PROCEEDMNGS OF THE INTERMNATIONAL CONFERENCE

ON FIFTH GENERATION COMPUTER SYSTEMS 1938,
edited by ICOT. @ [COT, 1988

FOUNDATIONS OF DISLOG, PROGRAMMING IN
LOGIC WITH DISCONTINUITIES

Patrick Saint-Dizier

IRISA-INRIA, Campus de Beaulien, 35042
RENNES Cedex, FRANCE

Abstract

In this paper we present an extension to
PROLOG we call DISLOG which is designed
to deal with relations befween non-contiguous
elaments in a structure, This extension turns
out to be well suited for ayntactic analysis of
natural and artificial languagea. It is also well
adapied fo express traversal constraints in ap-
plications such as planning and expert systems
and deductive systems involving, for example,
temporal reasoning. DISLOG turns out to be

more declarative, transparent and simple than
PROLOG to deal with long distance relations.

1 Introduction to DISLOG

In this document, we present DISLOG, an extension
to PROLOG. DISLOG stands for Discontinuities in
Logic because it has emerged from a generalization to
logic programs of Confextual Discontinuous Grammars
(Saint-Dizler 87) designed to deal with movements in
natural language parsing systems. This grammar for-
malism is both a speclalization and a generalization
of a global framework proposed by V. Dahl (Dahl 87)
called Static Discontinuity grammars.

The dizcontinuous family of logic grammars (Dahl
and Abramson 84, Dahl 85, Dahl and Saint-Dizier 86)
- nared at first Capping Grammars- was originally
jointly developed by V. Dahl, H. Abramson and M, Me-
Cord. The idea was to allow for unidentified strings of
symbols in 2 rule {refered to through a symbel skip(X))
to be arbitrarily repositioned. Several theoretical as
well as practical problems.with this first definition lead
to a more constrained ‘definifion of a discontinuous
grammar. Work on Government and Binding Theory
produced the idea of keeping the type-0 power of Dis-
continuous grammars while maintaining the simplicity
of context-free parse trees. This new type of gram-
mar is now called Static Discontinuity Grammars by
V. Dahl (Dahl 87). A Static Discontinuous rule is a
rewriting rule in the Metamorphosis Grammar style, it
looks like:

a, skip(X), b, skip(Y), ¢ — al, skip(X), b1, skip{Y]},
cl.

where a, b, ¢, al, bl and cl are non-terminal sym-
bols. The symbol skip{X) stands for an unknown string
of symbols of no present interest.

The definition given in (Dahl 87) is of much inter-
est, but it is however vague and its declarative meaning
can be understood in a number of ways. Some elements
of the formalism can be simplified while others can be
generalized. In (Saint-Dizier 87), we generalize and
make more explicit this framework and we also provide
more linguistic motivations and an implementation in
PROLOG. We call our formalism Contextual Discon-
tinuous Grammars. Very briefly, its main characteris-
tics and advantages with respect to Static Discontinu-
ous Grammars are that al, bl and ¢l are a sequence of
terminal and non-terminal symbels; the skip notation
iz given up and derivations of a, b and ¢ into respec-
tively al, b1 and ¢l are given, in a principled way, a
much greater freedom; modalities and the possibility of
specifying linear precedence restrictions have also been
added. This is described in detail in {Saint-Dizier 87).

From the principles of Contextual Discontinous
Grammars we designed DISLOG. The idea of discon-
tinuity in grammars became the more general prob-
lem of expressing constraints or relations between non-
contiguous elements in a structure (Saint-Dizier 88b).
In the above menticned paper, we motivate from a psy-
chological point of view the idea of thinking and rea-
soning in terms of such relations and constraints. This
is illustrated by reasoning about temporal events and
by the expression of meaning postulated like those en-
countered in Montague semantics. This generalization
can also be viewed as imposing constraints on the way
a problem can be solved by controlling the form of the
proof tree.

DISLOG turns out to be particularly well adapted
to express in a modular, concise, simple and trans-
parent way constraints and relations between non-
contiguous elements in a structure, We call those con-
straints and relations traversal constraints and rela-
tions to differenciate them from the more common hi-

erarchical ones.

In this paper we first informally introduce the ba-
sic concepts of DISLOG and then present some of its
majof formal aspects. Classes of applications for which
DISLOG is appropriate are presented in (Saint-Dizier
88a).

2 Basic Concepts of DISLOG

The two statements specific to DISLOG are DISLOG
facts and DISLOG rules. We now present and illustrate
them.

2.1 DISLOG facts

A DISLOG fact is a finite, unordered set of PROLOG
facts f; of the form:

(Fis far s S 1o

The informal meaning of a DISLOG fact is: if fi
fs used as a leaf in a given proof tree, then all the f;
must also be used as leaves in that proof tree. There
is a priori no occurence order for facts f; but the same
substitutions have to be applied to all identical vari-
ables that appear in a DISLOG fact.

For example, if we have the following DISLOG fact:

{ A(X), fa(X), fs(ab) }

then, if one of the facts f; iz used to build a proof
tree, with, for example £ being substituted for X, then,
the other two facts must also appear in that proof tree,
at any place, with identical substitutions, as in:

£2(t)

&

£1(t)
~
f3(a.b) ~

DISLOG facts can be used in regular PROLOG rule
bodies as shall be seen in the forthcoming example or
in the body of rules in a DISLOG rule, as shall be
presented in the next subsection. Facts f; in a DISLOG
fact can also be given as regular facts in a program,
independently of the co-oceurence constraints. In that
case, we have a definition of f; in two parts:

{1, £2, 3 }.
1.

Discontinous facts seem to be mainly useful to ex-
press traversal constraints. Fer instance, the DISLOG
fact:

{ arc(a,b), arc{c,d) }.

means that all path going through arc from & to
b must also go through arc from ¢ fo d, or conversely
since we impose the co-occurence of the two facts in' a
proof, but with no constraint on use order. This traver-

509

sal constraint in a graph cannot be expressed very eas-
ily in PROLOG: additional arguments in the arc pred-
icate and a checking procedure are necessary. Using
DISLOG facts considerably enhance the transparency
and the concizeness of the program.

Here s the program that checks whether there is
a path between two nodes in a graph with possible
traversal constraints:

{farcfa,b), arc(c.d)}.
arci{c,a).
arc(b,c).

/% regular PROLOG program %/

path{X,¥) :- arc(X,¥).
path(X,¥} :- arc(X,Z), path(Z.Y).

f% additionzl rules %/

path(X,¥) :~-
{arc(X.Z). arc(W,U)},
path(Z W),
path(U,¥).

path(X,Y) :-

the last arc.
{arc(X,2), arc(W,1)},
path(Z,¥).

Ycase where the second arc is

The first rule which contains a DISLOG fact states that
there is a path from X to Y if there i5 an are from X to
7 and and arc from W to U and a path between 7 and
W and betweean U and Y. This can be diagrammatically
reprezented as follows:

2.2 DISLOG rules.

The basic form of a DISLOG rule is a finite, nnordered
set of PROLOG rules r; of the form:

{TI, T2y sevea 3 Tm }.

Informally, the procedural meaning of a DISLOG
rule is: if r; is used in a proof tree, then all the other
r; in that DISLOG rule must be used to build that
proof tree. If identical variables appear in different r;,
for any i € |L,r], then the same substitutions must
be applied fo them. The r; can a priori appear at any
level and in any order in the proof tree. DISLOG rules
are exemplified in section 3.

210

A PROLOG rule can be interpreted as a logical
axiom. This alse holds for a DISLOG rule. If X1, X2,
... Xm is the set of free variables that appear in the
ri, for all i € [1,n), then the declarative meaning of a
DISLOG rule is of the following general form:

VX1,X2,. ,Xm, p(ri) A.plrs) A o A plra) 5

piry) being the declarative reading of ry.

2.3 DISLOG programs

A DISLOG program is then z finite set of PROLOG
facts and rules and of DISLOG facts and rules. The
declarative meaning of 2 DISLOG program D is the set
of ground unit goals deducible from D.

PROLOG rules can contain calls to DISLOG facts
and calls to rules in DISLOG rules in their bodies.
Rules in DISLOG rules can also have such calls.

Rules r; as well as facts f; in DISLOG rules and
facts can, in addition, be defined respectively as regular
PROLOG rules and facts. This is exemplified in section
2.1.

2.4 More on DISLOG Rules.

We now propose some simple variants and restrictions
on the general form of DISLOG facts and rules.

A first type of restriction is to impose some restric-
tions on the order of use of rules r; in a DISLOG rule.
In many applications, at least a partial ordering is re-
quired. We say that a rule r; precedes another rule r;
if it appears: '

» either to the left of r; in the proof tree,
» or if r; dominates r; in the proof tree.

‘We have the two following possible diagrams if r; is the
rule a —+ al and ry is b — bl. :

JANIVA /£

A

Notice that this definition of precedence does not
depend on the strategy used to prove 2 goal. A way
to represent partial order restrictions is to use linear
precedence restrictions. The statement r; precedes
r; Is noted as:

i = T

Thus, a restricted DISLOG rule is of the form:

{F Fiy v s Ta } i < #j wn Ty € Tme

There are, in fact, a number of cases where a total
order is required. Instead of specifying all the ordering
restrictions, we prefer to adopt & new notation. A rule
like the above with a complete ordering is noted as:

Wl [

In this DISLOG rule, any r; precedes any r; if j >

-i. The symbol [can then be viewed as an accessibility

relation: v Is accessible as soon as ry is activated,

Another improvement is to introduce modalities,
The main modality we need in the present develop-
ment of DISLOG is the possibility, noted m {we use
a small letter to avoid confusien with the variable no-
tation). The modality m can be attached to any rule
r; in a DISLOG rule; it allows this rule r; to be nzed
any number of times, including zero, in the context of
that DISLOG rule. For instance, we could have the
DISLOG rule: '

{r, m{r:) }.

in which r; can be used any number of times pro-
vided r; is used once. Introducing the modality m per-

' mits to considerably enhance, for instance, the ease

of writing compilers for programming languages. In
natural language parsing and generation, modality m
permits to deal with cordination (r; represents coordi-
nated items) and with parasitic gaps in a very concise
and convenient way.

3 A Compiler in DISLOG

In (Saint-Dizier 88), we present several classes of ap-
plications for which DISLOG is appropriate. Among
those applications we have: planning techniques, com-
piling, semantic representation computation, problems
that can be represented by graph and exhibiting traver-
sal constraints (8 queens, sorting, etc...) and temporal
reasoning. We now briefly present a simple example:
writing a compiler in DISLOG.

In a conventional programming language, there are
several one-to-one or one-to-many relations between
nom-contiguous instructions. For instance there is a
relation between a procedure declaration and its corre-
sponding calls and another relation between a label and
its corresponding branching instructions. DISLOG rule
format is very well snited to express those relations,
permitting variables to be shared between several rules
in a DISLOG rule. These variables can percolate, for
instance, addresses of entry points.

We now consider the compiler given in (Sterling
and Shapiro 86) that transforms a program written in
a simplified version of PASCAL into a set a basic in-
structions (built in the argument). This small compiler
can be augmented by the two pairs:

{ procedure declaration , procedure call(s) }.

{ label statement , branching instruction(s) to
stated label }.

This is expressed by two DISLOG rules. In order to
allow for a procedure call to appear before the declara-
tion of the corresponding procedure we do not state any
restriction on linear precedence. Furthermore, proce-
dure calls and branching instructions deseription rules
are marked with modality m since a procedure callor 2
branching instruction to a given label may appear sev-
eral times in a program. Thus, we have the following
two pairs: .

{ procedure declaration, m(procedure call) } .

{ label statement,m{branching instruction to stated
Iabell}.

In a parse tree corresponding to the syntactic anal-
yais of a PASCAL-like program, we could have, for ex-
ample, the following tree:

proc_call(Address)

proc_decl{Address,Code)

proc_call{Address)

The main calls and the DISLOG rules are the fol-
lowing:

parse (Structure) -->

[progran]l, identifier(X). [:’].
statement (Structure).
statement((S;8a)) --»

[begin] , atatement(S), rest_statement(Ss).
gtatement{assign(X,V)) -->

identifier(X), [*:='l, expressioni{V).
rest_statement({5;8a)) -->

v:*], statement(S), rest_statement(Ss}.
reat_statesent(veid) --> [end].
/% Procedure declaration and call &/
{ (statement(proc_decl(N,8)} -->
[procedure] ,
identifier(N), statement(5), [end] } .

miatatement (proc_call(N,8) --»
identifier(N)) ¥.
/% label statement and branching
instructions */
{ (atatement(label(¥)) --» didentifier{N}.

[t':*].),

ni{statement (goto(H)} --> [gotel,

identifier(N)) .

Another advantage of using DISLOG rules is that
if a compilation fails because some rules in active DIS-
LOG rules (ritles where some PROLOG rules have not
yet been executed) have not been executed when the
parsing is terminated, then it is quite easy to locate the
errors and to produce informative messages. In addi-

811

tion, DISLOG rules with rules marked with modality
m can be useful to produce warning messages, for in-
stance when 2 PROLOG rule with modality m has not
been used, although this is not forbidden. For exam-
ple, when a procedure is declared and never called, it
is advisable to produce some form of warning.

4 DISLOG and Bounding the-

ory

The above compiler is, in fact, too permissive because,
for example, it accepts a label declared inside a proce-
dure to be refored to outside it. This type of problem
iz well-known in linguistics and is refered to as bound-
ing theory. This theory states constraints on the way
to move constituents or on the way to establish rela-
tians between non-contiguous constituents. The main
type of constraint is expressed in terms of domains
over the boundaries of which long distance dependen-
cies cannot be established, This problem has already
been addressed in detail in (Saint-Dizier 85, Dahl and
Saint-Digier 88) for natural language parsing. Roughly
speaking if A is a bounding node, then the domain of
A is the subtree it is the root of and no constituent X
dominated by A can establish relations with any ele-
ment B not dominated by A (or, in other terms, outside
the domain of A):

This approach can be used for formal languages as
well. To constraint the above program, we can state
that the node:

statement(proc_decl{_,.])

in a proof tree is a bounding node. We note this as
a PROLOG fact:

bounding_node(statement(proc_decl(_,_))).

The above example states that, in a syntactic tree,
the node corresponding to a procedure declaration is a
bounding node. As a consequence, all DISLOG rules
called within the domain dominated by that node has
to be fully executed within that domain. This will
prevent a label declared inside a precedure body from
being refered to outside that procedure. The DISLOG
meta-interpreter we have implemented treats facts like
bounding_node() as a special directive. Notice that
bounding nodes are given apart from the program,
introducing thus a higher degree of explanatory ade-
quacy, modularity and declarativity.

812

5 Foundations of DISLOG

Here are the basic theoretical foundations of DISLOG.
Most of the material presented here has emerged from
a reformulation of definitions and theorems given in
[Lloyd 87]. We consider here the simpler definition of
DISLOG, i.e. without modalities and linear precedence
restrictions. Modalities and precedence restrictions do
not however introduce fundamental differences in the
logical foundations of DISLOG.

5.1 DISLOG definite programs

Definition: a DISLOG definite program clause is a
finite, unordered set of program definite clauses of the
form:

{ (A« Al, A2, ..., An), (B + BI, B2, ..., Bm),
., [N+~ N1, N2, ..., Nj} }.

Definition: a DISLOG unit clause is a finite, un-
ordered set of unit clauses of the form:

{{A=),(B+), e , (N]}

The informal semantics of 2 DISLOG definite pro-
gram clause is: for each assignment of each variable
occuring in that definite program clause, if A1, ..., An,
B1, ..., Bm, N1,, Nj are all true then A, B, ... \ N
are true.

Definition: a DISLOG definite program is a finite
set of DISLOG definite program clauses,

Notice that 2 definite program clause is a DISLOG
definite program clause with a single element. There
does not exist DISLOG definite goals with more than
one element.

Definition: the definition of the predicate p in a
DISLOG program is the set of all DISLOG definite
program clauses which contain at least one definite pro-
gram clause with head predicate symbeol p.

Here is an example of a possible definition for p:

{lp=)}

{(a+t)m(peb)}.

5.2 Herbrand interpretation revisited

Each program definite clause in & DISLOG definite pro-
gram clanse is a well-formed formula of a first-order
language L. We can view a DISLOG definite program
clause as the specification of a co-occurence con-
gtraint in a proof tree of & finite number of definite
clauses.

This es-occurence constraint has two aspects:

s co-occurence of definite clauses,

+ variables shared by definite clauses are subject
to identical substitutions (throughout the whole
parse),

A DISLOG program is then a definite program with
a finite set of co-occurence constraint specifications.
From this point of view, which does not infroduce any
restriction, we now reformulate the notion of Herbrand
interpretation to meet the requirements of DISLOG.

In DISLOG, the traditional definitions of Herbrand
universe and Herbrand base remain unchanged. The
existence of identical substitutions applied to function
and predicate symbols subject to the co-occurence con-
straint is indeed guaranteed by definition of the Her-
brand universe and base, These two sets respectively
contain all the possible ground terms and atoms which
can be built out from all constants and respectively
from all function and predicate symbols. The same
remark holds for the Herbrand pre-interpretation.

The Herbrand interpretation of a DISLOG program
based on a first-order language L is a subset of the
Herbrand base. This subset is the set of all ground
atoms which are true in this interpretation, given the
co-occurence constraints. This subset is included in the
Herbrand interpretation of the same program without
constraints, For example, if we consider the program
path given in section 1, the ground atom path{a.e} is
in the Herbrand interpretation of the definite program
without co-occurence constraints (arc(c,d) is not used)
and it is not in the interpretation with co-occurence
constraints.

Finally, let By be the Herbrand base of a DISLOG
program. For the same reasons as with definite pro-
grams 252 (the set of all Herbrand interpretations of
D) forms a complete lattice under the partial order of
set inclusion C. The top element is Bp and the bottom
element is . The mapping Th: 272 — 272 is defined
as follows:

Ip is an Herbrand interpretation and

Tp(Ip) = { Xi € Bp and X, is any head symbol
ina m& instance { [X-," - Xl.ll X.l.::l - ,X]Ik},
e (Xn — Xnzy Xng, wr 3 Xns) } of a DISLOG defi-
nite program clause in D, X;, € Jp and there exists
a proof tree P which can be built from the program
and which includes all the X; with appropriate substi-
tutions }.

T'p is monotonic, it is also continnous for the same
reasons as for definite programs without co-occurence
constraints.

5.3 Procedural semantics of DISLOG

We now introduce the procedural semantics of DIS-
LOG programs. The basic principle is similar to that
of definite programs, except that an additional data-
structure, noted 5, and called the set of rules to be
applied in the current proof construction, is used. S
originates from the use of DISLOG rules: when a def-
inite rule in a new instance of a2 DISLOG rule is used,

for example:
b + b1, b2. in:

{ {a « al, a2), (b « bl, b2), (c +c1) }.

then § is used to memorize that (a + al, a2) and
{¢ «— c1) have to be applied in the current proof con-
struction with the same substitutions. Each time a
new instance of a DISLOG rule is used; 8 is updated.
When & rule in 8 is used, this rule is withdrawn from
8. In what follows, we consider a particular step i of
the proof construction process, the set of rules to be
applied represented by S is noted 5; at step i

Definition: ‘ Let
G.' be the Eﬁﬂ.li — Al,..l'lz.,, s :A"“ s ,..I‘l* and D a
DISLOG rule be: { &y + fi, o ytta = fa } then
(44 is derived from G; and D' using mgu &, if:

» (a) A, is the selected atom in Gy,

(b) the definite clause a; ~ f; in the DISLOG
definite clause is the rule used to reduce Apy,

o (c) ¥ is an mgu of A, and ay, Vg € [1,n].

L] [d_} G.‘+]‘_ is [4‘“— Jii,.Aj,
ﬁj :Aﬂl‘l‘}'l [EEL] A*]Ei‘

» (e) and we have for Spyqt

] ‘d'lrl—ll

- (el) S = S u { (m +
P8y e e~ Bia)i(ogaa
Bis)i, ooy (€n — Ba)b; } if ay — 3; be-
longs to a new activated instance of a DIS-
LOG rule,

~ (e2) Sis1 = S — { (& + Fy)}ifajisan
element of S;.

— (e3) Siyy = & if @; «— fF; is not subject to
any co-occurence constraint.

This definition calls for some remarks. In (c), notice
that 0; is the mgu of all the o, and not only the mgu
of oy because all rules in the DISLOG rule (or fact) are
affected by the substitution.

Another peint is that if a rule (or a fact) r; appears
in several DISLOG rules, then the DSLOG rules are
considersd successively in their input order, in the same
way as different clauses in a definition in 2 PROLOG
program. The computation rule we have defined is thus
very close to the regular PROLOG computation rule in
its principle. Finally, in the case of a rule affected by &
modality m, when the case (e2) is met, the rule Is not
withdrawn from 5.

Definition: a proof in DISLOG is correct from the
point of view of co-occurence constraints if the initial
and final set of rules to be applied in the proof (noted
8 Sinitiol a0d Spina) ave both empty.

813

b.4 Constrained SLD-refutation

The DISLOG proof procedure is based on SLD-
resolution. This SLD-resolution technique is however
constrained by co-cccurence restrictions. This moti-
vates the term constrained SLD-resolution. We

now turn to explore its main characteristics more in
detail.

Definitlon: let D be a DISLOG program and
a definite goal. The constrained SLD-resolution of
Du '{G]’ iz a Spquence ﬂfEDE.I.E G[nﬂ.'ah Gh Er'-g, wmnny
a sequence D1, D2, ... of variants of DISLOG pro-
gram clauses of D, a sequence #,, #2, ... of mpu’s and
& sequence Sinitiar, 51, 92, ... of sets of clauses to be
applied in the resolution such that:

» each Gi+! iz derived from G.' and D.-.H u.ulng 'E¢+I:

each &, is constructed from 5; as explained in
the preceding subsection.

* Sinieiar = D

Definition: a constralned SLD-refutation of
D U {G} is a finite constrained SLD-derivation of
D U {G} which has: '

1. the empty clause as the last goal in the deriva-
tiom,

2. an empty set S of rules to be applied in the proof
at the beginning and at the end of the refutation
Process {i.ﬂ. H S.gﬂ[ﬂ,,g — Sﬂrwl = ﬂ]

Since (2) entails that in each proof co-occurence
constraints are met, it follows that every computed an-
swer for ' U {G} is a correct answer for D U {G}.
This establishes the soundness of the constrained SLD-
refutation of DISLOG programs.

5.6 Completeness of constrained SLD-
resolution

We now show the completeness of the constrained SLD-
resolution. Tt is based on the following considerations
about DISLOG programs:

1. SLD-resolution is complete,

2. there exists a monotonic, continuous mapping Tp
{ef. section 5.2),

3. every correct answer § for D U {G} is a
correct answer for the same program without
co-pccurence constraints which satisfies the co-
occurence constraints of D.

The success set £(D) of D U {G} is included in the
success set £(D") of D' U {G} where D’ is D without

814

co-occurence constraints, £(D) is deduced from £(D")
by selecting those solutions in £{D’) having a proof
tree satisfying the co-occurence constraints of D, This
construction method is a direct consequence of the def-
inition of a DISLOG definite program (cf. section 5.2).

Then, for every correct anawer §, there exists a com-
puted answer & for D' U {G} and a substitution = such
that: § = .

6 More comparisons with re-
lated works

Dislog, as indicated in the introduction section, di-
rectly originates from Contextual Discontinuons Gram-
mars (Saint-Dizier 87). Its application is however much
wider. With respect to Static Discontinuity Grammars
{(Dahl 87), where a grammar rule is of the form:

al, skip(X), a2, ..., skip(Z), an — bl, skip(X), b2,
.-y 8kip(Z), bn.

which iz a striet rewriting rule ineluding variables
(skip(X)) standing for symbols, Contextual Discontin-
wous (Frammars are more general, are closer to the lin-
guistic reality and have a clear declarative and proce-
dural semantics. As opposed to Static Discontinuity
Grammars, Contextual Discontinuous Grammars per-
mit:

(1) to manipulate sets of type-2-like rules which can
appear anywhere in a proof tree, whereas the rewriting
rule format is much more constraining,

(2) to avoid the use of linguistically unmotivated
extra-symbols (like skip, and symbols introduced to
avoid loops),

(3) to limit the order of rules in proof trees by linear
precedence restrictions. Other types of restrictions can
also be used.

(1) to use several times a given rule, via the intro-
duction of modalities.

Furthermore, the exact meaning of Static Disconti-
nuify rules is unclear and subject to controversial un-
deratandings due to the lack of precize definitions.

Dislog permits to address a number of types of
problems involving the expression of relations or con-
siraints between non-contiguous elements in a strue-
ture. In (Dahl 87}, it is shown how the problem of
the dining philassphers can be handled by Static Dis-
continuity Grammars. However, instead of simplify-
ing the expression of this very classical synchronization
problem, the rules given are very complex and highly
intertwined because of confusions between declarative

and procednraj programming. The oufcome of the pro-

gram, in terms of priorities among events, is unclear
because it depends both on the specification given in
rules and on the computation rule of the system, not

given here.

In (Monteiro 82), L. Monteiro presénts a system of
distributed loglc aimed at expressing and processing
concurrency at a high abstract level. The formalism
contains a type of clause, called generalized clanses, of
the form:

al, a2, ... , an + sl, 82,, sn.

in which the atom al is in correspondance with the
body clause si. The rule format used is quite close in
its spirit to ours, however, there are major differences
with Dislog, among which:

{1) The application of a generalized rule requires
the n goals ai to be simultaneously present in the list
of goals to prove. Dislog offers more possibilities since
goals can be embedded into others.

(2) No order of use of the goals ai is specified. We
feel that many applications require the expression of
some constraints on goal use order, whether linear or
hierarchical.

(3} Disleg is not particularly designed to express
concurrency. It does not contaln any concurrent-
sequential netations, although these notations could be
easily added. Dislog is more general in the sense that it
can deal with a large variety of types of constraints or
relations between non-contignous elements in a strue-
ture, among which we could have synchonization of
processes,

7 Conclusion

In this document, we have presented the basic theo-
retical foundations of DISLOG, an extension to PRO-
LOG designed to express in a transparent, modular
and concise way relations and constraints between nen-
contiguous elements in a structure. The procedural
semanties of DISLOG has been intreduced and we
have shewn that it is scund and complete with re-
spect to the constrained SLD-resolution mechanism.
In (Saint-Digier B8), we present several classes of appli-
cations for which DISLOG is appropriate. These ap-
plications clearly show that, although DISLOG is stil
in its early stage of development, it is a promising ap-
proach to deal with several kinds of problems involving
the idea of expressing relations or constraints between
non-contiguous elements in a structure,

We have designed and implemented two versions of
DISLOG, discussed in {Saint-Disier 87 and 88). The
first implementation consist in adding two arguments
to clauses in order to keep track of the rules to be used
in the proof {i.e. 5 and Si,). The second imple-
mentation is & meta-interpreter, which uses the same
idea. The implementation of bounding theory is much
simpler in this latter case. A third implementation
is now completed for natural language understanding

with a bottem-up strategy associated with a one step
look-ahead mechanism and some heuristics. This lat-
ter implementation for natural language turns out to
be about 2000 times more efficient than the first imple-
mentation. Work is under study to define an implemen-
tation invelving partial parallel execuiions of DISLOG
rules,

ACKNOWLEDGEMENTS

I am indebt to V. Dahl for several discussions in
early 1087 on Discontinuous Grammars while I was
visiting Simon Fraser University. I would also like to
thank M. Borillo and P, Sebillot for their useful com-
ments on & preliminary version of this text. Comments
of four snonymous referess and by Dr. Koichi Fu-
rukewa have also been very helpful to prepare the final
text. This work was supported by the INRIA and by
the FRC-CNRS Communication Homme-Machine.

REFERENCES

DAHL, V., ABRAMSON, H., On Gapping Gram-
mars, Proc. of the 3rd Logic Programming conference,
Uppsala, 1984,

DAHL, V., More on Gapping Grammars, proc. of
FGQCE'85, Tokyo, 1985.

DAHL, V., BROWN, C., HAMILTON, 3., Cen-
strained Discontinzous Grammars and Logic Program-
ming, Simon Fraser Research report LCCE TR B86-
17, 1986; revised in December 1987 and reprinted un-
der the title Static Discontinuity Grammars and Logic
Grammars same reference as above, original date not
medified however, '

DAHL, V., SAINT-DIZIER, P., Constrained Dis-
continuous Grammars: A Linguistically Motivated
Tool for Processing Language, IRIBA-INRIA research
report, 1886,

LLOYD, J., Foundations of Logie Programming,
Springer-Verlag, 1984. revised 1987.

MONTEIRO, L., A Horn-Clause like Logic for
Specifying Concurreney, in Proc. of the first logic pro-
gramming conference, Marseille, 1982.

SAINT-DIZIER, P., Constraints on Long-Distance
Dependencies, IRISA-INRIA research report, 1985.

SAINT-DIZIER, P., Contextual Discontinuous
Grammars, Proc of the second NLULP, Vancouver BC,
1987 and in: Natura! Language Usderstanding and
Logic Programming, II, V.Dahl and P, Saint-Disier
Edts., North Holland, 1988.

SAINT-DIZIER, P., DISLOG: Programming in
Logic with Discontinuities, Computational Intelligence,
Vol 5-1, 1988,

SAINT-DIZIER, P., DISLOG: Thinking and Rea-
soning in terms of Discontinuities, Proc. of the 3rd In-
ternational Conference on Cognitive Science ARC88,
Toulouse, 1988,

815

STERLING, l., SHAPIRO, E., The Art of PRO-
LOG, MIT Press, Series in Computer Science, 18956,

