PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
OM FIFTH GENMERATION COMPUTER SYSTEMS 1988,
edited by ICOT, @ [COT, 1988

397

WEIGHTED GRAPHS,
A Tool for Expressing the Behaviour of Recursive
Rules in Logic Programming

Philippe DEVIENNE®
Institute for New Generation Computer Technology, Tokyo, Japan
LIFL, Universite de Lille I, 59655 Villeneuve d’Ascq, France!

ABSTRACT

Any Prolog program can be expressed in the form of
an overlap of sorne simpler programs whose siructures
are basic and can be studied formally. The simplest
recursive rules are studied here and the weighted graph
is introduced to charactetise their behaviour.

This new syntactic object, the weighted graph, gen-
eralises the directed graph, Unfoldings of directed
graphs generate infinite regular trees that I generalise
by weighting the arrows and putting periods on the vari-
ables. The weights along a branch are added during
unfolding and the result {modulo of the period) indexes
variables. Hence, their interpretations are non-regular
trees because of the infinity of variables, Some of the
formal properties of these graphs are presented, namely,
finite and infinite interpretation and unification.

Although they have a consistency apart from all pos-
sible applications, weighted graphs characterise the be-
haviour of récursive rules in the form, LR, They ex-
press the most general fixpoint of these rules, prove sim-
ply the decidability of uniform termination of one rule
and range across a finite sequence of recursive rewrit-
ings.

Tools of proof of termination and complexity can also
be used by the programmer as methodologic tools, or
in resolution for improving strategy.

1 INTRODUCTION

Estimating the termination and complexity of a pro-
gram from its structure is not an original idea. Al
though [Béhm and Jacopini 66) proved that all pro-
gramming can be done with at most one while loop,
usually the structure of & well-written imperative pro-
gram gives good behavioural properties.

Within logic programming, this structural approach
has not given comparable results; however, this ap-
proach is more coherent because the language nucleus
is based on one and only one operation, named infer-
ence or rewriting, but it also seams to be more complex
because this operation is very powerful [Dauchet 1987].

“Supported by INRIA grant
'On leave during 1088

The question of termination has been studied in dif-
ferent contexts, namely, term rewriting systems, nar-
rowing and Horn clauses with or without function sym-
bols; they share the same basic operation, rewriting.
However, within Horn clauses, the term global rewriting
must be used because the whole term, not a part of it,
may be rewritten.)

Because termination is in general an undecidable
property [Huet and Lankford 78], many works have
been devoted to introducing methods for proving that
particular systems or programs are terminating or non-
terminating, but even in this case, in spite of their sim-
ple appearance, they are complex and show the expres-
sive power of rewriting, Let us look at some of them:

- Term rewriting systems, more general than our con-
text: A set of rules, R, terminates iff, for any ground
term, T, no infinite derivations are possible. [Lipton
and Snyder T7] assert that three rules suffice for unde-
cidability. [Dershowitz 85 and 87] give the same result
for two rules. Finally, [Dauchet 87) proves that it is
possible with only one rule to simulate any Turing ma-
chine. Thus, the uniform termination of one rule is
undecidable, too.

- Horn clauses without function symbols, more par-
ticular than our context: The structural approach has
been studied; for example, if it is possible to eliminate
recursion from a program, then it is said to be bounded.
This property is undecidable even for linear programs
(that is, each rule contains at most one occurrence of
a recursive predicate) [Gaifman and Mairson 87]. This
property s decidable for linear programs with a single
rule if the intensional predicate is binary and its com-
plexity is shown to be NP-complete [Vardi 88].

- Horn clauses, context studied in this paper: This
termination problem is often asked about a set of rules,
R, and one term, T; R and T terminate iff no infimte
derivations of T are possible. ’

However, even in the case of & single rule, there is no
good tool for checking termination and for understand-
ing the basic recursivity. If good intuition is possible
about simple rules,

1. friend(X,Y) + friend(¥ X). {infinite)
X is the friend of Y if V is the friend of X

398

2. put{milk) :- puticoffes). (finite)
I prefer white coffee

3. integer(succ(X)) = int.eger{l{}.. (depending on
goals)
sume} is an integer if X 5 an inleger

unfortunately, generally, the non-linearity of the terms,
the existence of some variables on one side of the clause,
and the permutation of variables during rewriting make
infuitive comprehension of behaviour impossible.

The weighted praphs have been introduced [Devienne
and Lebegue 86 as an attempt to give a first answer
element. They generalise the notion of infinite trees
{Courcelle 83].

Directed graphs are well known: their unfoldings gen-
erate infinite rational trees. Informally, a weighted
graph is a graph with a top, nodes and arrows, but
the arrows are weighted by relative integers, and the
varizbles may have a period. During the unfolding, the
weights along a branch are added and their sum (mod-
ulo of the period) indexes the varizble. These unfolded
trees are non-rational because of their infinity of vasi-
ables; their formal properlies are siudied. The most
important properties, unfolding in a counter range and
unification with occur-check, are presented here. The
whole formal presentation is & generalisation of defi-
nition, interpretation and the unification algorithm of
directed graphs.

Although they have a consistency within the alge-
braie theory apart from the halting and complexity
problem, weighted graphs express as clearly as possi-
ble the behaviour of fules, denoted L—R within term
rewriting systems or L i« R in logic programming,

Any looping rule, L - B, has a computable weighted
graph whose interpretation is its most general fixpoimt
and whose finite interpretation is & range of the most
general sequence of finite inferences using this rule. This
means that all the information about its behaviour is
concentrated in its weighted graph.

2 WEIGHTED GRAPH

The basic syntactic objects used in term rewriting
systems and in logic programming are trees, directed
acyclic graphs (dags) and directed (or criented) graphs.
They are defined from & finite set of function symbols,
denoted F, and a countable set of variables, Var.

In Prolog, any literal of a rule is a finite tree, that is,
the basic object in a Prolog program. In a tres, each
different node of the root has one and only one father
node. In term rewriting systems, the term which has
to be rewritten 18 ground, that is, without variables. A
tree is said to be linear if there is only one occurrence
of its variables.

Directed acyclic graphs (dags) were introduced for
improving the memory size and the unification algo-
rithm. Im this new structure, a node may be shared by

saveral father nodes, and it is possible to suppose that
there are nol two different nodes labelled by the same
variable. Thus, the form is a graph whose arrows are
directed, but this graph has no eycle. By unfolding,
they characterize the finite trees.

Another generalisation exists in the form of a directed
graph, which may contain eycles [Courcelle 83]. These
unfolded graphs are regular trees, that is, solutions of a
finite system of equations, or compoeed of a finite set of
sub-trees. The interest iz to unify without oecur-check
(as in Prolog IT).

Unfortunately, these syntaclic objects are too poor
to allow good comprehension of the basie recursivity.

2.1 What Is a Weighted Graph 7

Informally, a weighted graph is a directed graph where
the root and the arrows are weighted by relative integers
and the variables may be periodic,

Definition 1 : 4 weighted graph is a graph in the form

wy = (X, Lab, Succ, Period) [(Root, wg)

- X is o set of nodes _

- Lab iz the label function from X fo F'U Var

- Suee is a funclion from X »x Nie X x &
Suee(z, 1) = (2, w;) : 2; is the i suecessor of 2
and this errow &3 weighted by wy.

- Perdod is a funclion from Varto N

- (Root,wg) € XxZ, e weighted root.

In comparizon to the directed graph definition, only
the underlined parts have been added, that is, weight
and period. Another definition is proposed in [Devienne
87) : periods on the nodes. The advantage is unification
without occur-check, but the major disadvantage is a
more complex definition of unfolding.

40
4 >D "

M
Fig. 1

This graph is directed and contains loops, and there-
fore looks like a directed graph; however the root (o) is
weighted by 0, one arrow is weighted by +1, and vari-
ahle P has period 2,

2.2 Unfolding of a Weighted Graph

In comparison to directed graph unfolding, four new
nofions appear, first from the definition, weight and
period, and second, for the unfolding confrol, counter
range and initial weight. During unfolding, the weights
almg a branch are added uaﬁng a counter.

Weight renames the variables by incrementing the
counter, like in resolution (i** inference, variables ¥;),
and Period expresses some periodic phenomena.

The counter range is an interval of Z, more precisely,
the domain of valid counter values. If the counter value
becomes invalid, the unfolding of the branch is stopped
and its leaf is labelled by a special variable (associated
with the node) indexed by the counter value.

The indtial weight is considered in addition 6 the
weights of the root and the arrows. This is equivalent
to saying that the counter contains an initial value.

The paths in a weighted graph are defined through
the following recursive function, named Descendant:

Definition 2 : Let £ be o node, ¢ be ¢ counter value
and m be a path, then

. Descen(z,enil) = (z,¢£)
- Descop(z,¢,i-m) = Deseep(zi, e+ wi,m)
if c€ECR & Succ(z,i) = (wi,w;).
The unfolding of a weighted graph, wg, from the
input weight, k, in the counter range, CR, denoted
Uk p(wg), is defined as follows:

Definition 83 : Let m be a path and (z,c) be
Desc((Root, wg + k), m), then the node associated with
m in the tree, Uk (wg), is equal to:

o f ifceECR & Labiz)=feF
« Vomodperioaryy 3f c€CR & Lab{z)=V € Var
Vaz, © - ifcE OCR & Vi is the

special variable of =,

Let us consider a chess game between two players,
Fy apd Py, who play any move, M;, in turn. Player P
plays move M), then P, plays M,, and Py plays My, and
so on. Move M, is, therefore, played by player Py noaa.

7\
TS
\\U
FPrmodz 'O
M, ete.

Fig. 2

If we want to express a chess game of n moves, espe-
cially if o is infinite, the directed graph is not powerful
enough. Let ns choose the following weighted graph un-
folded frém the input weight, 1, in the counter range,

CR = [1,af:
o] Weighted graph

10

ol N,
v

399

Along each path of the weighted graph, the unfolding
is applied knowing that:

(+1) : the initial value of the counter is 1.
() : the counter value is incremented by the weights.
O : unfolding stops if the counter valve no
longer belongs to CR.

{fl
Pﬁ?‘.\o
y N
M ")
:;o
P:2>a (o+1)
n
i NG
Fig. 3

The variable, M, is indexed by the counter value, that
is, the weight sum from the root to the leaf, and the
variable, P, by this valne modulo of 2, berause of the
periodicity, 2, of F. The leaf corresponding fo the un-
folding stop is labelled by the special variable of the
node, U, indexed by the invalid counter value, n+1.

AN
AN
Ay B
N
P::g.:}‘/n .
M, \"Un.ﬁ,

The obtained tree expresses the most general chess
game of n moves. From the input weight, k, belonging
to [1,n], the unfolding would be the same chess game,
but without the first (k-1) moves.

If CR is Z, that is, the set of relative integers, any
counter value is valid, that is, unfolding is applied with-
out control, and, for this example, characterises the
most general infinite chess game. :

Theorem 1 : Weighted graphs generalise directed
graphs.

Finile lree = Dag C Directed graph ©
Weighted graph C Tree.

Any directed graph is a weighted graph whose weights
and periods are null, or a weighted graph with any
weights whose period of all the variables is 1.

Moreover, the weighted graph can express some non-
regular trees because of the infinity of variables, and
therefore can express no irrational ground trees.

400

The unfolding in 2 of & weighted graph is compara-
ble to directed graph unfolding, in the sense that the
unfolded graphs are equal, except for the variables.

v/oo ~ Unfolding — V/D\n
v‘/ h"

v/ N

gtc.
Fig. &

By putting a weight, 1, on the looping arrow, the
unfolded tree is the most general infinite list:

o - Unfolding — @
/N0 + AN
! V:’/\ .

\\I:l
I/,.:/ \et.c.

Fig. 6

Definition 4 : The interpretation of o weiphted graph
from an input weight interval, IW, in a counter range,
R, 15 o sef of pairs in the form {inpuf weight, unfolding
from this inpul weight end in CR):

T (wg) = {{k, Uhp(wg)) [VEeIW }.

Proposition 1 : The greater the counter range, the
more precise and deep the inferpretation fs:

CRCCR = 3Jo (substitution),
o IHi(we)) = THi(ws).

2.3 Finite Weighted Graph

A loop is 2 path from a node fo itself. It is said to be
basic if all the nodes, except for the first and the last,
are different. The wedgh‘t. of a pa.l.h iz the sum of the
arrow weights along it.” The path is sald to be posi-
tive (negative, null respectively) if its weight is positive
(negative, null respectively).

Definition 5 : 4 weighted graph is said to be finite if
it contains ne nudl finde loop.

Propoesition 2 : A weighted graph is finile iff all the
basic loops from a same node have the some sign and

Therefore, this property can be easily verified and
will correpond to the occur-check.

The weighted graph in Tig. 1 is finite, but the follow-
ing weighted graph iz not finite because of node b

1o
e C)\b) "

Tig. 7

Theorem 2 : The unfaiding is finite in all finite
counler range Hf the weighted graph is finite.

Proposition 3 : The depih of the unfolding of a finite
weighted graph is bounded by a linear function of the
size of the counter range,’

2.4 Unification

Definition 68 : Twe weighted graphs are said fo be
unifiable from IW and in CR if the following system
iz solvable (with oceur-cheek):

{ Up(wg) = Ugg(wy'} / VkeIW }.

Let o be the most general unifier, then the result of the
wiification is:

{ (ko Ugg(wg)) / Yk € IW }.

The unification algorithm of weighted praphs iz pre-
sented here in the form of a generalisation-of the di-
rected graph algorithm of [Fages|. Let us denote the
highest common factor as kef, it is composed of two
steps, the first is the application of the unification pro-
cedure, and the second, easy to define, is the finite
weighted graph-check, that is, ocour-check:

Procedure UNIFICATION {{Rﬂa!‘, “’EJ: {RDDI'TWJR:I} i
% (Root,wg) and (Hoot', wy) are the weighted roots
of wg and wg' B

If (Root = Root")
Then period-hef{ Root, | wg — wh |)
Else

If (Root’ is labelled by the variable V?)
Then hef-period(Root, period(V"))

replace(Root', (Root, wg — wh)
Elze

I (Root is labelled by the variable V)
Then hef-period(Root', period(V))
replace(Hoot, (Root', wh — wg))

I {Hm!‘. and Root' are labelled by the same
funetion symbal)
Then replace{ Root', (Root, wg — wh))
Forii=1An Do
% Let Succ{Root,i) be [z,)
and Succ(Root',1) be (zl,w]) %
unification [[z;,w; + wg), (=}, w! + wi)h
Done
Elss Failure: The unifier does not exist.

Procedure hef-period {Root , p) ;
% Let wg be the weighted graph of Root, %
all the variables of wg must have at least period p %
If (»#0)
Then If {wg is not cyclic)
Then YV € wy, Period(V) :=
Else Failure: The unifier does not exist

Procedure replace (Rooty , (Rooty, w)) ;
% All the arrows going to Rouot; have besn redirected
to Root; with the weight correction, w. %
Wz, Wi, If (Suec(z,i) = (Rooty, w))
Then Succ(z,i) := {Reoly, un + w)

Theorem 3 : The weighted gmph aigunthm applied to
two finite weighted graphs, wy and wy’, will refurn a fi-
nife weighied graph, denoted wy"u"wg . iff they are unifi-
able in Z, and

V TE(wg') = Ti{wgV wy).

It will returs Sfailure otherwise,

TE(wg))

Hence, in the case of Z, the unification of the inter-
pretations of wg and wg' is equal to the interpretation
of the unification of wg and wg'.

An immediate and important consequence will be
that the most general fixpoints of global rewriting rules
are weighted graphs.

The weighted graph unification algerithm s quite
similar to the directed graph one, except that the com-
putation of weights and periods has been added.

Corollary 1 : Let g, g’ and d{wg Vwg') be the directed
graphs obfained from wg, wy’ and wgV wg’ by removing
the weights and periods, then

gvg = dlwgVug').

Although, generally, the result of the unification of
the interpretation of two weighted graphs is not the in-
terpretation of a weighted graph, the weighted graph
unifier in Z can be an approzimate solution of the uni-
fication, that is, by decreasing OR, the interpretation
of wgV wy is more general than the exact solution,
and by increasing CR, the unfolding of wgVwg' is less
general than the exact solution.

Notation 1 : Ji.yy denotes the sub-interval of I
where the low bound of I has been incremented by a and
the high bound decremented by b:

[min, maz}gmey = [min + a,maz — b).

Similarly, [min, maz|j——y = [min —a,maz + 5.
These operations can be applied af infinite intervals, for
ezample: Z{n—- =h = Z = z[m——rhj-

hef(Peried(V), p)

401

Theorem 4 : Let wy and wy’ be fwo finite weighted
graphs, then there exists o constant, sd, such that for
any IW and CR sharing af least sd clements, then wy
and wg’ are unifiable from IW in CR iff they are unifi-
able from Z in Z.

From proposition 1, it is obvious that if two weighted
graphs are unifiable from ¥ in 2, they are unifiable from
and in any intervals of Z. This theorem gives the reverse
implication, that is, two weighted graphs are unifiable
from Z and in % if there exist two finite intervals, IW
and CR, sharing sd elements where they are unifiable.

A consequence will be the decidability of the uniform
termination of one global rewriting rule.

Theorem § ; lef wy and wyg' be two unifiable finite
weighted graphs, then there exist two constants, o and
b, such that the range of wnification of wy and wy’ from
IW in CR is obtained by the interpretation of wg' wg'
from IW in (IWNCR)(amsrsy and in (IWUC R)ggy:

T (wgvuwg) £ 8§ < Igq, (wg Vwg)

where § = I (wg) V TR (we')
CRpa = (IW N CR) oy

€ Rusp = (IW U CR)aemsiy-

This means that the side effects of the unification
have a constant size equal te a for the lefi-hand side
effects and b for the right-hand side elfects.

This is one of the most important properties, be-
cause after removing side effects, the approximate so-
lution does not depend on the interpretation intervals.
Within logic programming, this will give important con-
sequences for characterising a finite sequence of recur-
sive Tewritings.

Let the following be two finite weighted graphs to
unify:

o J-1
game ' game
¢ b o b e

P / -\n-
M/ \R
Fig. &

The constants, a and b, are equal to 1 and 0, and the
algorithm gives the following weighted graph:

lo

game
l"’:Z‘/“,J-l \ o

ol

1]

e

M
Fig. 9

402

Note that if all weights and periods are removed in
thess graphs, this unification is still true within the di-
rected graphs,

3 LOGIC PROGRAMMING

This section shows the link between weighted graphs
and global rewriting rules. They are called global rewril-
ing rules, because the whele term, not part of if, is
rewritten with respect to them. These rules are denofed
L:-R in Prolog or L—R in term rewriting systems. L
and R are finite trees. In this paper, we use the nota-
tion, L—R , used also in Prolog II [Colmerauer 79].

3.1 Sequence of Global Rewritings

Definition 7 : A ferm, T, is said fo be globally rewrit-
ten fo another ferm, T with respect o L—R |, if
there exists o substifution, &, such that (L) = T and
BR)=T", T 1T

Another definition could be global rewrifing with in-
stantiation, that is, a term, T, could be globally rewrit-
ten with instantiation to another term, T", with respect
to L—R. , if o(T') were globally rewritten to T with re-
spect to L—R where o is the most general unifier of T
and L. In term rewriting systems, this notion, rewriting
with instantiation, has no meaning because the rewrit-
ten terms are ground. Obviously, the term, T, and the
vule, L—sF | are assumed to share no variahles.

Praposition 4 ; The most general sequence, 5, of n
global rewritings w.rt. L—R is the most general solu-
tion of the following system:

{Li=FRia [Vi€[2n]}.
Let o, be fts most general unifier, then we will denote:

= { {I!Tr];]: ':[an:}!["+1!-I:+I] }
where, Vi € [1,n], T¢ = o.(L;)
and Vi€ [2,n+ 1], TV = a.(R_1)

> TEL TS . 5 oqnor g
The variables of L—H have a local meaning which
means that the variables must be renamed before apply-
ing the rule. At the i global rewriting, rule L; — R,
is applied.

Definition 8 : A rule is said to be looping if it has a
most general infinite sequence of global rewritings.
In others words, L— 8 is looping iff # generales an in-
finity ef rewrilings for some goals.

The most general ffrpoint of a global rule is the most
general term which iz rewritfen fo an equivalent ferm
by this rule.

Proposition 5 : Applying rule I— R n times 5 equiv-
alent to applying TP — Tt once, that is, L—R can
generate n rewritings for the goal, G, if G and T} are
unifiable,)

Stmirlarly, L— 1 con generate an infinity of rewrit-
ings for G iff G and T, are wnifiable.

3.2 Weighted Graph and Global Rule

The following theorem gives a fundamental justification
of this new syntactic object,

Theorem & : Let L= R be o global rewriting rule. Let
us denote L% and B~ as the weighted graphs buill from
L and B by putting null weights on the arrows, no period
and a ool weight equal to § or -1, then

So= e Vo aiE.
For all i of [1,n], L; is the unfolding of L° from the input
weight, i, and in [1,0]. Similarly, for all i of [2,n+1], By
is the unfolded result of B™? from the input weight, 3,
and in [1,a].

Let the chess game rule be:
game(P,P'\P- M- R) — game{P', P, R).

The first argument is the name of the player who has
to play, the second is the name of the player who will
have fo play af the next turn, and the third is the list
of the name of the players and their moves (¥ig. 4).

The weighted graphs of this rule, L° and B, are
those which have been unified (Fig. 8).

Eecause of ﬁhta Lhmrcrn, all p‘cﬂpc:h:ﬂ of wc:ght@d
graphs can now be applied within logic programming
for & better understanding of recursive behaviour. The
following theorems llusteate this.

Theorem 7 : A rule, L— R , is loaping iff the weightfed

graph, L®v B!, exists,

Any looping rule has o weighted graph and fwe con-

stands, a and b, such that:

Tt (v B < 5, < T 0 vRY).
This is the immediate application of fundamental the-

orem 4 and shows that the behaviour of L—+R is char-

acterised by the weighted graph, L° v &~'. Hence, this

weighted graph can be viewed as & meta-term of the

rule.

The weighted graph of the chess game rule has al-
ready besn computed:

"y Bl o=

gs.me
l":ﬁ/")_1 N]

\DH

[+]

/

M
Fig. 10

The periodicity of the first and second arguments is
expressed by the period of P and the third argument is
characterised by the third sub-graph unfolded in Fig. 4.

The unfolding of this weighted graph, from k and in
[0,n], is the k' term of the most general sequence of n
glohal rewritings, that is, the state of the chess pame of
n moves after the first (k-1) moves,

Theorem & : The most general fizpoint of rule L—R
is expressed by the unfolded result of its weighted graph
from any inpul weight without control (CR = ZJ:

Most general fizpoint = UE(L°v R™Y).

Hence, the most general fixpoints of global rewriting
rules are weighted graphs.

The most general peneral fixpoint of the chess game
rule is:

o
.
1 -
N
Piad\::,‘_}
My \etn.
Fig. 11

Proposition 6 : The depth of terms T2 is bounded iff
the weighted graph of the rule does not ezist or has no
positive basic loop.

The depth of terms Tp®! is bounded iff the weighted
graph of the rule does not exist or has no negative basic
Inop,

Apart from the side effects, a term will be finitely
rewritten by L—R if one of its ground branches (that is,
those whose leaf is labelled by a constant) corresponds
to a positive loop in the weighted graph.

This means that the positive loops of the weighted
graph can be regarded as possible input informations of
the rule (that is, those forcing the termination).

Within term rewriting systems, a rule verifies the wni-
form termination iff all finite ground terms are finitely
rewritten by this rule. In the case of ground ferms,
the previous remarks give the decidability of uniform
termination of one global rewriting rule.

Theorem 9 : The uaiform lermination of one global
rewriting rule is decidable.

A rule generates finite global rewritings for all finite
ground terms iff the weighted graph, L®v R7Y,
does not exist or contains positive basic loops.

403

The chess game rule verifies the uniform termination
because of the existence of a pesitive loop in its weighted
graph (Fig. 10).

However, the rule, friend (U, V) : — friend(V,U), can
generate an infinity of rewritings because of no positive
loops in its weighted graph .

fl.‘lé.[ld W i'ns:nd ﬁit{'.gd
U/ ‘\v / \U < o4
U2
Fig. 12
Remark 1 : Although the criterion is simple, this re-

sull is not obvious and all my atiempts to prove @t em-
pirically failed. Here, the weighted graph is an efficient
tool af proaf,

Moreover, this property is undecidable within rewril-
ing systems. One rule is enough to simulate any Turing
machine [Dauchet 87, This shows all the expressive
powsr of the rewriting.

Theorem 10 : The uniform termination of one global
rewriting rule and one finite ground term is decidable.
There exists a linear function, f, depending on the rule
such that o finite ground term, T, is globally rewritien
finitely iff the length of this sequence of global rewritings
is less than fidepth{T)).

This meens that for ground terms, the complexity of
L—R is at most linear.

4 CONCLUSION

This paper is the first part of & syntactic and struc-
tural study about termination and complexdty in
logic programming begun in 1984 at the Laboratoire
d'Informatique Fondamentale of Lille,

The festures of this approach are first, some co-
herence for studying the recursive manipulation of
terms; these lerms have been generalised in the form
of weighted graphs which are based on the same alge-
braic theory and share the same basic operations; sec-
ond, these results can be understood on three levels:
(1) Algebraic theory: weighted graphs can be studied
formally independent of all applications.

However, through the equivalence between the be-
haviour of a rule, L—R , and its weighted graph,
LV R, the weighted graph properties can be applied
within logic programming in two directions.

(2) The weighted graph is a tool of proof and auto-
matic evaluation of termination and complexity for lin-
ear recursivity and can therefore be used for improving
strategy.

(3) The weighted graph is a methodologic tool that
can be used by the programmer for a'better underatand-
ing of the behaviour of recursive rules.

404

From weighted graphs and through adequate systems
of equations, the second part of this work is devoled to
establishing the decidability of the termination and the
existence of solutions for all programs with the following
structure:

while (fq) .
while (Tyegore) : — while (fagrer)
— while (Tpegin -

where the terms, {mg and fiepin, are hincar [Devienne
88b). It is expected that these properties are true even
for non-linear facts and goals.

Although the Béhm-Jacopini theorem has an equiv-
alent formulation in Prolog, that is, any pure Prolog
program has a strongly equivalent program of the form
[Devienne and Lebegue 88]:

chaoice (1) .

choice (t2) .

while (i,.4) .

while (b pore) + — choice (), while (tapem)
: — while (thyin:] -

it is hoped that this result is not a real limit, as the
[Béhm and Jacopini 66] theorem was not a real limit
in imperative programmung, and, therefore, that using
the weighted graphs of recursive sub-structures of some
Prolog programs, it will be possible to understand their
whole behaviour.

ACKNOWLED GEMENTS

[am most grateful to Max Dauchet for illuminating
discussions. I would also like to thank Brune Cour-
celle, Pierre Deransart and all the other participants of
the working group Méthedes ef outils théoriques en pro-
grammation logique for their helpful comments.

REFERENCES

[Bohm and Jacopini 66] “Flow diagrams, Turing ma-
chines and languages with only two formation rules”,
Communications of the Association for Computing Ma-
chinery, Vol.9, pp.366-371, 1966

[Colmerauer T9] "Prolog 11, Manuels de reference, the-
orique et pratique”, 714, Marseille, 1879

[Courcelle 83] "Pundamental properties of infinite
trees”, Theor. Comp. Sei., 17, pp.95-169, 1985
[Courcelle 86] "Equivalence and iransformations of
regular systems. Applications to recursive programs
schemes and grammars”", Theor. Comp. Sei, Vol 42,
pp.1-122, 1936

[Dauchet 87] *Termination of rewriting is undecidable
in the one rule case” | Internal Report IT110, LIFL Lille,
France, 1987

[Dershowitz 85] "Termination®, First [nternational
Conference on Rewriting Techniques and Applications,
Dijori, France, pp.180-224, 1985

[Dershowitz 87 "Termination of rewriting”, J. Symb.
Comp. 3, pp.69-116, 1987 :
[Devienne and Lebegue 86] “Weighted graphs, a tool
for logic programming®, [1th Colloquium on Trees in
Algebra and Programming, Nice, pp.100-111, 1985
[Devienne 87] "Les graphes orientés pondérés, un outil
pour I'étude de la terminzison et de la complexité
daps les systémes de réécritures ef en programmation
logique®, Thesis, Lille, France, 1587

[Devienne 83a] ”Strongly reduced sysiems of equa-
tions", #7ih Annual Conference on Information Pro-
cessing, Kyoto, Japan, 1958

[Devienne 88b] "Weighted graphs, a tool for study-
ing termination and complexity in term rewriting sys-
tems znd logie programming”, Technical Report, ICOT,
Japan, 1988

[Devienne and Lebegue 88], “All programming can be
done with at most one right recursive rule and three
fauts"'] to appear

[Fages] *Notes sur I'unification des termes du premier
ordre finis ou infinis”, Internal Report, INRIA-LITP,
France

[Gaiman and Mairson 87] "Undecidable optimisation
problems for database logic programs®, Symposium
on Logic in Computer Science, New-York, pp.106-115,
1987

[Huet and Lankford 78] *On the uniform halting prob-
lem for term rewriting systems”, Rapperi Laboria 283,
INRIA Le Chesnay, France, 1978

[Huet 80] *Confluent reductions: Abstract properties
and applications to term rewrniting systems”, JACOM 27,
pp.197-321, 1980

[Lipton and Snyder 77] " On the halting of tree replace-
ment systems”, Conference on Theorstical Computer
Seience, Waterloo, Canada, pp.43-46, 1977

[Lloyd 84, 87} "Foundations of logic programming”,
Springer Verlag, 1984, 1987 -

[Vardi 88] "Decidability and undecidability results for
boundedness of linear recursive gueries”, Symp. on
Principles of Datebase Systems, Austin, pp.341-351,
1988

