PROCEEDINGS OF THE INTERMATIOMAL CONFEREMCE
0N FIFTH GEMERATION COMPUTER EYSTEMS 1983,
edited by ICOT. © 1COT, 1983

BENCHMARKING OF PROLOG PROCEDURES FOR INDEXING PURPOSES

Micha Meier

Europeen Computer-Industry Rescarch Centrs GmbH
Acanellastr, 17, D-8000 Muenchen 81
West Germany

ABSTRACT

Indexing, ie. resificting the number of Prolog clavses
selected for the unification with & call, is based on a
preselection using the type and valoe of one or more of the call
arpurnents. A good indexing scheme is one of the key fearres
for a fast Prolog system. Since for the design of an efficient
indexing scheme it is necessary to take into sccount the form of
real-life Prolog clsuses, we have analyzed a large number of
medium to large Prolog programs mainly with respect o
indexing on the first 9 arguments.

1 INTRODUCTION

Prolog is a logic programming language bused on the
concept of resolution and wmificaton (Rebinson, 1963). One
resolution step consists of selecting one lireral (he leftmost
one), choosing 2 clause and then unifying the litenu] with the
clause head. As the Prolog program can conisin a large
number of elases, for an efficient execution it is necesgary to
reduce the number of clauses that are chosen 1o match the
selected literal, otherwise the syslem execules 100 many
redundant backmracking steps.

The simplest and obvious way is o select oaly clauses
whose head predicate match the predicate in the literal. For
realistic applications, however, it is necessary to introduce
other concepts o refine the selection mechanism. fndexing in
the WAM (Warrcn, 1983) is of a great help here: the first
argument of the predicate is used as another key 1o search for
the matching clause - if the wype andfor value of the literal
argument matches the one of the clause, the clause is selected,
Although it looks only like moving & part of the unification 1o
the indexing step, it means more than that - it helps o avoid
unnecessary backiracking and often it will sclect only one
clause so that the overhead of managing a choice point frame is
avoided.

Various current Prolog systems use various indexing sirategies,
but all in all, there has been mo systematic information
available sbout the form of the head of Prolog clauses and their
suitability for indexing, or for one or another indexing rype.
Some systems index en the first argument, others on another
chosen argument or even on more arguments, It is clear that
for each indexing type there are real-lile examples for which it
is the most suitable one, but we are lacking a common basis for
them.

Based on (Meier, 1985) we present here the results of
static benchmarking of a nember of large Prolog programs,
whose aim was to obiain enough information o decide which
of the indexing methods are genesally spplicable. |W= are well
aware of the lmitations of a statie analysis for runtime
behavior of Prolog programs, but even such analysis can
conibute o beuwer understanding of real-life Prolog
applications. *

These measurement were performed as part of the SEPLA
project (Meier e al., 1988) and SEPIA did benell from its
resulis by having a concise and powerful indexing schene.

The rest of this paper is divided as follows: in section 2
we deseribe some basic concepds, in section 3 we describe the
benchmarked figures, in section 4 we veport the general
properties of indexable and not indexable procedures, seetion 5
pregents the statisics about the occurrences of wvarious
argument iypes, sections 6, 7 and 8§ contain the resulls
concemning the various fypes and the secton 9 presents a
summary of the main resulis.

2 TERMINOLOGY

We first define some busic concepts that will help 1o
explain the benchmarking spproach and resulis. A fype of a
clanse argumenit is either variable, constant, list or functor with

the usuel Prolog meaning. A clause is of type T (w.r.L the i-th
argument) if the i-th argument of its head is of fype T, similarly
a goal is of type T if its corresponding argument has type T,
We will call a clause of type T & T clouse, e & variable
clause, A Block is a sequence of clauses with the same ype
(the largest such saquence), A T biock is a block consisting of
clauses of type T; a nonvariable block is either a constant, list
or funcior block. A section is & sequence of consecutive
nonvariable blocks, All these notions are defined always with
respect 1o a given argument position.

Each procedure can therefore be uniquely divided imto
sections and blocks w.rt. an a.rgﬁm:nt position. The first block
in a procedure is called a leading block, the last one is a
trailing block, other blocks are called internal blocts.

The meaning of the intreduced concepls is obvious - for a
nonvariable goal it is necessary to match at most #'1 clauses of
the same type (ie. blocks) as well as veriable blocks. A
variable goal must uy to maich all blocks. In terms of
{Warren, 1977}, the special section corresponds (o our section
and a general seciion is a variable block. Since we are going
to handle different block types, our terminology seems clearer,

The indexing can take place at several levels - it may
choose sections, blocks er single clauses. The mest desirable
one, which we will concentrake wpon is of course the later.

3 BENCHMARKED ITEMS

We collected 52 medium o large Prolog programs and
we ran this test suite through a series of analyzing Prolog and C
programs 1o eallect the required data, A detailed description of
the benchmarked programs is beyond the scope of this paper,
19 of them were developed at ECRC, the remaining ones came
from outside, they include database programs, theorem
proving, expent system-like, natural language processing,
severdl Prolog compilers, programs from the Sienford Prolog
library ete.

In our previous seport (Meber, 1985) we performed an
analysis of a lower number programs and only with respect to
the first argument. We have now generalized these results to
more programs and up lo the 9th argument, separately for each
argument, however the resulis for arguments higher than & are
not sipnificant since there was only a small number of
procedures with a sufficiently high arity. In contrast to (Meier,
1985) we have paid more attention 10 procedures that cannot be
indexed and compound argoments, several parameclers are

801

presented in & graphic form. Some of the resulis would deserve
a more thorough analysis which would go beyand the scope of
this paper, we hope that the concise graphic form will give
enough start momentwm for an interested yeader. In the
presented figures, the x-axis represents the given predicate
argument position. The y-axis often represents the percentage
of procedures with the respective property. Usually the
percentage is relative 1o all procedures indexable on the given
argument, seretimes it is taken as relative o procedures with
another property, e.g. the type of the first element of a list
argument is represented relatively to procedures that have some
list clauses on that argument.

When presenting the figures, we have tried 1o consider
the influence of both large and smaller’ programs. For all
figures we have computed the absolute average value as well as
the relative one. For example, for the number of clauses in a
procedure, the sbsolute average is he sum of elases in all
progrivns divided by the number of procedures in-all pregrams,
the relative avernge is the sum of averages in each program
divided by the mumber of programs. When describing the
results, we always use the relstive average since it gives the
same weight to all programs, independent of their size,
otherwise the longer programs would prevail even if they
might be less important than the short ones.?

Our analysis was static and we have not taken into
account possible mode declorations since they were available
only in very few programs and therefore the modes, i.e. input
or output for the procedures were not known. However, from
the programming prectice it is known that most of the
procedures were writlen with & specific mode in mind, only
very few procedures use Prolog’s ability to be called with
different instantiations of arguments. Thiz means that our
results are at best upper beunds of the realistic figures, many of
the procedures which we classify as indexable on a certain
argurment are in fact not, since that argument is used for output.
Despite this bias, our results are stll significent, be it nothing
else than to state these upper bounds.

4 INDEXABLE PROCEDURES

We have benchmarked 52 Prolog programs, consisting of
8245 procedures and 25471 clauses, and we have performed

Yar as well large programs in which only & small peroentage of procedures were
indexable

*The mpertan: resuls were canfirmed in both of the avemges, though,

a02

the same analysis on each of the first mine procedure
arguments, for procedures with sufficiently high arity,

Some procedures cannet be indexed an a given argument

for one of the following reasons:

the procedure has lower arity

+ the procedure contains anly one clause

 (he procedure contains only a variable block
Most of the measurements were performed only for the
indexable procedures, the whole set of procedures occurs only
in the figare 4-1.

100% —
e Tower arity
80% — P
.
.a{,
e .r“; —— indexable
s
40% — ffr - ==~ only one clause
208 7" ==2==x poly a variable block

1 2 3 4 i 6 1 8 5

Figure 4-1: Percentage of Indexed
and not Indexed Procedures

As it con be seen in figure 4-1, the number of procedures
decreases almost linearly with nereasing arity up to 4, and
among the remaining procedures, the nomber of incexable and
not indexable procedures (only one clause or only & variahle

number of indexable arguments

Figure 4-2: Indaxable Arguments

block) decreases in the same exient. This picture helps 1o
realize how the number of representative procedures decreases
with increasing arity.

In figure 4-2 we show the main results concerning the
indexablé arpuments, all the fgures are relative fo the
indexable procedures. The dotted line represents the
percentage of procedures that are indexable on the given
rumber of arguments, for all the other curves the X-ais
represents the argument position and the y-axis the percentage
of procedures, It includes the procedures indexable on the
given argument, percentage of procedures for which this is the
first (Le, lowest) and last (highest) indexable argument. There
are several important results here:

« Only 47% of all procedures are indexable.
« On gny given argument, only less than 40% of

procedures that have a sufficienty high arity are
indexable.

« Mot indexable procedures are gquite frequent,
procedures containing only a variable block or only
one clause represent about 35% each (of procedures
with a sufficiently high anty). This means that
shallow backiracking (Meler, 1986) for the former
and in-line expansion {partial evaluation (Venken,
1084)) for the latter might be significantly helplul
to improve the performance. It is interesting o
note that from this statical analysis it follows that
thesz two mechanisms are &5 important a8 indexing.

« Most of the indexable procedures can be indexed
o one or two argaments.

+ 265 of indexahle procedures cannot be indexed on
the first argument. :

* The ratio of procedures which are not indexable
because they have only a variable block is lower n
the first ona than in (he following arguments (figurs
4-1). This suggests that the first argument, even for
programmers that do not know about indsxing, is
considered different from the others.

The very low rado of indexable procedures is indeed
surprising; if we look at the number of clawses that belong o
these procedures, the simation iz differentt for the first
argument, 67% of clauses belong to the indexed procedures
and only 33% (o the not indexable ones. This is due o the fact
that procedures with only a variable bleck are short, their
average number of clauses is 2.7 for the first argument and it
grows 10 3.3 in the 5th argument. Single-classe procedures
contribute to this figure as weil.

For indexable procedures, we can see the following

COMSBqUeTICEs:
The most likely selected argument is the first one
{the first curve sinks rapidly after the st argument)
which means that the intitive swategy of meny

Prolog systems is carrect, However, restricting the
indexing to the first argurnent rules out 26% of the
indexzble procedures.

o If the first or second argument is mot indexable,
then the chances decrease rapidly that anolher one
will ba found.

« Except for the first argument, if an argoment is
indexable ft is likely that no higher inclexable

argument exisis,

5 ARGUMENT TYPES

MNow we are going to describe seme general properties of
blocks and their fypes.

50%

4% —

30%

20% —

109 —

(=]
=]
=

Figure 5-1: Percentage of Clause Types

From the Fgure 5-1 it follows that the first argument is
mostly & constant, in higher arguments the vatio of variables is
increasing whereas all other types become less frequent. This
confirms the assumption that lower arguments contain more
information, higher arguments are likely to be output ones and
are bound later in the clause,

The average length of variable and list blocks is relatively
stable in all arguments {figure 5-2), the length of constant and
functor blocks is higher and it differs in different arguments. It
means that indexing on the value of constant and functor
arguments is indeed helpful. The average length of nonunit list
blocks iz about 3, which suggests thar indexing on [ist elemenis
may improve the performance.

The figure 5-3 shows the combinations of various types
in procedures, without comsidering variable cluuses, &.g. the
*ist' curve describes what percentage of procedurcs consists

803

Figore 5-2: Blocks Length

only of list and maybe variable clauses. In most of the
procedures only very few different types occur, the most
frequent ones are list and nil, constants, or functors. About
95% of all procedures (for all arguments) contain only
these type combinations.

G0%

constant

{unctor + constant__ _ _ . . — . e -

b o e o —

I I I | :
3 4 3]

Figure 5-3: Combinaticns of types in procedures

We have not classified nil as a special type, but we have
measured the number of procedures with both list and constant
blocks in which the constant is not nil; it was negligible, e.g.
from 913 procedures that contain a list and constant bleck in
the first arpument only 13 contain a constant different from mil,
for other arguments it is similar.

This implies that the usual WAM methed of indexing, ie.
executing the switch_on_term instruction that selects a path
for the argument type is loo general in most cases - usually
only one or two of ils labels are different from fail. For

804

censtants and functors another switeh instruction is executed
which tests the vahoe of the argument,

We suggest introducing new mdexing nsiruchions which
consist of 4 combination of these two svifch instructions:
list_switch A, LList, LNil, LDefault

if the derefercnced value anl is a list, jump o LList, if
it is mil, jump te LN, if it is a free variable then
continoe in sequence, otherwise jump to LDefall

Such an instruction can be generated for almost 50% of
proceduzes indexable en the first argument.

atom_switch A, Tab, LDefault
if the dereferenced value of A, is an atom, use the hash
table Tab for further dispatch, if it is a free variable then
continue in sequence, otherwise jump to LDefanl

integer_switch Ay, Tab, EDefault
Tunctor_switch Ay, Tab, LDefault
these instructions are similar to the atom_switch

instruction _
Constants others than atoms or inlegers almost do not
oocur (@ special ease i nil, see section 7) and so these
instructions are sufficient. The original switch_on_term
insructions must be of course kept since some procedures do
contain several types after all.

About 50% of the indexed procedures have lists or nil in
the first argument, this highlights the importance of lists in
Prolog,

6 VARIABLE BLOCKS

Another imporiant figure concems variable blocks. In the
original WAM, variable blocks in a procedure can cause
creation of an additional choice peint for each section,
especially for internal varisble blocks. Such A scheme
minimizes the space used for the code but in terms of cxecution
time it does not perform well. Other systems (Van Roy, 1984,
Bowen et al., 1986, Turk, 1986, Carlsson, 1987) use different
strategies where the code for the variable blocks is less or not
at all shared which makes the second choice point ohsolete, but
the generation of indexing instructions is more complicated.

From the figere 6-1 we can ses that in the first argument,
maost procedures contain no variable blocks. IF they contein
some, it is mostly a trailing variable block which is often vsed
a8 calch-all elavse(s) at the procedure end. Leading variable
blecks occur far less frequently and internal blocks are rare (at
least in the first argument),

The length of wailing and leading verisble blocks is
increasing with higher arguments, the length of internal blocks

70%
60% -
50% —
40% —
30% —
20% -
10%

3 4 5 6 7
Flgure 6-1: Percensage of Variable Blocks

is first deereasing and then it increases as well (see fgure 6-2).
Many of the trailing blocks contain maore than one classs.

2.5+
trailin
5 leadin
intermal
1.5 —
I [| |
1 2 3 4 5 &

Flgure 6-2: Length of Variable Blocks

A consequence of these figures is, that in most cases, a
very simple algorithm can be used to generale the indexing
instructions, since in the first argument of more than 90% of
procedures there ere either no varisble blocks or only a trailing
variable block. Howewer, since trailing wvariable blocks
represent the most frequent ones, it is preferable that the code
for them is shared among differcne possible paths. For a
procadurs

pla}.

pik}.

plX).
plY).

the usually generated code could be

the variable path:
try ma_alse L2
cl: <clausa 1>
L2: retry me alsa L3
c2: <clausae 2>
L3; retry me_alsa L4
c3: <clausa 3>
L4: trust ma else fail
c4: <aolausa 4>
code for a:
try cl
retry C3
trust cd
eode for b
try c2
rabtry C3
trust cd

The code that executes the last two clauses is generated three
times (if there are more atoms in the procedurs it is even
more), although it does exactly the same job - hackirack
through the trailing verisble block. We have iniroduced in
SEPIA the instruction try else that is & mixture of the try and
try_me_else instructions in that it executes the code at one
label (like try) and sets the aliernative clause address to
another label (like try_me_else), similarly for the retry
instructions, This is exremely simple to include into a WAM
emulator; then the previous example can be coded as

varighble path:
try ma elsa L2
<olaunsa 1>

La: retry ma_alse L3
<clausa 2>

L3: retry me _alse Ld
<olausa 3>

Ld: trust_me elsea fail
<ecladusa 4>

code for a:
try 21 alsa L3

code for b:
oy C2 alsa Id4

With no runtime and compile time overhead, the gemerated
code is shorter.

The same approach is not es stalghtforward for the
leading variable blocks, bur formnately they do not eccar so
often so that such modification is not necessary. Since internal
blocks do not occur frequently {and most of their ccourrences
could be removed by reordering the clauses withoul changing
iis semantics), a conservative approgch, e.g. that ane creating
two choice points is still acceptable?,

Mene howeves, thut having tea choics peinis for one procedurs might make the
o implementation mare difficult, since instead of vsing one bit to indicne
wehelber the carment procedare has a choice palet or not, we need vwio b or the
address of the appeopriate chales point.

BDS

7 CONSTANT ARGUMENTS

Constants are, at least in the first arguments, the most
frequent type. A vast majority of the constanis are atoms and
integers, mil is presented much less frequenty, floating
numbers are very rare. Mo other constanl Lypes were
encountered in the benchmarked programs (e.g. strings or
database references). This justifies that enly the instruciions
atom_switch and integer_switch sre necessary.

BO%
B0% —
405 —

208 —

Figure 7-1: Different Constant Arguments

8 COMPOUND ARGUMENTS

Apart from measuring the occurrence of compound types,
we have also followed the arguments of compound terms, their
arity and size, These figures may be useful not oniy for
indexing but also for the compilation of the head unification.
We have made a distinction berween lists and other compound
terms; for lists we have measured the number of elements and
the type of the first elements, for other compound terms it was
the arity of the main functor, the arity of the subarguments, the
size of the whole compound term which is 1 + arguments size
{ie the functor + arguments), size of a constant is 1, and the
number of funetors, i.e. of compound sublerms including the
rain ome. The size roughly comesponds 1o the number of
WAM instructions generated for its unification. Apart from the
resulls in the figure 8-1 it is interesting 1o note that

» Most lists have only one element, but in higher
arpuments the lists are longer.

« The arity of funclors is wsually 1 or 2 and the arity
of the main fusetor is similar to the arities of the
subarguments. Top functor arity was 9 which is
surprisingly lower than the top arity of a predicaie
which was 23 (1% of procedures had arity greater
than 9}

«The mumber of functors, i.e. the number of

806

compoind terms is moestly 1, which implies that the
compound subarguments are rare,

» The size of compound terms is wsually 3 or 2 which
fnzans that terms are mostly of the rype {(X, Y) or

f2C), the top size was 39 (CHAT-80).
5 —
4 —
size
3

- #2"

e idber of fum

: | I !
1 2 3 4 3 G 7

Figure 8-1: Mean Parameters of Compound Arguments

To be able 1o index nonunit functor blocks, the funciors
must be different. In the frst argument, about 70 of them
eontain at least two different functors, in further argurments this
figure decreases W 509,

Generally, in higher arguments the compound terms are
larger, have grester arity end conmtain more compound
subarguments. This is an interesting feature whose reason
might be that higher arguments represent output of the
procedura,

8.1 List Arpuments

Since many of the list blocks contain more (han one
clause, with the usual WAM-like indexing il s not possible o
select only one cluuse, We have analyzed the possibility 1o
index as well on the elements of the Lst.

Among procedures that contain & nonunit list block, as far
as the first list elements are concemed, in about 50% of the
procedures they are only a variable, in about 30% they are
unifyable terms or variables, e.g. X and a, in about 7% they are
completely identical and only 20% of procedures contwin some
really different values in the first list element. These figures
are foirly consistent over all the arguments.

6% —

A0%

20% —

0% —

1 2 3 4 5 6 7
Figure §-2: Percentage of Types in the First List Element

The figure 8-2 shows the types in the first list elemest
relative to all list (f.e. even unit) blocks. It can be seen that
most of thém are variables, many lists are only poirs [XIY].
lists as list argements are rare. In higher list elemenis this is
different, variables in the list tail are less frequent.

605 — constant
40% — variahle
20% —
s Junctor list .-"1
..LT. \‘-"-' LR ..-‘- ‘.‘.‘1.-1 - -
0% 5T | 1
1 2 3 4 5 & 7
Fipure 8-3: Belative Percentage of List Element Types
in the First Head Argument

The figure 8-3 shows the type of lists elements in the first
head argument {in the x-axis { is the i-tk list element). Tt can be
seen that the subsequent elerments are different from the st
one - most of them are constants.

9 CONCLUSION

We have presented the results of a static analysis of a
large number of Prolog programs. Despite the fact that our
analysis was static and that the mode of the arguments was not

known, ie. silently supposed to be input, the analysis has
shown some new tesults and confimmed some inbeitive

assurnptions about Prolog programs:
« The percentage of indexable procedires is very
low, less than S0%, althcugh in terms of clauses it
is about 657%.

» Procedures that cannot be indexed have cnly one
clause, in which case they can be partally
evaluated, or they consist only of a variable biock
and then their execulion could be optimized using
shallow backracking,

* The most likely indexable arguments are the first
two, higher arguments ¢an be wsuelly indexed only
when a lower argument is indexable. Most
procedures are indexable either on one or two
BIEI.I]TLI:II.E.

In about 95% of procedures only a limited number
of differsnt type arguments is present; lists + nil,
constants or functors. For such precedurcs we
recommended new absiract instructions to be used,
which, being more specialized, are more efiicient
than the WAM ones.

#In the first argument, which is the most imporiant
one, most procedures have no varjable block, or
they have a wailing varable block., Leading
variable blocks are less frequent and inlernal
variable blocks are rare, We have shown that for a

majority of procedures an efficient and space-
saving indexing scheme ean be used.

=In the first argument, most constanils are aloms,
whereas in higher erguments the rotio of integer
muembers is growing,.

» Among the nonunit list blocks, indexing on the first
element of the list can be used in 20% of
procedures o resmict the number of matching
clauses, in other 30%, it may rostrict the aumber of
maiching clauses at least for some instantiantions
of the call,

The SEPIA systerm (Meder et al., 1988) was implemented
in accordence with the results of this paper. The indexing
algorithm itself was fairly smaightforward o write and its
efficiency, in terme of both compilation and execution time is
superior to ewrrent indexing schemes.

ACKNOWLEDGEMENTS

We thank to Herve Gallaire and Alexander Herold for
reading and commenting previous versions of this paper. We
further thank to the colleagues at ECRC who have provided vs
with many Prolog programs that have made (nis analysis
possible, and we also appreciate the stimulating multi-national
working environment at ECRC.

807

REFERENCES

(Bowen et al., 1986}
Kenneth A. Bowen, Kevin A. Buettner, Tlyas Cicekli and
Andrew K. Turk.
The Design and Implementation of a High-Speed
Incremental Portabla Prolop Compiler.
In Third fnsernational Conference on Logic Programming,
pages 650-656, London, Tuly, 1986.

(Carlzsomn, 1987)
Mats Carlsson.
Freeze, Indexing and Other Implementation Issucs in the
WAM.
In Proceedings of the 4th JCLP, pages 40-58. Melbourne,

May, 1987,

{Meier, 1985)
Micha Meter.
Analysis of Prolog Procedures for Indexing Purposes.
Internal Report IR-LP-7, ECRC, August, 1985,

(Meier, 1986)
Micha Meier.
Shallow Backiracking in Prolog Frograms.
Internal Report IR-LP-1113, ECRC, Mavember, 1984,

{Meicr ct al,, 1988)
M.Meier, P.Dufresne and D.Henry de Vitleneuve.

SEPIA.

Technical Report TR-LP-36, ECRC, March, 1988,
{Robinson, 1965)

1A Robinson.

A Machine-oriented Logic Based on the Resolution

Principle.

JACM 12(1)3:23-41, Tanuar, 1965,
(Turk, 1986)

Andrew K. Turk.

Campiler Optimizations for the WAM.

In Third International C ence on Logic Programming,

pages 657662, London, July, 1986.

{Van Roy, 1984)
Peter Van Roy.
A Prolog Compiler for the PLM.
Technical Report UCB/CSD 84/203, Computer Science
Division, University of California, Movember, 1984,

{Venken, 1984)

Raf Venken.

A Prolog Mew-Interpreter for Partial Evaluation and its
Application to Souree v Source Transformation and
Query-Oplirmisation.

In Proceedings of ECAL pages 91-100. September, 1984,

(Woarren, 1977)
David H. D, Wamren.
IMPLEMENTING PROLOG - compiling
predicate logic programs.
D.A T Research Report 39, University of Edinburgh, May,
1977.

(Warren, 1983)
David H. D. Werren,
An Abstract Prolog Inziruction Set.
Technical Mote 309, SRI, October, 1983,

