FROCEEDINGS OF THE INTERNATIONAL CONFERENCE

ON FIFTH GENERATION COMPUTER SYSTEMS 1988,
edited by ICOT. © ICOT, 1988

3zl

Interpreting One Concurrent Calculus in Another

Robin Milher

Department of Computer Science, Edinburgh University
King's Buildings, Mayfield Road, Edinburgh, EHS 3J2, UK.

1. Introduction

It seems natural to use dilferent languages for the differ-
ent purposes of deseription or programming on the one
hand, and prescription or specification on the other hand.
Certainly there have been recent sttempte to conflate
thess two types of language, but in the author’s opin-
ion they have not been convincing. It is, however, the
purpose of this paper net to argue this point, but rather
to explore a consequence of accepting the use of different
languages for the two purposes.

1 propose to use the word “description’ as a generals
isation of ‘program’'; it is something which will desecribe
both the spatial or modular structure of a performing
agent (hardware or program) and also the temporal de-
tails of its performance. A prescription or apecification,
on the other hand, defines properiies of the agent's per-
formance — but only those properties which are express-
ible in terma of that part of the performance which is
oheervable, e.g. the initial and final values of a program’s
memeory, or the program’s intermediate interactions with
the user, or the electrical behavicur at the boundary of
a chip. The connectives or operators for building specifi-
cations are naturally logical; many of those for building
deaeriptions are not naturally logical but express opera-
tional or structural ideas [ike sequencing, interaction and
juxtaposition.

If it iz natural to use two languages, it s essential to
define the relationship between them. It is not just that
the designer (programmer, or describer) and the specifier
should be able to interact, but that the twe languages and
what they express must form a single conceptual frame-
work in which both designer and specifier operate (in-
deed, they may be the same person). We shall use the
term calculus to mean a pair of languages in o definite
relationship.

Having defined calcifus, we then look at what it means
to interpret cne calculus in another. We have in mind
that some calculi are primitive and general, but hard to
apply in practice, while others are powerful and specific,
designed for particular applications, and easier to work
in. We therefore propose that it is useful to build an ap-
plied calculus on top of & basic one — i.e. interpret the
former in the latter = to aveid an anarchie plethora of
different caleuli. The mein result of the paper is that a
particular applied caleulus, namely a Hoare logie for an
imperative concurrent programming language, may be

interpreted in the author's Caleulus of Communicating
Systemns [5,7].

2. Caleuli and their inter-relation
Definition A caleulus is a triple

€= (4, L)
where

1. A iz term algebra : terms built. by a given =et of
operators;

2. [is » Jogic : formmulae built by a given set of con-
nectives;

3, = € Ax L is the satisfaction relation between terms
and formulae,) (]

This is & very bare definition, and leaves many options
open. For example the interpretation of terms ¢ € A may
be given independently, or as an equivalence induced by
[as follows:

t_q_gtgiﬁ',{u:nllfamulaaFEE,thiEtgFF

Also, the satisfaction relation |= may be presented in dif-
ferent ways; either in terms of the model theory of 4 and
£, or proof-theoretically as an inference system whose
sentenees are of the form ¢ = F. In the latter case we
shall call ¢ a proof caleulus.

The notion of caleulus iz not so refined as the notion
of institution of Goguen and Burstall [1]; in particular,
we are not here coneerned with variation of signature in &
calculus, nor with their condition which requires the sat-
{sfaction relation to be preserved under signature-change.
But the motivation for caleuli is somewhat the same as
for institutions. We are here mainly concerned with a
single example of the relationship between two calculi; in
studying calculi more generally we may well wish to enter
the framework of [1], and the pessibility of doing so must
ba investigated.

Our motivation for caleuli is as follows, For differ-
ent design purposes (designing programs in different lan-
guages, or designing hardware) different deseriptive and
prescriptive languages = i.e. different caleuli ~ will be ap-
propriate; but one will often wish to make use of the prop-
erties — e.g. satisfactions — of one caleulus when working

322

in another. To this end, we have to set up relationships
among calculi which will admit this transfer of properties
between them.

Among many possible relationships, we wish to give
an illustration of just twe, with respect to specific caleuli
of interest in parallel computation.

Definition Let ¢ = (4,5, £) and €' = (4", ', L') be
two caleuli.

We say h derives C' from C if h is a pair (hy, ha) of
functions, hy : &' — A and &y : 0 foand t R
hy(t) = ha(F).

We say ' includes C if 4 C A", ﬂCﬁ’and|=l.:|=’
In this case we write £ € €',

The way we shall use these ideas is as follows. We take a
simple basic caleulus of processes,

PC = (P4, [, PL)

We then take a simple but practical imperative program-
ming language, presented as an algebra 4 whose opera-
tars aze the syntactic constructions of the language, and
define its sernantics by a semantic function Mq : J4 —
P4. A natural Hoare logic which goes with Jd is then
expressed as the caleulus

IC = (I4,F, IL)

where I is eesentially a set of pairs of formulae of predi-
cate logic, and I expresses the inference rules of the Hoare
logic. Thus JC iz & proof ezleulus.

So far, we have the incomplete diagram

P4 E PL
Mt
- It

We therefore ssek = translation Mg : J£ — FL, to com-
plete the disgram in a certain sense. Ignoving I for 2
moment, we shall then have a caleulus JC' derived by
{My, Ma) from PC, ie.

= (I4,F.IL)

where if & & J4 and F € JL then < F' F s defined
to mean Mi(C) | Ma(F). Since F is a pair (P,Q), we
think of M as an]mu'_pteta.tiau af the Hoare sentences
P{C}g in FC.

Finally, we find that JC C IC',ie. F C . We pro-
pose that this is the correct way to formulate and to prove
that a proof caleulus is sound w.r.b. its interpretation in
an underlying caleulus.

3. The Process Calenlus
Our process calculus

= (P4, =, PL)

has been deacribed at length elsewhere, and we ghall only
review it briefly hers,

The process algebra PA consists of the terms of CCS
in its pure form [6,7]. We start with aset X = {s,b,¢,.. .}
of names, N = {&,5,,...} of co-names, together forming
the set £ = N UN of Jabels. These distinguish the ports
at which communication occurs between agents; commu-
nication is always between a pair of ports with comple-
mentary labels, such 28 2 and @. We extend complemen-
tation to the whole of £ by setting 8= a. The labels also
dencte the actions occurring at ports. There i3 a spe-
cial action r; it is the action performed by a composite
agent when two of its component agents, running con-
currently, interact with each other by performing a pair
of complementary actions, We let &, f#,... range over
Act = LU {r}, the st of actions.

For agents, we first introduce a set PK of agent con-
stants ; we let A, B,... range over PK. We let P,Q,...
range over PA, the set of agents, given by the following
syntactic rules:

P u= aP action prefix
| BigrP: summation (I an indexing set)
| PP composition
| P\E restriction (L C L)
| Pifl relabelling (where f is & partial
function on £ and f(&) = f{a))

| A constant

We write 0 for the empty summation TyepF.
We further require for each constant A a defining
eqiation of the form

A¥Pp
For example, the definition
A¥abAted

represents the agent which can repeatedly perform aither
the two actions a,b in sequence or the single action e
The behaviour of agents is defined as a labelled transition
system with transition relations = (a € Act), and the
ahove agent is fully described by the transitions

A%BA, AS4, bADA

Space precludes & full definition of these relations, but
we shall treat one further example which we shall need
later. We wish to model the behaviour of a storage reg-
ister which may hold an arbitrary natural number. Thus
the constant REG,, (for each n = 0) representa the regis-
ter in the state in which n is stored. In this state it may
either be assigned a new comtent m, by performing the
action fipy, of it may deliver up its contant n by perform-
ing the action €n. The defining equations of the agents
REGy, therefore take the form

REG n J=bf Em.'gﬁum-RE‘Gm + EthE‘én

Often we write such eguations as a single parameteric
pquation

REG(z) % a(y).REG(y) + #(z) REG(z)

using the convention that a positive label, here o, binds
a value variable while a negative label, here ¢, can be
parameterisad by a value expression. Note that REG,
hes the following transitions:

REQ, 2% REG,, for each m = 0
REG, 5 REG,

An apent F interacting with the register, on the other
hand, will perform an action labelled & to assign a par-
ticular integer m to the register, and must be capable of
performing any actiom om, 1 = 0, to read the contents of
the register. If two agents P and Py can both perform
such actiona (at various tires in their histories) then the
restricted composition '

(Pi| P;|REGq)\{a, c}

represents the system in which they, and [because of the
restriction) only they, can meke use of the register, per-
haps competing for its attention.

Despite its simplicity, PA is a convenient vehicle for
the expression and analysis of non-trivial parallsl systemns
which are of practical importance. Many examples can
be found in the author’s fortheoming book [7].

Let vs now furn to the component PL of the calcu-
Ius PC; the process legic, The only basic material from
which the formulae of P2 are constructed is the set A of
actions. We let F, (3, ... range over P, which is defined
by the following syntactic rules:

Foo= (a}F progression (o € Ast)
| MerFi conjunction (I an indexing set)
| =F negation

We write tl.'ll.i_ for the empty conjuncticn ||"'||I-En F;. Intu-
itively, when we assert (o) F of an agent P, we mean that
P has a trapsition P 3 P' such that F holds of the agent
P'. Formally, the satisfaction relation = which completes
our caleulus FC ia defined as follows, by induction on the
structure of formulas:

1. Pl o) F if, for some PP P and P = F

2. PEfes Fiif,forallic I, Pl= F;

3. P=F if it is not the case that P}= F

Now PL - like PA - is simple, but also powerful. With
a few derived connectives, a wide range of properties of
behaviour can be expressed very succinctly; for example,

the ability or inahility of & process to.reach a deadlocked
state is easy to express. Here are a faw derived forma:

{8} means {an){aa) - {an) P (8= ag- o)
[#]F Means -n{l}'ﬂF
Vier ' meams - fggr—F

323

As an example, let us suppose that we wish to express
the property of REG (above) that, whatever actions it
performs, it can always yield some natural number as
its content. Then the following formula F expresses the
property, where Nat iz the set of natural numbers:

P= A 8] V lem)true

pEAsi™ mENal
Moreover, it is easy to establish that, for each n € Nat,
REG, = F

Now PL can be used to induce congruences upon the
term algebra PA, and by dividing PA by any such congru-
ence one obtains an interesting and rich algebraic theory.
The simplest congruence is known as strong congruence
and denoted by ~ ; it is defined according to the general
recipe mentioned directly after the definition of calcwlus
in Section 2, namely:

Pr~@if,forall FEPL, PEFIEQEF

The algebraic properties of this congruence, and others,
can be found in [7]. It is worth noting that these con-
gruences have other characterisations independent of PC,
and this gives them more objective status. We need not
purane this matter further here; we have now treated PC
enough for eur present purpose, namely the interpreta-
tion in PC of the imperative caleulus JC, to which we now

turn.

4. The Imperative Calculus

As announced eaclier, our impérative caleulus
IC = (I4,-, IL)

is, in essence, the Hoare logie of a simple imperative pro-
gramming lanpuage. As basic sets we take X, the pro-
gram variables, and ¥, the function symbaols (each fune-
tion symbol having an arity = 0). We let X and F range
over ¥ and ¥ respectively. We also let E range over the
expressions £, and C range over the commands C, defined
by the fellowing syntactic rules:

E o= X variable

| FlE.....Eq) function application
C o= XmpE assignment

| ¢ sequential composition

| it F then € else ¢' conditional

| while Edo iteration

| lecal X in € end loeal variable

| € parc’ paralle]l composition

| skip no action

{Note that constants like 0,1,... and arithmetic opera-
tions like +, -,. . . a&re function symbols with arity zero and

arity two respectively, and we would write X+1 in place
of +{X,1(3))

Thus the imperative algebra I ia a term algebra with
two sorts (expressions and commands) and with the syn-
tactic comstructions as operators. These constructions
are well enough known to need little description. Suf-
fice it to say that the local variable construction gives
scape to the variable X, and that in the parallel com-
position construction € and &' are supposed to run in
parallel, eomrmunicating through variables to which they
both share sccess.

Now Hoare's original logic [3] for partial correctness
of sequential programs employed sentences of the form

Piclq

whose intended meaning is “if O is executed starting in
a state satisfying P, then its terminating state (if any)
will satisfy @". P and @ are normally taken to be for-
mulae of firat order logic, containing {ree occurrences of
the program variablea. A natural rule of inference is then
the following rule for sequential imposition:

PlcihQ Q{CaR
PC1:Cy} R

In fact, as is well known, Hoare and others have given ssts
of inference rules for various sequential languages. If we
were only concerned with sequential programs, without
par, then we would define the imperative logic I to have
paira (P, Q) as its formulae {where P,Q are formulae of
predicate logic), and we would take PJC}G to be a way
of writing C F (P, Q). Then we would complete the im-
perative proof calculus JC by defining the relation - as
the set of pairs (C, (P, Q)) such that P{C}e is provable
in the appropriate Hoare logic.

In the presence of par things are not so easy, becanse
without some constraint upon the langiuage there is no
natural inference rule corresponding te par. However, as
Owicki and Gries showed [8], there is a natuoral rule if we
impaose the following condition:

In any command of the form €y par Cy, Gy
may not assign to any program varfable which
oecurs free in Oy, and conversely.

We shall proceed o formulate T2 and - with this in mind.
First, we shall decorate each Hoare sentence with two
disjoint sets X and V' of program variables, as follows:

PICIQ I

We shall require that ¥ contains all the variables free in
€ to which & makes any assignment, and X contains all
other variables free in €; also, that XUY contains all the
program variables free in P and @. If these conditions
are sll satisfied then we say the senfence iz admissible
Mow the rule for sequential compositions becomes the
following:

PlalQ (! Qear(P
P{C1i G} R [YK

where it may ensily be checked that the cenclusion is ad-
mizsible provided that the hypothesss are so. F_‘hr p_u.rallf-l
composition, we impose a side condition on X1, Xz, ¥3
and ‘F’z which ensures the above stated condition on O
and %, assuming that the hypotheses are admissible:

S L Y
(P A P HC1 par Cab(Qh A @:) [31557

provided that X3 n¥; = ¥yn X = Yin ¥z = 0. Note
that under these conditions the conclusion will also be
sdmissible. It is rather easy to complete the Hoare logic
by supplying inference rules for the other constructions
of J4, and we shall take them for granted.

We therefore modify our definition of ILZ, the imper-
ative logie; it consists of quadruples (P, @, X,) and we
take P{C[Q | to be & way of writing C - (P,Q, X, ¥).
Then we complete JC by defining - &s the set of paira
(G, (P, @, X,¥)) such that PC}Q [is admissible, and
provable in the Hoare logic.

Much has been written about the soundness and (rel-
ative) completeness of various Hoare logics. We do nat
address the problem of completeness in this paper; how-
ever, the soundneass of the irmperative caloulus is the sub-
ject of the following section.

5, Interpreting the Imperative Caleculus

Let us review what we mean by the soundness of IC w.r.k.
ita interpretation in PC. Firat, we have to express the
interpretation as a pair of tranalations

My: IR — PA, Ma: I — PC

Thnnu:r'e];'avut.ushnwthat,ﬁormycefﬁ and any
(PQ,X.Y)e P4,

CF(P,Q,X,¥) implies M;(C) |F M:(P,Q,X,¥).

In this section, we outline the translations My and Mg,
and also cutline the proof of soundnesa.

The translation M, from imperative programs to CCS
agents rests upon the simple idea that each program vari-
able X corresponds to a relabelled version of the register
agent defined in Section 3 above, i.e.

REGx(z) ¥ ax(y). REGx(y) + ex(z).REGx(z)

Morecver, the translation M1{C) of any command C, in
which the program variable X occurs free, will be an
agent eapable of performing actions Ty (to assign to X))
and actions ex (to obtain the contents of X). It is partic-
ularly important to realise that no essumption is made,

in defining Mj, that a program € will have exclusive ac-
cess to the variables which it uses. Thus, for example,
the translation My(¥:=X+X) will have many possible exe-
cution sequences; it can perform the sequence

#g(6) #x(8) ay(12)
whizh iz what it will do if the variable X contains the
value 6 unchanged throughout the execution of ¥i=X+X;
but alternatively it can perform the sequence

Zx(8) Ex(7) ay(13)
which is what it will do if some other agent increments
the value of X between the two readings of that variable.
The full translation is given in [5,7]; here we need only
give it flavour by indicating how it treats local variables,
The local variable construction

&' =local X in < end

has two impartant effects. First, it dedicates the varizble
X to C, ensuring that no other agent can access X; sec-
ond, it ensures that any @x or ¢x actions which occur in
the behaviour of C (representing the writing and reading
of X by C) are replaced by r actions in the behaviour of
", These are both achieved by the simple definition

_h{]{lncnl Xin@Q a'nd} = [R&EIEU] |, M].{CH"I.{EX: '33}

{where we assume X is initially given the value 0).

The remaindar of the definition of M; ia not hard, but
peed not concern us here. It has the pleasant property
that in the theory of P4, divided by one of the congru-
ences menticned at the end of Section 3 above, cne can
easily prove many familiar equational laws for the trans-
formation of programs. Indeed, a principle modive for
investigating M; was to obtain those laws as a justifica-
tion for the algebraic theory PA.)

We now turn to defining Mg : J£ — PL. That is,
we look for a uniform construction of a modal formula F
from a quadruple P, @, X, ¥ such that € = F asserts, of
', the following:

Let m, and m' be two valuations of the vari-
ables .i.‘l.l‘r' and let & be a terminating ackion
sequence of C' which can lead from initial val-
uation m o final valuation m' assuming no
extarnal interference with the variables XUY .
Then if m satisfies P, m' satisfies Q.

Now let us write £ = XU, and let us write Dom({m) for
the set of variables for which the valuation m is defined.
Furthermore, let us denote by m{alm' the property that
the is a terminating action sequence, and could consis-
tently lead from initial valuation m to final valuation m'
without external interference {this property is quite casy
to define inductively on &). Let us write P{m(Z}/2} for
the formula obtained by replacing in P the variables Z
by their values in m. Then the formula Ma(F, q,%x,7)
mey be written as a mixture of predicate and modal logic
as follows:

325

Wm,m', s, [Dom(m)=Dom(m' =3:f A milsfm’
A (s)true A P{m(2)/))
> @{m'(2)/ 2}

Mow we firat assert that this formula can be encoded en-
tirely in P£. This may seem surprising, but the power
of infinite conjunction in PL, with arbitrary indexing
seta, is what makes it possible. Second, we assert that
if P{CPBQ ¥ is interpreted as My(C) | Ma(P,Q, X, ¥)
then the rule for parallel compesition in Section 4, and
indesd all the other rules of the Heare logic described
there, are sound. (In this proof, the side condition on the
rule for par iz indeed crocial.) Therefore everything that
is provable by these rules is true in the interpretation in
FC, and we have demonstrated the soundness of the im-
perative calenlus wort. the underlying process ealeulus,
as we intended.

8. Conclusion

In this paper we have shown how one calculus can be
interpreted in another, more basic, calculus. The par-
ticular example we chose was to interpret an impera-
tive programming caleulus — likely to be more familiar
to applications specialists — in the basic process calen-
lus CCS, ‘This interpretation was rather easy and natu-
ral, and lends weight to CCS a8 a foundation for calculi
which are more oriented to particular applications; one
hopes that CCS can similarly support many applied cal-
cull.

Indeed there is a caleulus, based upon the same im-
perakive programming language T4, which presents an
immediate challenge of the above kind. For our preef cal-
culus JC is guite restrictive; the domain of its satisfaction
relation is confined to programa in which the parallel
construction) par O is enly admitted when ©) mssigna
to no variable cccurring free in ©3 and vice versa. This
condition ensures that programs are deterministic, but
it is an unnecessarily strong condition to impose for this
purpose. There are interesting deterministie programs in
Id which do not satisfly the condition; indeed, there are
useful non-deterministic programs which are intuitively
natural and which one would like to analyse in a richer
calealua than IC. '

Such richer caleuli exist, for the same imperative pro-
gramming language JA. One good example stems from
the work of Jones [d); in effect, he replaces Hoare sen-
tences PJCTHQ by richer sentences (B, R){|C}H@Q, §), where
P and Q are pre- and post-conditions as before, while £ is
a condition upon whose truth C will rely before every step
of its execution, and 5 is a condition whese truth C will,
in turn, guarantee after every step of its execution. Now
Jones places no restriction upen the parallel construction
€y par Cy, but will only allow a Hoare sentence aboul
& par 4 to be inferred from Hoare sentences about Cy
and €y whose rely and guarantee conditions complement

326

one another suitably. Stirling [9] has formulated the ap-
propriste Hoare logic explicitly, as a generalisation of the
Owicki-Griea syatem, and has proved it sound w.r.t. an
independently given operational semantics. To justify PC
as a good foundation, it is therefore important to formu-
late Stirling’s Hoare logic &8 a ealenlua in our sense, and
interpret it in FC just as we have interpreted IC in PC.

Hitherto we have concentrated upon Hoare logics of
parbial correctnesa: logics which assert mothing about
program termination. There are logics of fotal correct-
ness for the same programmiing language J4, for example
the weakest pre-condition logic of Dijkstra. It appears
that our process logic F£ does not express livemess aor
eventuality properties strongly enough for PC to support
an interpretation of a logic of total correctness. How-
ever, there are stronger process logica than PL which do
express eventuality — Hennessy and Stirling [2] proposed
one — and we would like to interpret s total correctness
caleulus for 74 in a correspondingly stronger process cal-
culus,

We hope to have shown that the notions of calculua,
and of interpreting one calculus in another, are fruitful
and unifying.

References

[1} Goguen, J.A. and Burstall, R.M., Introducing fnsti-
tutions, Proc. Logice of Programming Workshop, ed.
E.Clarke and D.Kozen, Lecture Notes in Computer
Seience Vol 164, Springes-Verlag, pp221-258, 1984,

[2] Hennessy, M.C. and Stirling, C.P., The Power of the
Future Perfect in Program Logics, Information and
Control 87, pp23-52, 1985,

[8] Hoare, C.A.R., An Aziomaiic Basiz for Computer
Programming, Comm. ACM 21:8, pp576-580, 1965,

[4] Jones, C.B., Specification and Design of [Paorallel)
Frograma, Proc. [FIP 9th World Computer Congress,
Morth Holland, pp321-332, 1983.

[5] Milner, AJR.G., A Caleulus of Commumnicating
Systerns, Lecture Notes in Computer Science Vol 82,
Springer-Verlag, 1980. Also available as Report ECS-
LFC8-86-T, Computer Science Department, Univer-
gity of Edinburgh, 1986,

[6] Milner, A.JR.G., Caleuli for Synchrony and Asyn-
chrony, Journal of Theoretical Computer Science Vol
25, pp267-310, 1983,

[7] Milner, AJ.R.G., Communication and Concur-
rency, Prentice Hall, 1989 (forthcoming).

(8] Owicki, 5. and Gries, D., An Aziomatic Proof Tech-
nigue for Parallel Programs [, Acte Informatica 6:1,
ppil8-340, 1976, .

[9] Btirling, C.P., A Generalisation of Owicki-Gries’
Hopare Logic for o Concurrent While Language, Jour-
nal of Theoretical Computer Sclence, 1988 (o ap-

