PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
OM FIFTH GENERATION COMPUTER SYSTEMS 1988,
edited by 1ICOT. © ICOT, 1988

685

PROGRAM EVALUATION AND
GENERALIZED PARTIAL COMPUTATION

Yoshihike Futamura®

Center for Research in Computing Technology
Alken Computation Laboratory, Harvard University
Cambridge, MAO2138, USA

ABSTRACT

Generalized Partial Computation {GPC) iz a program
optimization principle based on partisl computation
and theorem proving. Conventional partial computa-
tion methods (or partial evaluators) explicitly make
use of only glven parameter values to partially eval-
uate programs, However, GPC explicitly utilizes not
only given values but also the fallowing information:

1. Logical structore of a program fo be partially
evaluated. :

2. Abstract data type of a programming language.’

GPC is new (propesed in 1987) and even conven-
tional partial computation is not well understood by
the computer science society. This paper discusses (1)
interesting properties of partial computation, (2) dif-
ferences between program evaluators, partial evalua-
tors and generalized partial evaluators and (3) prinei-
ples and applications of GPC.

1 INTRODUCTION

Generalized Partial Computation (GPC)[FN88| is an
extended idea of partial computation. Partial com-
putation is a systematic method of generating an effi-
cient program based on a given program and a part of
its dafa. Partial computation has been considered in
the following way with this kind of program generation
[Fat?1]:

Let f be a program (function) with two pa-
rameters k (a known parameter) and v (an
unknown parameter). First, finish all the
f computation that can be performed by
using only the & value and leave infact the
F compufation that cannot be performed
without knowing the u value. Then a new
program fig is generated having the prop-
erty:
*Chief Rasearcher, Advanced Research Laboratory, Hitachi Led,

fiolu] = F]k0; ul (1)
where k0 stands for the k value,

Equation 1 is similar to that of Kleene's s—m-n theorem
|Kle52] as first pointed out by [Ers78]. However, fi of
the s-m-n theorem is just a pair of an eriginal program
and its data such as A[[u]; f[kO;u]]. On the contrary,
gince the computation concerning k has been finished in
fro produced by partial computation, the feo[u0] may
run quicker than f[k0; u0| when a given u value is u0,

Example 1 ([Ers82]) Let ackermann[m;n] be Ack-
ermann's function: '

» ackermanng[n] =n + 1

» ackermannyfn] =n +2

* ackermanns(n| =2n+ 3
* ackermannsin] = 2" — 3

The pn-:.t.it.e_f[importance of partial computation in
computer science was first recognized in |LE64,Futfl,
Dix71]. A method for generating a compiler from an
interpreter using a partial evaluator (partial computa-
tion program) was developed in [Fut71,Fut73]. Quite
a few compilers and compiler generators have been im-
plemented based on the method [Kah82,JS585,TF86,
Tur86]. Its outline is described in Section 2. Reports
on a variety of partial computation applications are
listed in [SZ88].

Generalized Partial Computation is a program ep-
timization principle based on partial computation and
theorem proving. Conventional partial evaluators ex-
plicitly make use of only given parameter values to
partially evaluate programs. However, GPC expiicitly
utilizes not only given values but also the following in-
formation:

1. Logical structure of a program’ to be partially
evaluated,

2. Abstract data type of a programming language.
To show differences between the two partial evalua-

[i3:1

tors, a linear time Knuth-Morris-Pratt pattern matcher
[EMPT7]| was generated by GPC partially evaluating a
nonlinear time pattern matcher with respect to a given
pattern [FN88].

This paper describes (1) interesting properties of
partial computation, (2) differences between program
evaluators, partial evaluators and generalized partial
evaluators and (3) principles and applications of GPC.

2 INTERESTING PROPERTIES

This section describes very interesting properties of a
partial computation program called a partial evaluator.

Let I be a programming language interpreter writ-
ten in a universal meta language such as LISP. Then
the language defined by I is called IMlanguage. Let
ef, pand d be an I-language compiler, a pregram and
dota, respectively. Note that ¢ is written in the meta
language while p is written in I-langusge. Then the
following relation helds:

¢’[p]ld] = I[p;d] (2)

where ¢/[p][d] is an abbreviation of {¢![p])[d]. Note that
¢1[p] is an ebject program of p.

 Let off;k0] be the result of partially computing
f when & = k0, Le. o is a partial evaluator; then
| f; k0] = fio. Therefore, the following relation holds:

Flksu] = a[f; k][] (3

Substitution of I, p and d for f, & and u, respectively,
of Equation 3 produces:

1[p;d] = ofI; p|[d] (4)

Substitution of &, J and p for f, k and v, respectively,
of Equation 3 produces;

afI; p| = alo; 1][s] (8)

SBubstitution of ¢, ¢ and I for f, k and u, respectively,
of Equation 3 produces:

ale; 1| = alo; (7] (8)

Therefore: ¢'[pl|d] = I[p: d] by (2)

= a|l; | d] by (4)

= afe; I|[p[d] by (5)

= afe; e][1][p]id] by (6)

This means that «[I; p] is an object program, afcg I] is
an F-language compiler and ofo; o] is & compiler gen-
erator. Let w = ofer; .

Equations (4), (5) and (6) are called the first, sec-
ond and third Futamura Projection, respectively [Ers&0],
These equations have been found by several researchers
independently in the first half of 1870" including [Fut7l,
Fut?3,BHOS78, Tur86,ErsB8).

Another important o property is derived by substi-
tuting e for I of Equation 6 [Fut83): '

w = wla] (7)

Equation 7 means that the compiler generator w
(note that it is afo; a]) is also an a-language compiler.
Therefore, w|f] is an object program of f:

wlfi[k] = alf;k] (8)

Equation 8 sugpests that the partial computation of f
with respect to & may be performed more efficiently
through compiling f by w than directly computing
alf;k].

3 DIFFERENCES

This section explains the difference between program
evaluation, partial computation and generalized partial
computation. LISP M-expression[M*62| are used to
describe programs in the following discourse.

Let & be a program with two free variables k& and
u, & be itz operating environment and eval be a pro-
gram evaluator or inferpreter. Environment o is a
list of varisble—value pairs (e, & = ({k.50){w.x0))).
Then the result of evalualing e in the environment e
is represented by evalle;a]. Let peval be a (conven-
tional) partial evaluator|Fut71). The purpose of peval
is to perform the computation of evalle; ((k.k0))| as
much as possible without knowing the u value. The
result of partial computation is also represented by

pevalle; ((k.k0))] having the property: _
evalle; ((k.£0) (u.u0))] = evel[peval[e; ((k.k0))]; {{qu:Jg?]]]

This equation is another form of Equation 1.

The eval and peval desl with conditional forms dif-
farently when the condition value is undefined {or un-
known). This is the most obvious difference hetween
the two. Let e be a conditional form such that

e=[p— zy|
meaning if p then z else y.
eval:
1. If eval[p; a] = true then evalle;a] = evaliz;al.
2. If evallp; a] = false then evalle;a] = evally; al.

3. I eval[p; a| = undefined then
eval(e; a] = unde fined.

peval:
1. I evallp; a] = true then pevalle; o] = peval[z; a].

2. If eval[p;a] = false then pevalle; a] = pevally; a].
3. If eval|p;a] = undefined then pevale; a] gener-
ates the following conditional form:

[p/a — peval(z; a]; pevally; o (10)

where pfa is an expression obtained by substitut-
ing varlable valuss of @ to p

Partial evaluator peval generates a new conditional
form as its value when the p value is unknown, while
program evaluator eval becomes undefined. This fea-
ture makes peval more powerful than eval with resect
to its computational power. However, pevel does not
use the following important information:

In Equation 10; p/a and =(p/a) holds in
peval[z;a) and in pevally; a], respectly.

Touse this information effectively, generalized par-
tial evaluator § hes & conjunction of predicates about
variables as its operating envirenment ¢. Environment
is e = ((k.k0))(u.u0)) for both eval and peval, while it
isi = {k = k0} A {u = u0} for §. Instead of using eval
for evaluating condition p, # uses a theorem prover to
prove p or —p from environment {. In the following
discourse, expression 1 F* p will be used to show that
p is provable from information 1.

Bg:
1. HiF* pthen Ble;s] = fl=4].

2. Wik ~pthen flod] = Blyss] - oomn i

8. ﬂthm'wise.,. gle;i] generates the following condi-
tional form:

[p = Blzsi A pl; Bl i A —pl| {11)
In the case 3 of 5, oftherwise may mean that neither
p nor —p is provable by a computer within a prede-
termined time period. More precize definition of 4 Is
given in Section 4.

Note that theorem proving and generation of a new
predicate have been conducted in symbolic execution
[CHT79] and program verification [NOT9| as in §. How-
ever, they have never had the function of generating a
conditienal form described above.

Partial evaluators also deal with a recursive func-
tion call differently from pregram evaluators. Since
partial evaluators try to evaluate an expression with
an unknown value, terminating a recursive call is a dif-
ficult problem for them. This problem is discussed in
Section 5.

Now, & can be defined by using @ as follows:

o £1k0} = A[[u]; Ble; {k = £O}]]

687

where f = A[|k;u];e]. This equation shows the fact
that § is more general than . That is the reason for
how # is called.

4 GPC METHOD

The Generalized Partial Computation {GPC) method:
has been established by formalizing human informal
program transformation processes (getting a fixpoing
of a recursive function]ManT4] is an example of such
a transformation). GPC uses a logic system to evalu-
ate a predicate which is not evaluable by an interpreter
(or program evaluater). The logic system is consistent
with the interpreter and is called the underlying logic.
Before explaining the basic idea of GPO, definitions
will be provided for a u-form, u-information and the
underlying logic.

Deafinition 1 A u-form is 1, a constant, variable u,
or a LISP form including only u as & free variable. The
symbol L is called bottom and is used to stand for an
undefined value, :

The following is an example of a u-form:
[#=0— 1;us* fact|u — 1))

When a form includes more than cne variable, for ex-
ample z and y, then the variables are treated as a
variable-vector such as 4 =< z,¥ >.

Definition 2 Let ¢ be a2 vform and eval be an in-
terpreter of u-forms. Then eval[e; ({x.c)}} stands for a
value of ¢ when the constant ¢ is a value of u. If the
value of eval(e; ((u.c))| is undefined then evalle; ((u.c))]
= 1.

Definition 3 Let a and b be constanis or L. Then
a=bifand only ffe=bora= 1.

Definition 4 u-information s a conjunction of predi-
cates on u. Note that this is also a u-form.

Examples of u-information are ~null[u|A(A = carfu])
Anulledr|u]] and true. Symbol ¢ is used to represent
true.

Definition 5 Let £ and p be any u-information such
that ¢ F* p, where 1 H* p means that p is provable
form i based en some logie system. The logie system
ia eompatible with eval if and only if eval[p; ((v.2))] =
true for any constant ¢ such that evaljt; ({u.c))] = true.

When evallp; ((u.c))] is always true or false (i.e.
defined) for predicate p and any constant ¢, then < is
equivalent to =. The compatibility property guaran-

688

tees the soundness of a logic system with respect to the
interpreter eval.

Example 2 Let L0 be a logic system in whicht = p
if { F* p. Then L0 is a trivial logic system that is
compatible with eval. .

Definition 6 The logic system is called an underlying
logic if and only if it is compatible with eval.

Depending on the predicate evaluation power of
eval, an underlying logic can be any logic system, for
example propositional logic, predicate logic, or infor-
mal legie.

Definition T Let L be an underlying logic, ¢ be a u-
form and i be a u-information. Then any transfor-
mation @ of & to a u-form using L and ¢ is called &
generalized partial computation method, The result of
the transformation is written as §[L;e; 1.

Definition 8 The pair §-L is called the f-L partral
evaluator or the F-partial evaluvator if L is not very
important. When there is no confusion, § can stand
for both the partial computation method and the g
partial evaluator.

For example, @ in Ge;<] in the following discourse
means a f-L partial evaluator, and fle;1] = f[L; ;4]
for some L. When 8 is also clear in the context, (e}, is
used to represent Je; 1),

In the following discourse, & and L stand for a non-
specific partlal computation method and its underly-
ing logic, respectively. While, 50, 81, 42, 83...stand
for specific partial computation metheds.

Example 8 Lot 30 be a transformation such that
Bolesi] = e
Then §0 is a very trivial partial computation methad,
Partial Computation Method 1:
1. If e is a conditional expression such that:
e=[p— zy]
then

(a) If i F* p, then (e); = (z)s.
(b) If i k" -p, then (e); = (v}

(c) Ifit is not easy to decide if § F* por i F* —p,
then

(e)i =[P = (Z)ingi (v)in-p]

* 2. If-e is not a conditional expression, then (e); = ¢

fi.e. there iz no transformation).

End of 51.
Note that §1[L0; e;] = e,

Example 4 Assume that afmin]| = [m =0 = n +
1; |y n]] and #1 wses informal logic on natural num-
bers as its underlying logic. Then
Pllalm;n);m=0=n+1 and
Bllalm;nf;m > 0] = glmin]
Definition 9 Let 4 and £ be u-forms, and ¢ be u-
information. Then d =* ¢ if and only if eval[d; ((u.c))] =

evalle; ((x.c))] for any constant ¢ such that evalls; {(u.c))|
= true.

This means that ¢ iz more defined than d for & con-
stant ¢ when ¢ does not make i false. Therefore, d <% ¢
means that the domain of ¢ Is larger than that of 4.

Definition 10 (correctness of § partial evaluator)
 partial evaluator is correct if and enly if & <% Ge;)
for any u-form e and any u-information f.

The correctness of the 0 partial evaluator and f-
L0 partial evaluator is trivial. Let f be an undefined
funetion, and e be a u-form described below:

e =[f[u] =0A flu] #0—1;0]

Then Definition 10 suggests that Fje; {] may be 0 while
evalle; ({u.c))] for any ¢ is undefined. Therefore, pro-
gram transformation by partial evaluators does not al-
ways preserve least fixpoints of programs.

Definition 11 Partial computation method § is cor-
rect if and only if §-L partial evaluator is correct for
any underlying logic L.

It is trivial that partial computation method S0 is
correct.

Theorem 1 Partial computation method 81 is cor-
rect. :

Two lemmas are given before the proof of Theo-

Tem 1.

Lornma 1 Let ¢ be any uw-information and e be a con-
ditional u-form such that

&= [F aarh ;J;;yl
then

1. if i F* p then e <' 7 and
2. if i F* —p then e =% 4.

Proof of Lemma 1: (1) If ¢ F* p then eval[p; ((u.c})] =
true for any e such that eval[; ((w.€))] = true from the
definition of the underlying logic. Therefore, evalle;
({u.€))] is L or evalfz; ({u.c))]. Therefore, e <* z. (2)
The same as (1}. (QED)

Lemma 2 Let e be a conditional u-form the same as
above and el be a conditional u-form described below:

el = [p — z1;¥1]
If z =% £] and y =P y1 then e = el.

Proof of Lemma 2 Assume that evalli; ([[c.u))] = true.
If evallp; ({u.¢))] = L then evalle; ((u.c))] = evallel;
((e.e))] = L. If evallp;((u.c))] = true then evalle;
{(u.e))] = evallz; ((u.c))] = evallzl; ((w.c))] = evallel;
{{u.c))]. When eval|p; ((u.c)}] = false, it can be proved
that eval[e; ({u.c))] = evallel;{{u.c))] almest the same
above, Therefore, e = el. (QED)

Proof of Theorem 1: Let e be a u-form and i be u-
information. By using induetion on the nesting depth
of conditional forms in e, 1[e;i] =' e will be proved.

1. When e is not a conditional form, §1[e;i] = e =
e.

2. When e is a conditional form,

(a) Assume that {F* p.)

Then fF1|e;¢] = Blz;i] = = (from the in-
- duction hypothesis)
. ..Z'e (from Lemma 1) e

(b} Assume that { +* =p. This case is almost
the same as above.

(e} Assume that neither { F* p nor ¢ F* =p.
Then S1fe; i] = [p — f1lz;iAp; B1[y; ia—p]]
and fl[z;inp) =*® £ and Bljy; in-p) =P
y from the induction hypothesis, Therefore,
from Lemmma 2,

Blled] = [p— myl =
(QED)

Definition 12 Let d and £ be u-forms and ¢ be & u-
information. d =' e if and only if d <" e and e < d.

Symbol =* stands for a kind of & strong equivalence.
Symbol =* stands for a strong equivalence itself, Sym-
bol = will be used as an abbreviation for =*,

Definition 13 A_,ﬂ partial evaluator is strictly correct
if and only if & =' F|¢;1] for any u-form ¢ and any u-~
information 1.

If @ partial evaluator is strictly correct, then e =

689

Ple; ¢]. This means that evalfe; ((u.c))] = eval[Ble; ¢);
((u.c))] for any constant e. Therefore, the transfor-
mation J[e; ¢] by a strictly correct § partial evaluator
preserves the least fixpoint of e

Theorem 2 If every predicate, say p, in underlying
logic is total, i.e. evael[p; ((u.c))] is defined for any con-
stant ¢, then 1 partial evaluator is strictly correct.

Proof of Theorem 2 Replace =* by =' in the proof of
Theorem 1. (QED)

Note that u-information is a dynamic part of the
information about the operating environment of a pro-
gram. It varies during partial computation depend-
ing on program structure. On the contrary, abstract
dafa type or information about functions (for exam-
ple car[cons|z;y]] = z) does not vary during partial
computation, i.e. it is static. Let g0 be static informa-
tion, ¢ be dynamic u-information, g be a higher order
varlable with its domain of predicates, and §'e;¢; g} be
Ble;i A g|. Then fo[e;d] = (Be;i A g])gmgo. Therefore,
,ﬂ;n iz a partial evaluator including g0 static informa-
tion in it. Thus, generality will not be lost if it is
thought that static information is included in a partial
evaluator.

5 MORE PRACTICAL GPC

As deseribed in Section 4, 0 partial evaluator is cor-
rect for any underlying logic. Therefore, there are an
infinite number of correct partial evaluators. However,

“#0 partial evaleator has no practical significance be-

cause it does not impreve program efficiency. A1 is
still far from being practical because it does not per-
form any transformation for non conditional u-forms.
In this section, partial computation method §2 that
performs significant transformation on u-forms is de-
scribed. 52 changes u-form e depending on the type
of ¢ such as a constant, a variable, or a composite ex-
pression. As before, b/g stands for a u-form obtained
from b, substituting g for all the free occurrences of u
in b. For example, if b = car{u] and g = cdr[u] then
bfg = ear|edr{u]].

(32 handles conditionzl u-forms the same as F1. The
hardest point in implementing 52 is when e is a com-

posite u-form. Let e = f[g] where f is a function not
including u as a free variable and g is a uw-form. Fur-
thermore, let f = Aj[u]; 8] for & u-form b. To carry out
partial computation of ¢ with respect to u-information
i in this case, just replacing (f[g]): by (8/¢): is not
encugh. This is because when b includes recursive calls
to f, the substitution often causes infinite repetition of
gimilar computation. A technique called partial defini-
tion iz introduced below to eliminate the repetition as
often as possible.

690

Before starting partial computation of u-form f[g]
with respect to u-information 1, let f;' be a new func-
tion name as a result of the partial computation. f, g
and ¢ are called a nonprimitive function, a symbolic
argonment and partial information, respectively. _f,‘ is
called & partially defined function for (f[g]};. After
completing the partial computation, ,,"j," is finally de-
fined. However, the fact that f,' will be the result of
partial computation may be used during the partial
computation. This is a sort of indirect addressing.

A program transformation technigue using _f,* dur-
ing partial computation has already been developed in
[Fut?1]. This is a special case of a general program
transformation technique called folding[BD77]. Intro-
ducing a partially defined function is nearly equal to
adding the rule f;' < 52[fg];1] to a system of recur-
sion equations and then continuing the partial cnmpw
tation. The use of a partially defined function f,'
similar to a folding which replace f,'[u] for ﬂﬂ[f[g], :]

Let H be a global set of functions which is empty
before starting partial computation. Using H, partial
funetions and partially defined functions will be defined
below.

Definition 14 Let i be v-information and ¢ = f[g] be
a u-form. Then (e); iz paréially defined if and only if
there is u-information j such that

i+ jlkand filule H
where d and k are u-forms such that ¢ = d/k.

Definition 15 Function f;/ in Definition 14 is called
a partially defined function for (e)s.

Example 5 Partially defined functions for (e); where
e= flal:

1. Let j = ¢, i be any u-information, and d and k be
any u-forms such that g = d/k. If f/ € H, then
f4 is a partially defined fanction for (e); because
ik 4 and §/k = ¢.

2. Laty— cdr|u], k-edr[u.h =uand j2 =¢. If
f.t € H, then f.? is a partially defined function
of (e); because of 1.

3. Let g = k = edrlu),d = u, j3 = -nullled®r[u]] A
(cadru] = A)A(car[u] = A), § = ~nullled®r[u]] A
=(cad®(u| = B) A (cad’r [;.sl = A) A (cadr lu]
A) A fearfu] = A). If j7° € H, then fi* isa
partially defined function for {g); because ¢
J3/edr|u].

The two partially defined functions f/* and f° in the
examples above are for (f[g]):. Since j3 F* j2, j3 is
called to be eloser to 1 than j2, and 52 is called to be
further from i than §3. It is clear that ¢ is the furthest

from any 1.

Definition 16 (use of partially defined function)
Let fi be a partially defined function for { f|g]);. Then,
computing (f.’[k]); instead of computing (f[g]); is called
the use of a partially defined function.

The use of a partially defined funr.tmn £y causes
the introduction of recursive calls to f,’. Therefore,
the result of partial computation is a set of recursive
functions. This recursion introduction has the follow-
ing two effects:

1. It may dramatically increase the effectiveness of
partial computation by partially computing the
partial result of f,'.

2. It may terminate an infinite partial computation
caused by repetition of similar computation.

MNote that 1 and 2 above are exelusive of each other.
When effect 1 is not expected, i.e. when & program
will not be improved, the result of partial computation
will be too large or partial computation will not termi-
nate. Thus, effect 2 is expected. Selecting either 1 or
2 is not decidable. However, a practical heuristic auto-
mated method for the selection is an interesting future
problem. Partial definition and its proper use may be
essential to implemnenting practical partial evaluators.
To implement partially defined functions, 2 uses
the partial definition operator <=. Let f be a function
name. Then flu] <= §2[e;1] (or f[u] <= (e);) means that
when [is referred after the execution of <= operator,
the body of f is the result of transformation of & by
#2)e;i] at the time of f reference. Therefore f is a
dynamically changing nonprimitive function.
Partial computation method g2:

1. If e is & conditional form then do the same as #1.
2, If ¢ is a constant then (g); = e.
3. If e iz a variable then (¢); = e

4. If ¢ is a composite form such as ¢ = f[g] for a

functien f,

(a) If f iz a primitive function such as LISP
SUBR, then (e); = f|(g)il-

{b) I f is a nonprimitive function such as LISP
EXPR, then let f = A[Ju];8] and :

i, If (€); is partially defined, then let fi =
Al[u]; m| be one of the partially defined
functions (if a function with the closest
partial information 7 to { is selected, the
partial evaluator can be executed mest
quickly). Let g = d/k and i F* j/k,
then (e} = (f'[]):.

ii. If {€); is not partially defined, then se-
lect one of the following operations, cont
inue or terminate, depending on its ef-
fectiveness (note that this selection is
up to the user of the partial evaluator):

cont Ifit is effective in performing further partial com-
putation, then (e); = f,'[u]; H = BUf; fi'[u] =

{b/g)s-

term Otherwise, (¢); =e.

End of 92,
Example 6 Let f[z] be:

Jlz|= [null|z] —a;
eons[ear(z]; fledr[z]]]]

Partial evaluation of f with respect to ¢ is:
(Fl2)g = fe°l=hi B = £*

(from cont)
<« ([nullz] = a
consear|z]; fledriz]|]]}s

:;ns[mrlmil; (f=*[edr (]} -mutiie]
(from 4.b.i)
= [nulllz] = &
conslear|zl; f.*|edr|=]]|]
(from term)

= |nulllz] = (@)nuufeps
(cons[ear|z]; fledr|z]|])~nutz]
(from 1)

= [null[z] —= a; (from 2}
consicar{zl (fledr(z]])-mgoll
(from 4.a

= rullls] » &

B2 terminates when e is a constant or a variable, or
when the user of 52 decides to terminate. Finding
practical methods for automatic termination is an in-
teresting research problem.

The above example is to show how partially defined
funcions are used. More practical examples have been
shown in [FNES]. One of them is:
#2[simple-pattern-mateher]pattern;text|;

{pattern=given-pattern}|
=Knuth-Morris-Pratt-pattern-matcher|text|

In [FN88], partial computation method 43 has been
presented. #3 is more powerful than #2. One example
is:

A3[MeCarthy’s-91-function|n],$)
=jr > 100 — n = 10;91]

6 CONCLUSION

GPC is an amalgamation of a program evaluator and

6o

a theorem prover. It has been shown that GPC iz able
to evaluate much more varieties of programs than pro-
gram evaluafors. A conventional computer is a hard-
ware implementation of a machine language program
evaluator. The machine accepts only a program with
all parameter values. It iz programmers to partially
evaluate their programs to generate better ones. Ex-
amples of this paper tell that partial evaluation iz not
2 humane task. If GPC machine were implemented,
programmers cotld aveid deing partial evaluation by
themselves and program development on the machine
would be easier than before.

ACKNOWLEDGEMENTS

The author iz grateful to Prof. T. E. Cheatham of Har-
vard University and Dr. E. Maruyama of Hitachi Ad-
vanced Research Laboratory for their encouragements
and supperts which enable the auther to continue par-
tial computation research.

References

[BD77] R. M. Burstall and J. Daslington. A trans-

formation system for developing recursive
programs. JACM, 24(1):44-87, 1977,

|BHOSTS) L. Beckman, A. Haraldson, 0. Oskarson,
and E. Sandewall. A partial evaluator and
its use as a programming tool. Arbifiedal
Intelligence, T(4):319-357, 1976,

[CHTTQ} T. E. Cheatham, G. H. Holloway, and J. A.
Townley. Symbolic evaluation and analy-
sis of programs. IEEE Trans. on Software

Engineering, 5(4), 1979,

[DixT1] J. Dixon. The specializer, a method of av-
tomatically writing programs. Division of
Computer Research and Technology, NIH,

Bethesda, Maryland, 1971.

A. P. Ershov. Mixed computation in the
class of recursive program schema. Acta
Cybernetiea, 4(1), 1978,

[Ers78

[ErsB0] A. P. Ershov. Futamura projection. bit,

12(14), 1980, in Japanese.

[Ers82] A. P. Ershov. Mixed computation: poten-
tial applications and problems for study.

Theoretical Computer Setence, (18), 1982,

A. P. Ershov. Opening key-note speach.
New Generation Computing, 6(2 and 3),
1988, Special Issue on Partial Evaluation
and Mixed Computation.

[Ersse]

692

[FN8s]

[FutT1]

[Fut73]

[Futas]

[J5S85)

[Kahs2]

[Kles2]

[KMP77)

[LR64]

[M*62)

[ManT74]

Y. Futamura and K. Nogi. Generalized par-
tial computation. In D. Bjgrner et al., ed-
iters, Proe. of Workshop on Parliol Eval-
vation and Mized Computabion, Ebberup,
Denmark, October, 1887, North-Holland,
1888,

Y. Futamura. Partial evaluation of compu-
tation process—an approach to a compiler=
compiler. Computer, systems, controls,
2(5):45-50, 1971,

Y. Futamura. El 1 partial evaluator.
DEAP, Harvard University, 1973, Term pa-
per manuscript, AM2E0.

Y. Futamura. Partial computation of pro-
grams. In E. Goto et al,, editors, Lecture
Notes in Computer Seience 147, pages 1-85,
RIMS Symposia on Software Science and
Engineering, Kyoto, Japan, 1982, Springer—
Verlag, 1983,

M. D. Jones, P. Sestoft, and H. Sgndergaard.
An experiment in partial evaluation: the
generation of a compiler generator. In
J. -P. Jouannaud, editor, Lecture Notes
in Computer Science Vol.202, pages 124-
140, Rewriting Techniques and Applica-
tions, Springer-Verlag, 1985.

K. M. Kahn. A partial evaluator of
lisp programs written in prolog. In M.
Van Caneghem, editor, Proe. of First In-
ternational Logic Programming Conference,
Marseille, France, pages 19-25, 1082,

8. C. Kleene, Introduetion to Meta-
Mathematies. North-Holland, Amsterdam,
1952,

D. E. Knuth, J. H. Morris, and V. R. Pratt.
Fast pattern maftching in strings. SIAM
Journal of Computer, 6(2):323-350, June
1977,

L. A. Lombardi and B. Raphael. Lisp as
the language for an incremental computer.
In E. Berkley and D. Bobrow, editors, The
Programming Language LISP: Its Operation
and Application, MIT Press, Cambridge,
Massachusetts, 1064,

J. MeCarthy et al. LISP 1.5 Program-
mer’s Manual, MIT Press, Cambridge,
Massachusetts, 1962,

Z. Manna. Mathematical Theory of Compu-
tation. MeGRAW-HILL, New York, 1974,

[sz88)

[TF86]

[Turgs)

P, Sestoft and A. V. Zamlin. Literature list
for partial evaluation and mixed computa-
tion. In D. Bjgrner et al., editors, Proec. of
Workshop on Partial Evaluation and Mized
Compulation, Ebberup, Denmark, October,
1987, North-Holland, 1988,

A. Takeuchi and K. Furukawa. Partial eval-
uation of prolog programs and itz appli-
cation to meta programming. In H. -7,
Kugler, editer, Information Processing 86,
pages 415-420, North-Holland, 1986,

V. F. Turchin. The concept of a supercom-
pller. ACM TOPLAS, 8(3):292-325, July
1988,

