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ABSTRACT

We present & refutation complete set of inference
rules for first-order logic with equality. Except for x=x,
no equality sxioms are needed. Equalities are oniented by
a well-founded ordering and can be used safely for demo-
dulation, without losing compleleness. When restricted to
equality units, this srategy reduces 1o & Knuth-Bendix
procedure,

1. INTRODUCTION

The starting point of this work is the following remark in (Peterson
I983): "...no onc has developed a refutation complete set of infer-
ence mles for all of first-order logic with equality which ‘reduces to
the Knuth-Bendix procedure when restricted w0 equality unds.". We
present here one such set of inference rules, ot least for the case
where a complete simplification ordering is used to compare 1erms,
In (Lankford 1975)see alzo Fribourg 19E5) a theorem proving pro-
cedire (the derived reduction alporithe) is described which uses a
very resirictive version of parsmodulation (Wos Robinson 19700,
Given a reduction ordering on terms, assume that some cquations ane
ongnted from left 1o dght (large 10 small, accordinglv), A nof-
warighle subierm s within & clause C can be replaced by another one
equal to it, only if :
condition a: ¢ matehes the left-hand side of o positive equational
literal, and
cordition b: i 5 ix g subterm of a positive equational leral of C,
then it has o belong to the lefi-hand side of this equation.

The remaining literals of the parent clauses are just added to the
inferred clause, as in the classics version of puremodulation. The
aim of this paper is to study the refutational completeness. of o stra-
tegy based on this inference rule.

A fundamental method 1o speed up theorem provers is 10 maingain
information under a reduced format and to discard redundancy. This
goal is achieved by using deletion inference mules such as demodula-
tion (Wos ot al. 1967), subsumption and taotology deletion. In most
sirategies they are just consicdered as very efficlent heuristics and few
is known about thelr effect on compleseness. However, in our case,
we are able to incorporaie the deletion rules in the same framework
@s the other inference rules and. to show that completeness is
preserved. )

When all e clauses are orientzble equations, the previous strategy
reduces 1o 8 Knuth-Bendix algorithm (1970), Our result may also be
viewed as an extension of the unfailing completion procedires of
{Hsiang Rusinowitch 1987) or (Bachmair Dershowitz Plaisted 1987)
to the general first order predicate caleulus with equality.

We emphasize the fact that this procedure does not use the fune-
tiomal reflexive awioms, and never performs paramodulation into a
variahle subterm, These resmictions are crucial in order to have an
efficient - paramodulation-based theorem-prover. D, Lankford has
proved the completeness of this strategy in the particular case where
the cquality predicats does not occur positively in non-unit clauses
and the initial set of equations is a complets set of reductions (Lank-
ford 1975). Paol (Paul 1985) has studied the case of Hom clapses.
However, his algoritum fails, just like Knuth -Bendix algorithm,
when an equation that cannct be oriented appears. His strategy also
has a bigger search space since it does not preclude the replacement
of subierms within right-hand sides of equations in non-unit clauses.
The same remark i true for the unit strategy for Hom clauses pro-
posed by (Bachmair Dershowitz Plaisted 1987). A very similar pro-
cedure described in (Fribourg 1985) allows any orsntation of equa-
tions (not only reduction orderings). Howewer, the fonctional
reflexive axioms and peramodolation into variables are required 1o
“m.:m completeness of the method. Funthermore L.Pribourg did



not show that completencss is maintained when simplification and
subsumption rules are added 1o the system.

Our completeness proof uses the noton of ransfinite semantic mees
{as in Hsiang Rusinowitch 1988) and an extension of the notion of
failure node which we call quasi-fallure node. A goasi-failure node
can be viewed as a partial interpretation J which falsifies a clause
redoced by valid rules of J. Cuasi-failure nodes are essential for
proving that paramodulation in the smallest term of an equation is
not needed. For proving completeness of ordered paremodulation
(Hsiang Rusinowiich 198F), we show that the vightmost branch of
the semantic tree associzted with an unsatisfiable set of clauses is
empty. If this branch coniains a quasi-failure node, the proof does
not gencralize to our actual set of rules, Therefore, the main point of
our proof is 1o build a branch which avoids quasi-failure nodes.

.. INFERENCE RULES.

2.1. NOTATIONS.

In this sacton we review standard concepts and notation. Let F be
2 set of fanction symbals graded by mn arity fimction. Let X be a set
of variables. The algebra of terms en F and X is denoted by T(F,X).
We call T(F) the ser of ground terms on F, which is the ser of werms
with no varisbles. Let P be a set of predicate {or relation) symbaols,
The equality symbol “=" is a particular element of P whose arity is
2. The set of momic formulas (or atoms) Is denoted by A(P,F.X), and
the sei of ground atoms {or atoms with no variables) by A(PF). An
equality is an atom whosa predicate symbal is "=". The set of literals
is A[P.F) w " A(P.F) , where T is the symbol of negation. A clanse
is a disjmction of liverals. A clause can be Identified with the se of
its literals. The expression T, where C and D ame clauses mears
that the set of literals of C is included in the set of literals of D.

The result of applying & substitution < to an object t is denoted by
7. A substitution 8 is a wnifier of bwo objects s and t if and only if
s@=t8. A unifier @ of 5 and t is the most general unifierimgu) iff for
every umifier @ of 5 and t there exists a substitution ¢ such that
m&tlm%ﬂemmﬂmhmclhummm
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hiterals than C, and C,8 ¢ C, tor some substitution B, then we say
that Cl subgsumes C.2

An important feawre of our inference system is that any inference
step always involves the maximal literal of one of the parent clauses,
where the maximality notion s defined relatively to & complete
simplification ordering < on the Herbrand Universe (see {Peterson
1983) (Hsiang Rusinowitch 1987)).

2.2, COMPLETE SIMPLIFICATION ORDERINGS.
A complete simplification ordering < is an erdering on A(PF.X) w
T{F.X} such that:
01, < iz well founded
2. < ix rotal an AFPF) L TiF)

03, for every wy € APF.X) \ TIFX) and every substitution 8 :
W= v implies wi <
O, ,I'hr every Lye T(F X) t<s implies wloe-t] < wio—-g]
Jor every 15.a.beT(FX) , with (= 5 and we A{P,FX}
1. if 5 ix @ subterm of w and w is nor an eguality then (5=1)
< WL

9

2. if 3 is o strice subterm of @ ar & then (s=t)< {a=h)
06, i fu=w) < A < [u=v} , wen and ven, where wy and w are
grivnd tevwns, and A iz @ ground atom then there is a grownd
term f such thae A i.uquafm':hewamru-u.

121. EXAMPLE

We suppose that we have 2 mm!v{ell-hundad.wdn-ing -cpm the
predicate symbols such that “=" is the smallest element. We further
suppose that < is & simplification ordering (Dershowitz 1985) on the
set of terms which 15 also rotal on ground terms. We define the
predicate-first ordering < on A(P.F) as follows:

Pz ._...f“] < e ,._.,rmjl ir

P -:F Q or

£ = Q, P is not the equality predicate and (s)...5,) < (g
compared lexicographically, or

F =@, F is the equality predicare, and [s,8,] < < [r_,.rz}, where
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-c?ummmﬂmmmqr‘:‘,

[t is easy o see that < verifies O1,...06 and, In general, A(P\F} is
not onder-isomonphic @ N,

2.3. THE SET OF INFERENCE RULES.

Now we give our set of inference roles, which s denoted by DRA.
We suppose that < is an ordering that can be extended as a complete
simplification ordering.

O-FACTORING
ELJLE"“'L.E are literals of a clouse C which are unifialile
with mgu 8, and for every atom A & C-{L;.. Ly}, LB £48,
them D= C8- [Lo8 ..., L8] ir an O-facior of C.
O-RESOLUTION
O =Ly VO, and Cy = Ly V €y are clawses such that
1, L;w“t?mungﬁubkmmguﬁm
2 VAeC) LBLAD and
3 WA e Gy, LB 240 and
4, !,'ij.f.{.'.ﬂ.uaqwdﬂjﬁfgr.ﬂi then C., is x=x
“then, I'= !.'.‘I’H V C)'8 ix an O-resolvent of C; ard C,.
ORIENTED _PARAMODULATION
Let C'_, be a clause (s=1) V C_,'. Let C‘z be anorher clause
which has a non-variable subterm 5 of occurrence n in a
literal Ly, suck that §' is unifiable with 5 with mgu . We also
agsume that:
1. 40 and
L VA& Cyly), [0 A0 and
3. .!‘..2 5 not a p:n.r-m‘m: equation.
Then C =  Cyfne=t] V C;')0 is an oriented paramodilant of
C, inta €y,
EXTENDED_SUPERPOSITION
L:i'f.‘_.. be o clauge (s=r) VC;'-MCzbe.ﬂffmeandasb
be a lireral of Cy. Let & be @ non-variable subterm of a at
vccwrrence o of C,, Juch that 5° 5 unifiable with 5 with mgu 6.

We also assame that:

1. B Lmand

2. ab M) and

3. VAe Cyla=bl, ab=bb $A0

then C = I‘fgfi"—f.f V{:",'JB is an exended superposant af{:'*.
inte Coy,

'We remark that when Cl and Cz are two rewrite rules, an extended
saperposition of C, into C, is a superposidion as in the Knuth-
Bendix algorithm. Let us introduce now some deletion rules which
are fundamental a5 far as efficlency is concemned.

We zay that the clause C, properly subsumes C, if C; subsumes
Cz and f.‘2 does not subsume CI. We shall use the following version
of the subsumptdon rule:

FROPER_SUBSUMPTION
Drelete from a given set of clanses § any clawse which v prop-
erly subsumed by another clause in §,

If the unit equation s=t is in 5 and C,[s0] is a clase in 3 which
contains zn instance 58 of 5, and 589 > 8, and there is an atom A in
l:2|5ﬁ] such that A> (s8=48), then the clause T[] is a
simplification of Czlsﬂj by s=t.

SIMPLIFICATION
e may replace in § a clause which has been simplified, by
itz simplification,

In the case where every clouse is an equality or an ineqoality, the
only applicable rules are EXTENDED SUPERPOSITION, RESOLU-
TION with x=x, PROPER SUBSUMPTION and SIMPLIFICATION.
The strategy we then get coincides with the S-strategy of (Hsiang
Rusinowitch 1987). Furthermore, when there is no inequality in the
system and every equality is  orientable
simplification ordering, the procedure applies the same inferences as
in the Knuth and Benadix completion algorithm.

by means of our



4. MAIN RESULT

We state now our main result, whose proof will be postponed 1o
sections 3 and 6. For convenience, we shall call INF the subset of
DRA made uwp of the non deletion-rules: O-RESOLUTION,
ORIENTED PARAMODULATION, O-FACTORING, EXTENDED
SUPERPOSITION, A faimess condition is needed 1o control an
application of these nules, so that no crucial inference is delayed for-
ever.

Given an  initlall set of claoses ﬁ. the  derivadion
Su—bSI—r__—rSI—&._. where 5, is obtained by application of a rule of
DRA o 8, | is fair if :

Vi Re nl,ﬂlﬂFfsfj implies that R is subsumed by some clause C &

Here s an example of a fair stategy: first, all  possible
simplifications are performed, then clauses which are subsumed by
other ones are deleted, then all resolutions, factorings, paramedula-
tions and superpositions are created. This strategy is wsed in the or-
ginal Knuth and Bendix completion algorithm, We can now express
the completeness of our mules:

24.1. THEOREM, Every fair derivation, whose initial set is E-
unsatisfiable and contains the axiom x=x, ylelds the empiy clause.
The proof is performed in two steps. First we constder only the
inference rules of INF and use the semantic wee method as it is
detailed in (Hsiang Rusinowitch 1958). Then we adapt this techrique
1o take the deletion rules into account. Before we give the proofs, we
illustrate the inference reles with examples.

3. EXAMPLE

The following easy example shows the ransitivity of less-or-equal,
assuming the associativity of max. The skolemized negation of the
theorem is the conjunction of clauses 56,7, We wse the predicme
first ordering, as in Example 2.2,1, with the following precedence on
function symbols: maoc-axb>e, and on predicate symbols: LE = "="

1. LE{x,y) ¥ LE{y,%).
2 TLE(x.y) V max{x,y) =+ ¥,
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3 TLE(yx) V max(xy) = x.

4. mx(max(x,y),z) — max(x, maxiy,z)).

3. LE(a,b).

6. LE(b.c).

7. TLE(ag).

REFUTATION

8. max(ab)—b by res of 5,2,

9. max(b,c)=+¢ by res of 6.3,

10. LE(x,y)} V max(xy) = x. by res of 1,3,
11, max(ax) — a by res of 7,10,

12, max{a.max(b.z})—max(b.z) by super of § into 4,
13. max(a,c) = max(b.c) by super of 9 ino 12
14, a—sc by simphif of 13 by 11 and 9,

15. TLE(c,c) by simplil of 7 by 14.

16. LE{x,x) by fact of 1.

17.0 by res of 16 and 15,

4. SEMANTIC TREES.

In order to prove our main result we shall frst recall how to build
semantic trecs for representing the canonical models for equality
theory. For more detzils, the reader can refer either to (Patersen
1983), (Heiang Rusinowitch 1988) or (Rusinowitch 1987), Since we
want o erient equations with erderings whose ordinality is bigger
than &, we have to build semantic mees which are wansfinite. This is
done by noctherian induction on A(P,FlL

4.1, E-INTERFRETATHONS

Let < be a complete simplification ordering. Let W{B) be the sat
(B'eAFF): B'= B ). A left sepment s either a set W{H) or the set
A{P.F) itsef. Let B+1 be the successor of B within A(P,F).

4.2, DEFINITION: E-INTERPRETATION.

An E-interpretation on a subset D ¢ A{P,F) & a mapping [ : D -——
{T.F} which satisfies :

El. Iis=s}=T if (s=s)e D
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E2 if (s=f), B[sLB[t] belong to D and I{ s=t =T then
IBIs]=I(Bft]). '

An E-mterpretation is an E-interpretation on A(P,F). One can easily
see that an E-interpretation I just a model for the reflexive | sym-
metric, transitive and substiniive axioms of equality theory. Let I be
an E-interpretation whose domain is W(B). Let A be an element of
W(B). We define, 1{ — A) = " I{A) LetC=1, VL, V..V 1
be a ground clause whose atoms belong w W(B)Y. We define: 1{C) =
I(Lil W I[[.?] Y ,..Y I[LI}. The set of equakity axioms is denoted
by EQ.

In order to prove that a set of clauses 5 containing the equality
axioms has no model, it is encugh to prove that ne E-Interpretation
can be a model of 8. In other words, we have the following :

43. THEOREM (se¢ Chang Lee 1973). A set of clauses § is E-
unsatisfiable (that is to say, is not valid in any E-interpretation)
iff § v EQ is unzatisfiable.

44. REDUCTION RELATION DEFINED BY AN E-
INTERPRETATION,

If 1 is an E-interpreiation on a left segment Wi{B), it can be used o
define a reduction relation =31} whose rules are the valid equalities
of the model 1.

Let w and v be elements of APF) U T(FL We write w =+ v if
there is a sobterm 5 of w {we write w=w[s]) and a term ¢ such that
tes, (s=thw, (s=t)c W(B), i{s:u}'T and v=w(t]. We then say that w
is l-reduced to v using s=i The reflexive transitive closure of —(I}
will be denoted by —*(I).

The next result shows how it is possible to bulld inductvely the
E-interpretations.

4.5. THEOREM (Hslang Rusinowitch 1988). Let 1 : W{B+1) -—
{T,F} be such that [ is an E-interpretation on 'W{B). Let ] be the
restriction of 1 to W(BL Then 1 is an E-interpretation on
W(B+1) iff :

1. B is J- reducible to some C and I{B)=J(C) or
2. B is J-irreducible , of the form t=t and B)=T or
3. B is Jirreducible snd not of the form t=1.

4.6. TRANSFINITE E-SEMANTIC TREES .

The transfiniie E-semantic ree is simply the set TEST made up
from all the E-interpretations on left ssgments of A(P.F), ordered by
<l, the namral extension relation of mappings. To put it mare for-
madly, let [ and I' be two elements of TEST, with respective domains
W(B) and W(B") ; then :

§ <1 if W(B} c W{B') and | iz the restriction af I' to WiB).

Let us notice that the ordering <l is well founded,

4,7. DEFINITION: MAXIMALLY CONSISTANT SEMANTIC
TREES.

If an E-interpretation [ on Wi{B), falsifies a ground instance of a
clause C belonging to a set 5 (e ICH=FALSE for some ground
substitution 83, we call | 2 failure node for 8. The maximally. consis-
tant E-semuntic tree of a set of clanses 8, denoted by MCT(3), is the
maximal suberee of TEST such that no node I in MCT(S) is a failure
nodde for 5.

Let us introduce the notion of guasi-failure node which is any E-
interpretation R falsifying a clause obtained by reducimg & ground
instance of a clawse of 5 with the oriented equalities which are valid
in K.

4.8, DEFINITION: QUASI-FAILURE NODE.
Let B be a node of MCT(S) whose domain is W{B+1). This node B

is a quasi-failure nods (for 5) if:

1.  R{B}=F

2. B is an eguality st (with s>t)

3. there is a ground instance D of a clause C in 5 such that every
atom in D is sricdy smaller than 5=5, there is & ground clause
D" such that R{D")=F and D —=*(R) I}'. We then say that such
a clause C guasi-labels the node B



5. LIFTING LEMMAS

51. IRREDUCIBLE SUBSTITUTIONS AND THE LIFTING
PROBLEM.

In order to cnable a paramodulation, which is performed into a
ground instance of a clause, to be lified o the clanse ikself, it 15
necessary o prevent the replacement of a sulbterm within the mstun-
ciated parnt of the ground clause, Thiz is the motivation of the next
definition :

5.2, DEFINITION

Let | be an E-interpretation and 8, 8° be ground substintions, We
say that @ is l-reducible to 8 and we write § —(I) 8" if 8 is identi-
cel 1o B' except for one variable, say x, and L{B{x}= 8°{x}}=T and
B(x)=8"(x}. If B canrot be l-reduced 1o any substitution we say that @
is Iirreducible.

53, THEOREM (Peterson 1983}, Suppose I is am E-
interpretation , 8 a ground substitution, C & clausé sich thal each
atom of C8 belongs to the domain of I Then there exists a
ground I-irreducible substitution vy, such that I{C8) = I{Cy).

To lift our inferences from the ground case to nom-ground case,
first we can notice that for every instence C% of & clause C in 5%
which labels or quasi-labels a node I, & can be assumed to be I-
imeducible. Then we can simply use the classical lifting lemmas for
resolution and paramodulation as they sre given in (Peterson 1583)
For lifting the extended superposition rule, lei us noiice that we can
use a&n argument similar to the one given for paramodulation (or for
the critical pair lemma in Knuth and Bendix algorithm):

54. Extended superposition lifting lemma. Let Cl be the clause
(s=t}) ¥ C and C, be the clause {a=b) V D and n be a non-
variable position in 5. Let 5G be the following extended superpo-
sition; s8[n«bBl=t8 ¥ CB ¥ D of the ground instances (s=1) ¥
C8 and (a=b)8 V DO of C; and C,. Then there is an extended
ﬂmﬂmtﬂﬂtllndtzmdlthatSGisanimmﬂS.
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6. REFUTATIONAL COMPLETENESS OF IN]F
We present here our technique for establishing compleieness of the
zet of inference rules INF, Thiz method is pamicularly wseful for
proving the completeness of strategics dealing with equalities as
rewrite rules. We have already used it to prowe the complerensss of
the following strategies, where the only equality axiom ever used is
¥=x - in particular, we never use the functional reflexive axioms- and
paramodulation is never performed into  variables: ORDERED
PARAMODULATION (Hsiang Rusinowitch 1986}, POSITIVE
PARAMODULATION (Hsiang Rusinowitch 1988) and UMFAILING
KNUTH-BENDIX-HUET ALGORITHM (Hsiang Rusinowitch 1987)
Let § be a st of clawses. INF(S) denotes the set of claoses
obtained by applying some rule in INF o 5. Let INFU(S)=5,
INFY(S) = INFONF'(S)) and §* be U, oINFU(S). The precise

result is:

6.1. THEOREM. Let 8 be an E-unsatisfiable set of clauses con-
taining x=x. Then 5* contains the cmpty clause.

By lack of space, we have not detailed the proof, It can be found in
full extent 'm_ {Rusinpwitch 1987).

Our method be sketched as follows: given an arbirary E-
unsatisfiable set of clauses S, we want to piove that 0 & S* which is
equivalent o proving that MCT(5*) is empty. Suppose the maximal
consistent ree is non-empty. Then we define by induction a particu-
lar sequence of nodes in MCT(5*). Since 5% has no model, the swe-
cessors of the last node in the sequence are failure nodes (or quasi-
failure nodes), falsifying some clauses C and D in 5% We apply a
proper rule of INF to C and D to get another clause [ falsified by a
node of the sequence. But none of the node in the sequence is a
failure node, Hence we get a contradiction,

7. COMPLETENESS IN PRESENCE OF SIMPLIFICATION
AND SUBSUMPTION.

The point of using deleden rules is w get rid of redundancies and”
tantologies and to keep the system as small as possible. In many
equality thecrem-provers like ITP (Lusk Owerbeek [1984) or SEC
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(Fribourg 1983), demodulation (Wos et al. 1967), er simplification, is
used as & very efficient heuristic. Theoretical foundations for that
inference rule were developed through the Knuth and Bendix com-
pletion algorithm {Huet 1981). In the general sening of first order
calenlus, there have been very few investigations aboul how com-
pleteness 15 preserved in presence of g “deletion” rule such as
simplification. Everybody agrees that in general simplification leads
to shorter refutations; however this is not always the case : the
unsatisfiable set of clauses | P{fx)), “Plfglal)y, fg(x)i—b] admits
a straightforward one step refutation by resolution, If we first apply
the equation a5 a demodulator, we get the following nomalized st
of clauses: (P{(x)), P Kg{x)}—b]l. The shortesi refulation we
cnl gel TOW uses two steps: one paramodulation step in the first
clause followed by one resclution step. Our goal 5 to show thar the
normadization of clauses does not push the empiy clause out of
reach of cur theorem-prover. This goal has been achieved; the proof
of that result heavily refies an the noctherian featuse of the demodu-
lators,

Subsumption, gs simplification, is a rule which decressss the search
space. It was studied carefully by D.Loveland {1978) from the proof
theoretic point of view which is much harder to handle than the
semantic one. A nice aspect of our approach is that it allows a com-
maon reamment of subsumption and simplification.

In this chapter, an inference rule i3 a rule for replacing a set of
clauses by an equivalent set of clauses, With this new defimiton, we
consider mow two other inference rules: proper subsumption and
simplification. We can notice ﬂiﬁ. as in (Hstang and Rusinewiich
1987} Peterson  1983) |, unoriented cquations can be osed as
simplifiers: indeed uyncomparable terms happen to be comparable
when instanciated. Example: fixxy) = fixyy) cin  simphify
Pifig{a)gla),a)) into P{fgia)aa), notwithstanding the non-orientable
equation. '

We now consider the full set of rules DRA. Because from now on
we are dealing with deletion inference rules, we cannot assume any
mare manotonicity of the process. The problem is that we canmot
ensure anymore that clauses, which have been genérated, remain

aveilable throughout the inference process, and may always take part
in a refutation. Some claoses might be simplified or subsumed during
the process. Suppose for instance that C and D can be resolved. This
resolvent will perhaps never be generated, since C or D may not be
simultaneously present in the system due to the deletion inference
mules. What is enough 1o prove in order to avoid this problem is that
clauses involved in a refutation can be chosen in such & way that
they will never be simplified or subsumed later on .

7.1. DEFINITION,

Given an imitial set of clawes S and & dedvadon
S5 =+.~8;=... where 5 is equal to § and 5, s cbuained by
appliu:ﬂimnfamleofmmsl_l. 5% denotes, from now on,
if there is a k & M such that C belongs to every Si,furlak.

The crucial propesition is;

7.2. PROPOSITION, Every fallure node of 5% con be labelled by
a persisting clawse. Every gquasi-failore node can be quasi-
labelled by a persisting clause,

The proposition is proved by considering the smallest clauses
{w.r.t=c) in 3* which can label the (gquasi)-failure node.

73, THEOREM. Every fair derivation, whose initial set-is E-
unsatisfiable and contains the axiom x=x, yields the empty clawse.

Proof: let § be an E-umsatisfinble set of clauses containing x=x. We
assume that MCT(S*) is not empty. Lot K be the last node of the
right branch of MCT(3*). We first suppose that K has two successors
L and R in TEST, which are failure nodes, Let C be a clause of 5*
labelling L and F & clause of 5* labelling . We mow that there is
a clavse T € INF{{CF]) falsifted by K. This I can be obtained by
resofution between C and F. With the proposition above, we can sup-

pose that: C.F € n@“i Sfor some 20



Then I & ﬂi&im}‘ Mow, the faimess assumption ensures that
[ is subsumed by some clause I of 3% We derive a confradiction
with the fact that K belongs to MCT(5%), as usual, by showing that
K falsifies the clause [ of 8% When K has only one successor, the
proof is quite similar bul uses paramodulation ©f superposition
instead of resolution.

8. CONCLUDING REMARKS

Using the powerful tool of transkinite-semantic rees, we have been
able w -prove the completenzss of a set of inference rules which
extend the Knuth-Bendix completion procedure. The only restriction
is that equations are criented with complete simplification orderings.
This is not & real drawback since all the orderings that are used in
the context of term-rewriting systems are of that type. The strategy
described above can be refined when we deal with Hom clauses, Far
instance we can restrict the paramodulation or superposition mules 10
be performed only into the maximal lierals of any clause. The
clauses can then be interpreted as comditicrsal rewrite rules. This is
detailed in (Kounalis Rusinowitch 1988}, It Is also possible to obtain
& complete onit sirategy, as in (Henschen Wos 1974)(Paut 1985)
{Bachmair et al.1987). We think that we should gain more efficiency
by incorporating axioms like sssociatvity and commuativity in the
unification algorithm and by extending the notion of critical pair eri-
ferta o resolotion and paramaedulation,
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