas computationel reflection aims
at describing the structure and behavior of all implicit aspects of a language.

We call structural (behavioral) reflection the way to resson upon and interact with the object structure (behav-
ior). We observe that the uniform elass taxonomy propesed by languages such as Smalltalk-80, ObjVlisp and the
CommonLisp ObjectSystem (CLOS) induces a metaclass architecture which introduces both structural and behavioral
reflections. Becanse they manipulate classes as true objects and because they have the ability to treat programs as
datas, these three languages are the privileged candidates to investigate the power of metaclass.

Consequently we introduce the kernel architectures provided by Smalltalk, ObjVlisp and CLOS metaclasses. After
having explained these architectures we can deduce the main features of these languages and therefore we develop
a metaclass programming atyle. This style allows us to extend a class system through new mechanisms such as
“differential error handling®, generic classes and partwhole hierarchies.

1 Reflection and Object-Oriented Programming

“Ap deseribed in Smith o reflective computational system is one in which otherwise implicit aspects of the system’s
structure and behavior are available for ezplicit inspection and manipulation”™ [15].

Today two terms are becoming very popular : Computatisnal Reflectien and Object-Oriented Programming
even if their meanings are not yet formalized. The goal of this paper is to discuss the balance between the encapaulation
principle as developed by object-criented languages and the intrinsic reflection asscciated with the manipulation of an
object representation.

Because they are now the best defined and the best known, we focus our study on languages using the class
sbstraction to represent, create and manipulate objecta.

1.1 The Object Paradigm

“4 central new concept in SIMULA 67 is the “object®. An object is a self-contained progrom (block instance], having
its own local data and sctions defined by a “plass deelaration”. The eloss declaration defines a program {data and
aclion) pattern, and objects conforming to thal pattern are soid to “belong to the same class™ [18].

The commeon definition of an object is the encapsulation of a structure and of & behavior. The structure expresses
the state of the ohject while t.ha behavior defines a sst of potential actions which are used to interface the chject
with the external world. Cnmpued with procedural programming, object oriented programming associates a structure
defined by & set of variables (also called elds, instance-variables, or slots . ..} with a functional behavior defined by
a set of procedures (also called methodDictionary or script).

Message passing is the protocol used to communicate with the ohject. Sending a message to an object (the receiver)
means to select one action ‘and then to execute it in the context of this object. Obviously, this action ean modify the
local state of the receiver or-and compute a value.

Programming with objects means to simulate the real world by abstracting objects interacting and cormmunicating
with each other through message passing. This simulation leads to study and solve the following topics [4] :
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1. object creation, inepection and destruction,
. abject organization,

. ohject specialization,

= S RO

. ohject activation.

Ench language claiming the object-oriented label must explain how it answera the previous questions. For inatance,
objects can be created from an abstract generator or from every previous object, organized in classes or sets, specialized
by using inheritance or delegation, activated sequentially or concurrently. In fact object-oriented languages could be
classified into - at least - four sub-families. The clase family led by Smalltalk, the abatract data-type family led
by Clu, the actor family led by Act™ and ABCL* and the frane family initiated by KRL & FRL.

Independently of this classification, we have to chaerve that in order to increase the integrity of the object model,
more and more object-oriented languagea attempt to solve the “Uniformity poatulate”. The idea is simply to extend
the object paradigm to all the entities manipulated by the lanpuage and its interpreter-compiler. Consequently, *rock
bottom™ entities such as Numbers, Strings or Vectors, but alse more idiosyncrasic ones such as Messagea, Methods,
Environments, and Continuations are represented as objects.

Then, to exhibit and make accessible the structure and the behavior of every object, the next step is to use a
metashject to control (represent and modify) each object. This approach was picneered by the Smalltalk metaclasses
and is currently in progress in the actor warld [25] [16]. and in the frame world [24] Obviously in those systems,
because each entity is an object and because each object is defined by a metachjeck, a metachject must also be an
object described by a metametachject. Traditionally, this scheme leads to an infinite tower of metachjects and requires
gome specific implementation technics such as “explicit bootstrap® (cf 3.2.a) or lazy eveluation. '

This representation problem is related to the idea of describing the architecture of an interpreter in the langusge
itsell and is consequently very close to Smith's work about Reflection and Reification as materialized by 3-LISP.

1.2 The Goal of Reflection

$-LISP idea was to build a reflective tower supporting a series of interpreters, interpreting each other and connected
by teo metalevel operationa: reflection and reification, The reification process makes avalaible the data
structiures of an interpreter to the program it is running. On the contrary, the reflective process allows to use the
program to alter its interpreter structure. Among the meta-level facilities required by a reflective language we can
mention : e

1. the ability to manipulate a program as a date (cons-cell in Lisp, string in Smalltalk),

2. the ability to call the interpreter-compiler explicitly (the Lisp function eval or the Smalltalk methods conpila:
& compile:classified:),

==

. the ability to build new contral atructures (the Lisp fexpr and the Smalltelk couple (block,value)),

He

. the ability for the interpreter to describe itself by using metacircular definitions,
. the ability to control the allocation and lifetime of every entity [23].

e

Some abilities are linked more precisely to the description of the control structure while others are more related to
the specification of the structures of the data. To distinguish between them we will use the two terms: behavioral
reflection and struetural reflection.

1.2 The Class model from a Reflective point of view

“The purpose of the Smalltalk project is to support children of all ages in the world of information. The challenge s to
identify and harness metaphors of sufficient simplicity and power to allow a single person to have access to, and cre-
ative control over, information which ronges from numbers and tezt through sounds ond fmage. In our ezperience, the
Simuls notion of class and inslance i3 an ouistanding metaphor for information etructure. To deseribe processing,
we have found the concept of message passing to be correspondingly simple and general™[20],

First Bimula and then Smalltalk have developed a class taxinomy to describe and crganize the objects of the world.
A "normelized” definition of & class, as accepted by the CLOS committes, ia the following one: “s class is ¢ new object
that determines the structure ond behavior of o set of other objects which are called its instances® [e8].

The class model obeys to both philssophical and implementory motivations. Philosophical, because since Plata,
the abstraction of “a Form® is a way to represent (modelize) the real weorld, Implementory, becausze the use of an
abstraction is the manner to describe the structure and the behavior of the set of objects which are instances of & same
clasa.
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From a reflective analysis a class can be seen as the partial descriptor of its inatances. This class defines their
common structure by a set of instance variables and their common behavior by a set of methods. MNevertheless each
instance holds its own set of values isomorphic to the instance variablea of its clasa. ’

In a “pure” class model each entity is uniformly treated as an instance of a single class. Conssquently classes are
also true objects defined by other classes called metaclasses. The next fgure illustrates the Smalltalk representation
of simple instances and classes az viewed by the inspector :

We recognize :

= two objects, instances of the class Point . Each of them shares the same structure defined by the x and y instance
variables plus a link towards their common class, This link is materialized by the label of the asscciated view.
Each “point® holds its own value for the x, ¥y variables and then maintains its own state,

s the class Point itself. As an object, the structure of Point is defined by the superclass, methodDict,
format, snbclasses, instanceVariables, organization, name, classPool, sharedPools variables, The value
of instanc eVariables is precisely the array {'x' 'y') defining the common atructure of Peint's instances, The
value of methedDict is the dictionary of methods defining the common behavior of all the pointa. When an
inatance of Point receives a message, the “lookup” method will start at the Point's methodDictionary. The strue-
ture of Point presented as an object establishes the existence of a subclassing mechanism operating at the class
leval. The two instance variables superclass and subclasses arc used to handle a single inheritance hierarchy.
The “method lookup™ starking at the class level, will follow the superclass link,

& the {n‘mta}cl.ua Point class instance of Metaclass.
Motice that both instances and classes use the peeude-variable self which expresses the fact that each object has a
[sell)knowledge about itsell,
1.4 Programming by Metaclasses

“Fmalltalk uses clasass to describe the eommon properties of related objects. Unfortunately, the use of closses and meta-
elasses is the souree of & number of complications ... One source of the complezity surrounding elasses in Smallfalk is
the interaction of message lookup with the role of classes as the generators of new objects, which gives riss fo the need
for metaclasses™ (8],
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As an abstraction, a class is also & generator of objects. To be an instance of a class means having been created by
this class. The creation of a new object operates by allocating a structure isomorphic to the instance variables of the
class, Providing new allocators, e.g. new kinds of structures, leads to the need for new metaclasaes. For instance, the
implemention of generic stacks will require each class to hold a slot type (cf. 2.3.2) while the implementation of
the parthwole hisrarchy will require the additional elot parts (cf. 2.3.3).

The rest of this paper studies Smalltalk, ObjVlisp and CLOS metaclasses both from a structural and & behavioral
point of view. Our goal is to demonstrate that metaclasses can be easily understood and that they provide :

 the v.rl.:,r-m d&ui.gn the self-descriptive architecture of an (chbject-oriented) system,
» the natural pedagogical tools to teach and learn this architecture,
« and the obvious hooks to extend this architecture towards new semanties,

Our chronolegy: Smalltalk, ObjVlisp and CLOS is historical. Smalltalk metaclasses are the most hairy probably
because they were conceived more for the implementor than the user and comsequently not integrated in a uniform
way. OhjVlsp metaclasses are the cleanest because they take benefit of the Smalltalk and Loopa [3] experiences
of metaclasses. They were designed to support & unified but extensible elass system. Finelly, the oncoming CLOS
metac]asses are locking promising because they are built to deseribe new objecta such as generic function, slets,
nethod combinations, types and to handle various extensions (persistents ohjects, framestyle languages).

2 Smalltalk-80 Metaclasses

Smalltalk-T2 classes were nok yet objects. Metaclasses were invented by Smalltalk-78 in order to express the behavior
of elasses ag true objects able to handle message passing. Nevertheless all classes were instance of a sole metaclass
(Glaes). Consequently all classes shared the same behavior and it was impossible to act en the structure of a class.

Defining classes as object-recelvers conducts Smalltalk-80 fo associate with each clasa & metaclass whose method-
Dictionary defines the protocol of this class, For instence, an object creation is performed by sending the message
new to its class, This message allocates a new instance whoae instance variables are (by default) initialized to “nil".
Smalltalk-80 metaclasses are stil seldom used to control or describe the structure of classes themself, The first imple-
mentation of Smalltalk-80 realized by Apple on the Macintosh, as the first implementations of Smalltalk-V realized by
Digitalk, do not suppert the definition of instance-variable at the metaclass level.

On the one hand, the standard use of (meta)classes is guided by the Smalltalk browser which partially hides the
metaclass architecture. A switchView allows to swiich between the class and the metaclass levels, Nevertheless,
becanse a class creation automatically provides the creation of an implicit metaclass, “standard users” have some
difficulties to discover and then to understand the metaclass concept. On the other hand, as demontrated by the
reading of the Smalltalk system, implementors have relatively used the metaclass facilities, more generally to act on
the initialization behavior, to control the access to the “sc-celled class-variables” and to increase the class struckure
by adding new instance-variables (see for example the instance variable sereenMask of the metaclass Fora class).

After recalling the Smalltalk postulates we shall eomment on its class architecture and then propose “a guided
tour”of the Smalltalk kernel. Then we develop several metaclass examples demonstrating how :

1. to control the initislization protocol of any object,
2. to use metadescription to parameterize abatraction itsell (for instance to simulate generic classes & la Eiffel},

3. to control the error treatment definition within different metaclass levels (for instance to provide automatie flit'bhq-d
creation when a mathed is missing),

4. to graft new metaclasses simulating new sub-systems such as Borning's Thinglab.
Some of these examples will be reused to introduce OkjVlisp and CLOS metaclasses,

2.1 The Smallialk-80 Postulates
Follewing the Ingalls presentation of Smalltak-76 [20], we characterize Smalltalk-80 by these five postulates :
1. EVERY entity is UNIFORMLY defined as an object,

2. each chject belongs to a single class, This class describes the common state (via instance variables) and behavior
{win methods) of the set of its instances. Particularly, the message clasa sent to any ohject returns the name of
ite clasa,

3. clamses are organized into a single inheritance hierarchy. Inheritance rules allow methods (dynamic) and instance
variables (static) sharing. The root of the inheritance tree is the cless Object. Object owns the set of methods
shared by all the Smalltalk-80 objects, for instance elass, inspact, doeslotUnderstand:. ..,
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4, clasaes are also objects defined as the sole instance of their metaclasses, Metaclasses are IMPLICITLY created at
the same time as their gole instance. Because of their implicit creation, the inheritance of metaclasses is parallel to
the inheritance of classea: if a class ia a subelass of another one, then its metaclass ias the subclazs of the metaclass
of the other. The root of the metaclass’s inheritance tree is the clags Object c¢lase defined as a subclass of Class.
Metaclasses are equally objects, instances of Metaclaes,

5. mesaage pasging is the only way to communicate with objects. When a message iz sent to an obhject the system
looks up for a method defined by the sslector name - first in the class of the receiver and - then in one of its

superclasses, The sssociated method is then applied to the receiver and the arguments of the message. When the
leokup fails, the doesNotUnderstand: held by Dbject is applied.

2.2 Smalltalk-80: the class architecture

The next figure summarizes the previous pestulates by materializing the instantistion and subclassing relations intro-
duced by the definition of the class Point and its subclass Point-34d :

mille  |hericance fexpicit)
¥ )"' Inheritance {imphicit]
------- = lnstantistion limpliit] l |'
== nstantitation {explicit}

Metaelass class

Metaclasa

Point-3d cluss 1+ Iboint class » }O-hjncl. class Classclass » Jm€laMDescription class 1 W=Behavior

class

Point-3d —l [‘uli:rt - {i"l:llj&:L _ Gl.HIEE *Claan.ﬂeac.ript.inn - Beh;vi:rr

To make the analyze of this complex “network” (see also Figure 16.5 pege 272 of [17]1) easier we discuss separately the
“instance-of” and “subcless-of” relations. MNotice that because all metaclasaes are anonymous we refer to a metaclass
by the message class sent to their sole instance: Point class represents the metaclass of Point.

instantiation: When Point (Point-3d) is created, ita metaclazs Point class (Point-34 class) is automatically
generated by the system. As an object, Point class is instance of Metaclass, which itself is instance of Metaclass
clegs. The loop between Metaclass and Metaelass claas materializes the Smalltalk sclution to the infnite “tower
of metaclasses”, We can distinguish fve different levels:

1. the “instance level” defined by the leaves of the tree. These objects are not generators i.e. cannot be instantiate,

2. the “clasa level” defined by named generators which describes the behavior and structure of the instance level,
Potentially, each class can produce an infinite set of instances,

3. the “metaclass level” isomorphic to the “class level” defined by anonymous generators which create and describe
only one instance,

4. the “metametaclass level reduced to the sole class Metaclaas whose instances are all the Smalltalk metaclasses,

6. the *metametaretaclasslevel” reduced to the root i.e. Mataclasa.

Becanse classes and metaclasses are strongly coupled, the user has no control over the metaclass level which is
automatically handled by the system. The instantiation tree could be simplified by contracting the class and metaclass
levels, i.e. by decoupling metaclasses and their classes. This contraction corresponds to the ObjVlisp sclution which
conducts to uniformize the class and metaclass concept. Contrary to Smalltalk, an ObjVlisp metaclass can instantiate
several elasses and can be defined explicitly as an instance (and a subclass) of a previous metaclass.
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inheritance: The inheritance mechanism provided by Smalltalk is single inheritance (even if multiple inheritance is
also supperted <f. 2.3.4). Consequently a standard clasa can inherit directly from only one superclass. We can check
that the inheritance of metaclasses is parallel to the inheritance of classes: Point-3d class is automatically defined
a3 a subclass of Point class which is itself a subelass of Object class. Object class, which is the root of the
metaclasa inheritanece lattice, is defined as & subclass of Clase.

In fact, each Smalltalk entity shares a default behavior defined by the class Object level. Specialized c-bjer.u guch as
classes and metaclasses are defined by the two classes Class and Metaclass which explicit the structurelibehavior of
standard classes and standard metaclasses. Obviously these common behaviors and structures are expressed through
thé inheritance rules between ClassDeseriptien and Behavier.

Let us recall that inheritance rules are static for the object structure and dynamic for the object behavier, When
creating & class, the resulting instance variables are calculated as the union of the instance variables owned by its
superclass with the instance variables explicitly specified in the class definition. On the other hand, method inheritance
ts dynamic. When the method lockup fails in the receiver class then the search continues slong the inheritance path.

To fully explicit the Smalltalk kernel we detail the instance variables and the methods defining the standard struckure
(%) and behavior {H) of classes and metaclasses,

2.2.1 The kernel : Behavior, ClasaDescription, Class & Metaclass

Class and Metaclass are defined at the same hierachy level and share the structurebehehavior explicited by the path:
Object, Bohavisr and ClassDescription :

Object ()
Behavior (superclass methodDict format aubslasaes)

ClasaDeacription (instanceVariables orgenizatiom}

Metaclass (thisClaaa)

Class (name classPocl ahazedPools)
Object class. ()
Bebavior class ()

Clagalepcription class ()
Metaclass class ()

Behavior {superclass methodDict format subclasses)

5: Behavior handles the functional behavior of objects via the method descriptions nethodDict and the lookup path
as expressed by the inheritance links {superclass & subclasses). The format is used both to distinguish between
indexed or non indexed classes and to memorize the size of the object structure.

B: The primitive new iz the GENERAL allocater which ereates an cbject by allocating a structure isomorphic to the
descriptor of it ¢lasa’s instance-variables, This method is inherited by all classes and metaclasses. When you creaie
an ohject, let's say a Point, by “Point new”, this allocator is used because Point eclass is an undirect subclass of
Behavior.

Class (name clazePool sharedPools)

§: classes are named (name), they maintain a first global environment shazed by all the instances of a class hierarchy
(classPool) and a second environment (sharedPools) shared by a set of arbitrary classes.

B: the method subelass:instanceVariableNames: . .. :category is used to ereate simultanecusly the classes and
their private metaclasses (cf. 2.2.2).

Metaclass (thisClass)
5:Metaclags defines classes which are anonymous and constrained to have a single instance. The inatance variable
thieClass handles the backward pointer between a metaclass and its sole instance.

B: The constraint forcing a metaclass to own o single instance ia reflected by the redefinition of the method new.
“Before calling the primitive new, check if the metaclass has alrecdy am instance. Create if by calling Behavior.new or

complain if thet one already exists (18] :*

INetaclass methedsFor: "instence creation’!
new
thisllass == nil
ifTrue: [} thiellams +— auper new]
ifFalee: [self error: "A Metaclass should only have one instanmcell'] |

2,22 Iostantiation: The magic of new reavelated

Each Smalltalk beginner has asked himself the following guestion: where are defined the new methods creating in-
stances, classes and metaclasses, The answer to this mysterious question is that Smelltalk uses only one allocator
defined by Behavier and redefined by Metaclass.
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We want to discuss here this paradox: Smalltalk’s reflective architecture is partially hidden by the programmi
environment and more precisely by the ergonomy of the browser. Every entity (an instance, a class or & metaclass
is REALLY created by executing the primitive method new. Nevertheless, this uniformity does net appear in the
standard pattern proposed by the browser to define a new [meta)elass. For instance, the definition of the class Point
uses the following template :

ﬂbjm:h gubclase: §#Point
instanceVariablelanes:
classVarisbleNames: **
peolDictionaries: **
category: ‘Graphic-Primitives®

" B

x¥

which is far from the general template used to create Instances of Point : “Point new”. It would be more uniform
and rational to create a clasa by sending new to its metaclass. But because this metaclass doss mot yet exist (it
will be created just before the class ef. below) this scenario is impossible and leads to define “a parasite®method
defined in Class and named subclass:instanceVariableNames:elagaVariableNanes: poolDictionary: category
This method has to call the new allocator twice : the first time to create the metaclass, the second time to create its
sole instance. A simplified definition of the scenario used to create the class Point could be the following one :

|aMetaclase aClass anlostance anotherInatance|
"M aMetaclages +— HMHetaclass mew.
aWetaclanpe superclaas: Object claas.
aMotaclasa methadDict: MethodDictionary mew.
aHetaclage format: (Object clasa) format.
aletaclesa instanceVariables: nil.
3" aClasa + aMetaclasa new.
allaps superclame: Object
methodlict: HethodDictiopary new
format: -8192
name: #Poinmt
organization: Classlrganizer now
instVarianes: #('z" *¥')
clagaPool: nil
tharedPocls: mil.
aClags format: aClass format + allass instVarVames size.
Emalltalk at: #Peint put: aClass.
Syetenlrganization classify: #Point under: #Graphic-Primitive,

3" apinstance +— aClesas new . anotherTnstance + aclass mew.

1. the metaclass Point clase is created as an instance of Metaclass, Because Point is a subclass-of Object the
superclass slob must be initialized to Objeet clags. The slob nethodDiet is initialized to an empty instance of
MethedDictionary while format is computed from Object class,

2. Point class is instantiated to create its sole instance. The mothod new allocates an anonymous class aClass
which becomes the value of thinClass. This anonymous class is then explicitly initialized {and named) by the

tormat and the addition of the class in the global environment: the Snalltalk systemDictionary,
3. the class is now instantiable and can produce instances by receiving the general new.

2.2.3 Object & Behavlor: Error handling

Many Smalltalk extensions use a redefinition of the error handler. From a reflective point of view, we have to oheerve
that this error handler is represented by a method (doesNotUnderstand:) which can be partially parameterized at
the metaclasy level.

doesNotUnderstand: When s message “lockup® fails the method doeslotUnderstand: held by Object is applied.
Before creating a Notifier allowing the user to open a debuger, tryCopyingCodeFor: is called (cf. below). This
method has been implemented &t the metaclass level “self cleas tryfopyingCodeFor:... to allow differential ecror
treatments. This indirection towards the metaclass gives the hook to support generic handler and will be used by our
partwhole implementation (cf. 2.3.3).

10bject methodeFor: 'error bandling"l
doesNotlnderstand: sMessage
| status gripe |
atatus ~ @olf class tryCopyingCodeFor: aMessage selector.
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statup==U0K ifTrue:
[f melf perform: sWessage selector withirguments: a¥espage arguments].
NotivierView
openContext: thisComtext
lebel: gripe , aMessage selector

contente: thisfontext shortStack.
aelf porform: aMesoage selector withirguments: aMeasage argunents.!

Independently of the metaclasa use, the analysis of doeslfotUnderstand: reveals the intrinsic reflective character of
Smalltalk-80. The computational environment {thisContext), and the message itself (aMessage) are represented as
true objects explicitly defined by their classes, respectivly BlackContext and Message.

try CopyingCodeFor: The default tryCopyingCodeFor: implamented in Behavier allowa the treatment of “com-
pound selectors™. Compound selectors were added by Borning and Ingalls to suppert conflicting methods in the case
of multiple inheritance (see later 2.3.4). The principle is to explicitly indicate the address of a method by using a
selector whose prefix is & elass and whose suffix is a selector (for instance Behavier.new or Point.+). The method of
the given class will be copied down in the receiver’s class and then applied :

|Bebavicr methodsFor: 'ereating method dictionary'!
tryCopyingCodeFor: melector

| clusaPart whichOlasn mimpleSelector descr |
gelector islompound ifFalse: [ T #NotFound].
classPart +— selector classPart.
simpleSelector +— melector selectorPart.

descr +« (Smalltalk at: classPart) nethedDescripticnds: simpleSelector.

8elf compilellnchecked: clasePart , '." , descr scurcelode.
self insertClase: self aolector: eimpleSelector in: Selector0fDirectedMethods.
T #0OK!

2.3 Programming by Metaclasses

"The primary role of a metaclass in the Smalltalk-80 system is to provide the protacol for initinlizing class varigbles
and for creating dnitialized instances of the metacloss” sole fnstance 17,
The goal of this section is to demonstrate that metaclasses are powerful enough to support other tasks than “ini-

tialization™ roles.

2.3.1 The Counter example

This example illustrates how to act on & class behavior by defining methods at the metaclass level. Those methods are
traditionally called c1ass methods to indicate that they define the behavior of the class itself, contrary to instance
methods which define the behavior of the class instances.

The class Counter inherits from Object, represents the structure of a specific Counter by its instance variable value.
Counter also describes its behavior by two sets of instance methods organized in two protocols. The first set gives
access to the state of a Counter: read returns the value of the instance variable while write: modifies this value with
the new one received as argument. The second set describes the incr, decr and raz methods, each of them using one
{or twa) of the previous accessors :

Object subclass: #Counter
ipstanceVarisblelames: *value *
clessVariablefames: **°
poeollictionaries: "*

category: ‘Examplei’!

!Counter nethodeFor: "standard operations*!
decr: anInteger

gelf write: melf reoad = anInteger!
incr: anTnteger

#elf write: pelf read + anTnteger|
raz

gelf write: 01 |
ICounter methodeFor: “private’l
read

T value
write: anInteger

velue +~— anlnteger) !
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The metaclass Counter class was created implicitly with its sole instance Counter. By default both its instance
variable and methodDictionary are empty. Consequently new scnt to Counter is treated by looking frst in Object
elags, then in Class, ClassDeseription and finally in Behavier. As should be viewed by the inspector (1), new

allocates & new Counter, whose instance-variable value is bound to nil. Before incrementing a new allocated Counter
(4), the user has to initialize it explicitly (2,3) :

"i" Gounter pew inspect.

"a" alounteri+— Counter new.
3" plounterl write: 0.

"4W plounteri imer: 3.

Defining explicit methods at the Counter claes level allows to compose the allocation and initialization processes.
To initialize explicitly instance variables, Smalltalk programmers use class methods. For instance “Point x: 2 y: 3
allocates & new Point whose instance variables x and y are respectively initialized to 2 and 3. Similarly, the method
value: composes the standard allocator {aelf new) with the method write:. The following definition of Counter
class handles equally the exanple method creating and inspecting a prototype of Counter initialived to 5 :

Counter class
instanceVariabkleNames: "1

!Counter clams methodsFor: "initializatiom*!
value: anlnteger

t 2elf mew write: anTnteger | 1
ICounter class methodsFor: "example'!
exanple

"Counter example"

(self value: 6) inapect! |

2.3.2 The Generic Stack example

This example lustrates how to act on a class structure by defining instance variables at the mataclass level. There is
a lack of terminology to denote these variables and a regrettable confusion introduced by the non-symetrical definition
of class methods and class variables. The unfortunate choice of using the class variables terminology to express a
global knowledge shared by all the instances of a same class hisrarchy, kills the intuition to use a metaclass to control
the structure of classes by adding instance variables.

Tl:u_! '113;5 iato purmetv_aﬁi? a Stack at t.hd;'metulm level by intreducing an *instantiable "type allowing to simulate

eneric classes. Stack will be a generic eneratin ing the mesa ne a:

Boints, Stack of Stacks .. ¢ ; M s

OrderedCollection variableSubclase: #Ftack
instanceVariableNames: "'
clapaVariablelamea: *°
poollictionaries: **
category: ‘Ceneric-clanses’]

18tack methodsFor: "private®|
pop
1 super TemoveFiretl|
pioh: anlbject .
self clams type == snlbject class
1fTrue: [super addFizst: anObject]
ifFalae: [oelf halt: "wromg type']! !
Hoe e o o= o s s o= S S S s S e —— —m e— |h!
Ftack class
instanceVeriableNanes: "type |
I8tack class nethodsFor: ‘initialize’!]
initimlize
self type: Object! |
|8tack class methodeFor: 'private’!
type
T typel
type: allass
type +~— allasal |
|8tack clase methodaFor: "newType:'l
newType: aClasn
"Stack mewType: #Foint"
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| elpesHame clmgs¥alue |
clagelame +— (oelf mane , aflass printString) aaSymbol.
aelf
pubclase: clasalame
instanceVariablelames: °"
clapsVaziableNamea: "'
poolbicticnaries: "°
caktegory: self category.
classValue +— E=alltalk at: classleme.
clagsValue clase complle: "initialize
pelf type: " ., mllaes printString classified: #initialize.
clagsValue initialize.
T clapslamel |

Btack initializel

To make Stack generic, Btack class needs a type instance variable. The methods type, type: and initialize
allow respectively to read, write and initialize this instance variable,

Stack inherita from OrderedCollection, it renames the renoveFirat and implements & new push: method. Before
pushing a new element, the system checks ita “class compatibility™ with the type’s value. Because the type of Stack
is automatically initialized to 0bject, an instance of Stack will push only inatances of Object, rejecting every kind of
other ohjects. '

The next step is to create new types of Stack, each of them inheriting from the previous Stack . The mes
sages “Stack newType: Point” and “Stack newType: Pen® create the four classes: StackPoint, BtackPoint class,
StackPen and StackPen claas @ Metaclass

BlackPun eluss ﬁ Stack class h StackPoint class
t c 4 4
SlackPen s Stack ‘h StackPoint

StackPoint class inherits type from Stack class while StackPoint inherits push: and pop from Stack.

2.3.3 Adding PartWhole Hierarchy & la Thinglab

This third example generalizes the metaclass use. We act simultanecously on the structure and behavior of a set of
classes defined within & same hierarchy, Our goel is to extend Smalltalk classes to handle the Thinglab part hierarchies.
The principle is to generalize the instance variable concept by the pactwhale concept implementing composite objects,
A part is an instance variable whose default value is an instance of a given class.

For instance, we will define & Line as the composition of two parts: start and end, each of them constrained to be
an instance Point. Similarly a Triangle will be implemented as the compesition of three lines :

Thinglab subclasa: #Line Thinglab aubclasa: #Triangle
instanceVariableNanes: ** instanceVarisbleNames: '°
partwhole: ‘start Point emd Podat" part¥bole: 'll Line 12 Line 13 Line’
clagaVarisbleNanes: '" clagsVariableNamea: *°
poolDicticnaries: °° pocllictionaxies: "
category: °Thingleb-Demo”® category: °"Thinglab-Demo®

When instentiating Line, the method new will instantiate automatically and recursively each part. Consequently
11 will be & Line whose start and end varisbles will be some Points,

To give mceess to the structure of the composite object, two accessors method (read & write) are automatically
created for each part. Because we have chosen to use the same saymbel to denote both the instance variable and the
instence method, the methods start, start:, end, end: are generated in order to give access to the start and end
parte of a given Line. .

The composition of accessors-methods allows to read-or-write any piece of the part hierachies. For inatance, if
aTriangle is instantiated from Triangle, the composition: “aTriangle linel start x™ returns the value of the
part x of the part atart of the part linel. Nevertheless, as discussed by [2], the object receiving the compasition
of messages is not the object producing the answer. To give the control to the composite object itsell, we re-use the
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“compound selector” idea. The principle is to express at the selector level, the explicit path giving access to the part
of the compasite strucbure. For instance the compound message: “aTriangle linel.start.x: 484" will modify the
x part of the start part of the linei part BUT under the control of aTriangle. The partwhole implementation

requirea the following steps :
1. extending the class structure by adding the slot parts and providing the associated accessor methods,

2. specializing the class behavior, and precisely the new allocator which must now automatically instantiate the part
hierarchies,
8. modifying the instance behavior in order to sccejpt compound messages and recognize them a8 & path of parts,

Extending the standard structure of classes ‘The structure and behavior of a Thinglab class is deseribed by the
metaclass Thinglab class. Becauze Smalltalk classes and metaclasses are mutually dependent, the Thinglab hierarchy
must be “grafted” at the Dbject class level. The inheritance rules of metaclasses and the fact that Thinglab class
must be a subclass-of Object class constrains Thinglab to be a subelass-of Object

Object ()
Thinglab ()
Line (start end)
Trisngle (linei line2 line3)
IpoceleTriangle ()
Behavior (superclass methodDict format pubclasses)
ClepsDescription (instance¥ariables organizetion)
Metaclass (thisOlags )

Clase (name classPeol sharedPosla)
Object clans ()
Thinglab clase (perta)
Line class ()
Triangle clasa ()
" IsoceleTriangle class ()

A Thinglab elaes (for instance Line or Triangle) will be defined as an undirect subclass of Thinglab, thus its
metaclass will be an undirect subelass of Thinglab class. In fact the class Thinglab is (almost) empty and is used
only to develop the Thinglab hierarchy. The effective implementation of partwhole hierarchies is described at the

metaclass lavel :

Object subclaee: #Thimglab
instanceVariableNames:
clasaVariableNames: "*
poolDictionaries: °'
category: "ThingLab'!

3]

{Thioglab methodsFor: "inmitialization’!
partelnitialize
f nill

Hee o o me mm mm mm oEEm omE EE EE S R R S S S 'l"

Thinglab class
instance¥ariableXemes: ‘parts "

IThinglab clase methodsFor: 'private‘!
parte
1 partsl

partae: stringl0fParta
parte +— stringhfFarts] |

Each Thinglab class owns the instance variable parts inherited from Thinglab claes and recognizes the two
associated “accessor methods®. To treat the partwhole declaration, a new method for Thinglab “sub-class® creation

must be provided by Thinglab class :

1Thinglab class methodsFor: ‘subclass creatiom®!
subclage: t instanceVariablelames: f partwhole: p classVarisblelsses: 4
poolDictionaries: & category: cat
"Scanner new scanFieldNemes: 'pl Peint p2 Paint'
~=> #("pl" 'Point"’ ‘p2' ‘Podint’ b1
| cannedParts stringDfParts aMothedString arrayOfParte j aThinglabClass |
gcannedParts +— Scammer nmew ecanFieldianesa: p. '



stringdfParte +— "', j ~ 1.

arraylfParts «— Array new: scannedParte size // 2.
alethodString + ‘partsInitialize \* withCRa.

{1 to: pcarmedParts size by: 2)

do:
[:4 |
atringDfPartes + atringDfParts , (scannedParte at: i) , * *.
aMethodString + aMethodString ., (scansedParts ak: i) , "+~ ' ,
(scannedParte at: 1 + 1) , ° new.\” withORa.
arrayDfParts at: j put: (ecannedParts at: 1),
i~ §+1L

aMethodString + aMethodString . "\ super partsInitialize’ withCRae.
aThinglabClase+— ({super
nane: &
inEavironment: Smalltalk
subclanalf: self .
instanceVariableflames: £ , atring0fPartas
wariable: falee
wordse: true
pointera: tTus
classVariableNamen: d
poolDictionaries: B
category: cat
comment: mil
changed: falume)
parta: p).
eThinglabCless makePartedccessora: arraylfParts.
aThinglabClaas compile: aMethodString classified: Winitializaticm.
{ aThinglabllassl
makeParteiccessors: arraylfFarta
| aStringR aStringW |
array0fParts = mil ifTrue: [T welf].
array0fParte do: .

[:4v |
aftringh + {iv , "\ T " , iv) withORae.
aString¥ « (iv , *: value \* , iv , " +— value') withCRs.

gelf compile: aftringR classified: #privete.
gelf cempile: aBtringW classified: iprivate]! |

1. concatenate the atring of parts to the string of instance veriables,
2, compile for each part its two accessor methods (this task is done by makePartAccansors (cf. p 289 of [17])),

3. compile a partaInitialize methmi instantiating each part to an instance of its associated class,

Laoking at the Line definition, start and end will be added to the set of instance variables. The methods whose
definitiens follow will autematically be created :

ILine methodaFar: "private’!
start
T stazt
mtart: value
atart — valuel !
ILine methodeFor: ‘indtialization”!
partalnitialire
start +~— Point new.
end + Point new.
super partelnitializel |

Extending the at?ndard behavior of classes To realize the automatic instantiation of part hierarchies we have
ta compaze the basic allocator (super new) with the initialization of parts (partsInitialize) :

!Thinglab class methodaFor: "creating’!
new
1 super mow partslnitializel |

603
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Implementing access to parts Accesses to parts use compound selectors expliciting the path. The associated
methods are compiled at the first access following the two transformations:

conpositelbject partl.restlfPath — compositelbject partl restOiPath
compositelbject partl.restOfPath: argl — compositelbject partl restOfPath: argl

For instance the flest transmission: aTriangle linel.start.x: 484 generates the method linei.start.x: :

ITriangle methodsFor: ‘messagesToParta’!
linel.start.x: argl
gelf linel start.x: argll |

which can in its turn generate the start.x: method ... Recelving for the first time the compound selector provides
an error which is trapped by a redefinition at the metaclass level of tryCopyingCodeFor:. This method procesds the
path transformation, compiles recursively the “missing” methods and perfoms again the previous message.

IThingleb class methodsFor: 'error-handling'|
trylopyingfodeFor: melector
| path selectorl args bady |
salector ioConpound ifFalse: [ #lotFound] .
path += @selector clapaPart.
aelectar] «— wselector selectorPart,
argd — *'. body = *\ [ * withCRa.
(selectorl includes: §:)
ifTrue:
[selectort + wselectorl , ' argl'. args +~ ' azgl’ .
body = '\ "withCRa]. . .
self compile: selector , arga , body , ‘self ' | path , * ' , selectorl
clagsified: #meooageaToParts.
t #oKi

2.8.4 Adding Multiple Inheritance

The changes reguired to add multiple inheritance to Smalltalk 80 are only a few pages of Smalltalk code. ... There are
few other programming environments in wich such o fundamental extension could be made easily [7].

As pointed by Berning, Smalltalk-80 was cpen-ended enough to support an extension realizing multiple inheritance
for classes. This extension was supported by the metaclass architecture without stepping out of the language. We
have not encugh room te give the full implementation in details but we can indicate the general scheme.

From the structural point of view, & new kind of metaclass was added defined by
MetaclaseForbunltipleInheritance :

Dbjact ()
Bebavior (superclass methodDict format subclasses)
ClesaDescription (instanceVariables srganization)
Metaclams (thisClass )
HetaclassParMultiplelnheritance (otherSuperclasses)

Metaclasses allowing multiple inheritance for their instance inherit from standard metaclasses: they memorize the
firat of their superclasses (or lupuma within the inherited superclass and the rest within the new stherSuperclasses.

Notice that classes using multiple supers have an undirect knowledge of their supers via the metaclass indirection.
For instance the Digineter class holds Instrument in its superclass, while LCD is held by Digiseter class in its
otherSupers.

Clase subelasa: WDigiMeter®
superclagaes: 'Instrument LOD*
instanceVariableflames "x y'
clapsVariablelames: "°
category: ‘"Multiple Inheritance

From the behavioral point of view the subclass:superclasses:. ., category: method held by Clase class hasio
call the new name:...:and:... :changed method which is a specialization of the standerd name:. .. rchanged: method
held by Metaclass. Conflicting methods are detected by the system, the user having to solve explicitly conflicts by
using compound selectora,
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Nevertheless this extension towards multiple inheritance complicates the instantiation tree (by adding 2 levels) and
does not operate in a uniform way. The creation of a class using multiple inheritance does not follow the general
template: the message is sent to Class and not yet to the “super”. There is & dissymetry betwesn the first super
(known by the class) and the cther supers (known by the metaclass). Finally multiple inheritance of instance variables
is not well defined at the metaclass level.

3 ObjVlisp

ObjVlisp was built to understand the metaclass coneept and to provide an altsrnative to the Smalltalk solution. In
fact we agreed with Borning about the complexity of the Smalltalk metaclasses but rather than rejecting them [4] we
preferred to explicit them fully a= true classes,

3.1 The ObjVlisp Postulates

The ObjVlisp postulates were already published in [10] and [12). We detail here the postulates which differ from
Smalltalk.

1. ObjVlisp unifies the class and metaclass levels, A metaclass is a true class inheriting its structure and behavior
from a previous metaclass. Consequently, the one to one relation, between a Smalltalk metaclass and its private
instance is broken: a metaclase can own potentially an infinite set of instances and several classea can share the
same metaclass (cf. 3.3.3).

2. Because ObjVlisp implements multiple inheritance for classes, multiple inheritance for metaclasses is obtained for
free.

3. The depth of the instantiation tree is potentially infinite and the regression of metaclasses solved by the self-
instantiation of the first metaclass: Class,

4. To clarify the class variable terminology, ObjVlisp implements shared envircmments by using the instance
variables of the metaclasses. These variables are accessible both at the elass and at the instance levels (cf, 3.3.2)
but are shared cnly by the instances of a same class (and not by the instances of a same class hierarchy).

3.2 The ObjVlisp architecture

The basic architecture is supported by only two classes: Class the root of the instantistion tree and Object the
rook of the inheritance lattice. The first class Clasa describes the sole nake-instance method (Smalltalk new) which
composes the allocete-instance method owned by Clase and the initialize-instance methods owned both by
Class and Object. Becanss Clags is its ewn instance, the values of Class instance variables have to match the
structure of Clans itselfl including its list of inatance variables,

To expose & flaver of the ObjViisp bootstrap we give below the circular definitions of Object and Class :

a) Glans skeleton is built manually with its slots and the three methods allocate-instance, initialize-instance
and make-instance :

(petg Clams
*{Claps Claws (Dbject)
(isit mame supers i-v methoda)
(make-instance (A ..) sllocate-instance (A ..) initialize-instance (A ..0) 3 )

b) Object is created by instantiation of the Class skelston |
(send Class "make-instance

imAme 'Ohject

1 EUpeTS 0

ti-v *{iait)

imethods  * (class-of (A ) dmit)

initialize-inatance (A (initargs) (initialize-elots self ,..) melf)
1)

c} The real object Clags is created by self-instantiation of the Class skelston (which is destroyed) :

(pend Clase ‘make-instance
imame *Class
1 EUpeTE " {0bject)
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ti=y '(name supera i-v methods)
imethods * (make-inatance (A (krest initarge)
(send (send self ‘allocste-instance)
“initislize-inatance initargo))
allocate-inetance (A () (make-instance mane))
initialize-instence (A (inftarge) (run-super) ...) ) )

3.2 Programming by Metaclasses with ObjVlizp
3.3.1 The Counterexample

This first example shows the ObjVlisp versicn of the Counter. Contrary to Smalltalk the metaclass CountarClass iz
explicitly created as an instance and as a subclass of Class and BEFORE creating the class Counter. Then Counter
itself iz created 23 an instance of CounterClass :
(pend Clzss "new
iname ' Gounter(lnes
: BUpers '(Class)
rmothods " (value: (A (anIntegezr) (memd (mend self ‘*new) ‘write: anInteger))) )

{mend ComnterClass "mew

ipame *Dounter
1BUpRIE *(Object)
1y F(value)

imethods " (write: (A (anInteger) (metg value anInteger) self)
reed {4 {) value}
TaE (A () (oend self “weite: 0))
iner: (A (incr) (oend pelf “write: (+ (send melf ‘read) iner)))
decr: (A (decr) (send melf ‘write: (= (send melf ‘read) decr))) 1)

{@end Osunter 'mew value: 3)

We ohserve that at the syntactical level, the creation of & metaclass, a class or a terminal instance is the same. In all
cases we send the message new to the class and we use keywords (whose names are derived [rom the instance variable
one) to express the initial value of the instance variables.

3.3.2 The Stack example

This second example givea the ObjVlisp solution to the “Generic Stack problem”. We use here the possibility to share
the same metaclass MetaBtack between sll classes representing different kinds of stacks: StackFloat, StackStack

ﬂ

Class
Stacklowt —l MetaStack < StackStack

=

At the code level we can observe two other differences: the value of the instance variable type of HetaStack is
directly accessible from the instance method push: of class Stack. At each class creation type is explicitly initialized :

(send Clans "new

iname "HetaBtack
 BUPREE *{Cluss)
ri-v *{type)

imethods  “(type (A (} type)
type: (A (aType) (zetq type aType)) )}
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{send MetaStack ‘new

iname "Btack
! BUpETS *(0bject)
ti-y *(aList)

imethods  *(imitdslize-inatance
(A () (metqg alist "(*+bottome+]})

pap (A () (pregl (ear mLint) (setq alist (cdr aliat))}))
addFirst: (A (gqq) (setg alist (coms qq alist)}))
puah: (4 (entivy) (whem (eq (types-ef entity) type)

{send self 'addFirst: entityl)) )
itype "Dbject)

(send MetaStack "mew :mane "StackFlost :oupers '(Btsck) :type 'Flomt)
(send MetaStack ‘mew :mame 'EtackStack :supers ‘(Stack) :type ‘Stack)

4 The CLOS Postulates and metaclass Architecture

“The metaobject kernel of the CommonLisp Object Syatem (CLOS) comprises the classes and methods that define and
implement the behavior of the spstem. Since CLOS ip an olject-oriented program dtself, ezposing this kernel allows
people to make useful integrated extenstons to CLOS without changing the behawior of the spslem for ordinary progroms,
end without unwarranted loss of efficiency [6/%.

CLOS [14] is the object-oriented paradigm for CommeonLisp merging the features of CommonLoops [5] and NewFla-
vors [22]. This paradigm was designed by Xerox, Symbalics, Lucid, HP and TT people in order to provide a unified
object system for the CommonLisp world, CLOS was accepted as the standard for CommonLisp by the Ansi X3.J13
committes. [268] gives & complete description of the CLOS specification but let us recall the more significant features :

» unified syntax derived from CommonLisp,

multiple inheritance scheme using a linearization algorithm,

« generic functions generalizing function call and message passing,
# method combination,

# class updating allowing class redefinition and instance updates,
. i.nte;rax.ﬁn of the class system into CommonLisp type systam

» & meta object protocal.

Obvicusly, from a reflective point of view, the last item is the meat important, It means that the structure and
behavior of entities such as nethods, slote, generic functions, method combinations, types and structures are
described at the language level by pre-defined classes. In fast the CLOS metaclass architecture is very close to that
of ObjVlisp and starts with the standard-class of which almost all classes in the kernel are instances, including
standard-class itself. [11], [18], [1] discuss how to modify the ObjVlisp metaclass kernel in order to support an
implementation of the CLOS metaocbject protocol.

5 Conclusion

The abatract of this paper represents what we have planned to write, We have not developed the Pattie Maes approach
aiming at describing computational reflection for the object-oriented world [21]. In fact the topic was too vast and we
only developed the metaclass architecture provided by Smalltalk. We were surprised by ita potentiality and we believe
that Smalltalk metaclasses deserve to be better known. We were really surprised by the harmony of the Smalltalk
interpreter, and convinced that the reification process allowing to manipulate the context, the stack and the message
2t the language level is inherent to the Smalltalk system.

We have demonstrated the Smalltalk ability for automatic code gensration but we have not developed the expression
of control struetures in Smalltalk itself by using the block construction.

In the field of reflection, we are convinced of the relationship between Lisp (Scheme) and Smalltalk implementations
technics and we suggest to realize a 3-8malltalk as the Smalltalk equivelent to 3-LISP.

We have quickly reviewed the ObjVlisp and CLOS metaclasses, but contrary to the Smalltalk community, DI:I_]Vlup
and OLOB programmers are convinced of the necessity to vse metaclasses.

Finally, we could observe that languages such as Eiffel, C4++ and Beta which are not providing the manipulation of
the abstraction lose the benefit of the reflective process as developed by the Lisp' (Scheme) and Smalltalk traditions.
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