PROCEEDINGS OF THE INTERMATIONAL CONFERENCE
ON FIFTH GEMERATION COMPUTER SYSTEMS 1983,
edited by 1COT. © ICOT, 1988

k1Y

LOCAL DEFINITIONS WITH STATIC SCOPE RULES
IN LOGIC PROGRAMMING

L.Giordano AMartelli G.F.Rossi

Dipartimento di Informatica - Universita® di Torino
C.zo Svizzera 185 - 10149 TORINO (ITALY?}

ABSTRACT

The paper deals with the problem of extending positive Homn
clause logic by introducing blocks, that is local definitions of
clanses, as a tol for structuring programs. The exiensicn
consists in allowing & goal G; in a clause GyA.AG, > A 10 be
not only an stom bet also a pair P=>0, where P is a set of
clauses and O a goal. Similar proposals have already appeared
in the literature, mainly to deal with hypothetical reasoning.
An analysis of these proposals shows that clauses have
dynamic scope rules, because to derive a goal P<>0 in a
program P* they derive G in the program P U P’, thus making
all clauses of P accessible to all classes of P, Gabbay
showed that, in 2 model theoretic semantics, this cormesponds
to interpreting both implicadons -» and => as inmitionistc
implication. In this paper we analyse static scope rules, where
a goal can refer omly to clauses defined in statically
surrounding blocks, and we argue that this kind of block is a
more namral exeension of Horn cleuses when used as a
programming language. We show it by defining an operational,
fixpoint and model theoretic semantics which are extensions of
the standard ones, and by proving their equivalence. We show
also that statle scope rules can be obtained by interpredng -=
as classical and => as inmitionistic implication, with respect w
Herbrand
operational semantics ere presented to show that the proposed
construct can be easily implemented.

1 INTRODUCTION

Logic programming is widely recognized as a useful
paradigm for solving many classes of problems, However pure
Horm clavze logie has severe limitadons, which have led to
numerous proposals of extensions. In particular cne of the
rmain hindrances to the use of Hom clauses 25 a programming
language is the lack of constructs, such as modules or blocks,
to SITUCIUre Programs,

In this paper we focus on the problem of extending
positive Horn clause logic by introducing blocks, that is local
declarations of clauses. The concept of bleck is well known in
the area of waditional imperative or functional languages, and
we argoe thet it can be usefully introduced in logic
programming as well, Several propesals for dealing with Tocal
definitions have already appeared in the literature. For instance,
Bowen and Kowalskd (1982) show how to introduce local
definitions at the metalevel, whereas Warren (1984) proposes a

This wark has bea panlslly supparsed by MFL 40%

interpretations. Fimally some more concrets

modal operator “assume”. Gabbay amd Reyle (1984,1983)
present N_Prolog, an extension of logic programming which
allows local definitions and which is designed mainly to deal
with hypothetical reasoming. A similar extension is proposed
by Miller (1986) and more recently by MeCarty (1988). Mait
Abdallah (1986} defines fons to deal with lpeal definidons.

Informally, local definitions can be added to a logic
program by allowing a goal Gy in a clause GGy -> A to
be not only an atom but also @ block, D=>G, where D is a set
of clauses and G & poal Indeed the set of clauses D
comesponds to local procedere declarations in conventional
programming languages. The uwsual operational semantics of
loeal definitions is that a goal D=0 can be solved in a
program P if the goal G can be solved in the program P w D,
For instance, to solve the goal a=>b in the program {a->b}, we
solve b in the program {a->b, a}. This block structurs is
adequate to support hypothetical reasoning, ie. by assuming a
and knowing a->b we can deduce b,

Ag anotber example, let us consider the following

Program;

Example-1.

Pe{r->q,
{llg-=p)ar)=>pi-=s).

The proof of the goal 5 in P yields
goal (((g->p)ar)=>p} in P
goal p in P'=P {g->p,r}
goal g in P
goalrin P

which succeeds.

From a logical viewpoint, a block D=>G can be
considered as an implication, but it is well known that this
implication canmot be the classical one, For instance, in
classical logic (a->b)-»a |- &, whereas a cannot be derived from
{a=>b)-»a according w the previowsly given informal
operational semantics. Gabbay and Reyle have shown that,
instead, by having a unique implicaion symbol > in place of
both == and == in goals and clauses, the interpretaion of = as
the intuitionistic implication corresponds to the operatonal
semantics, and have glven a model-theoretic semantics based
on worlds. Miller has given a fixpoint semantics for the same
implication,

Although the semanties of local definitions deseribed
above appears to be quite natural, it is by no means the only
possible way to deal with them. A block structured language
requires the introduction of seope rules specifying visibility
rules for locally defined clauses and varigbles. Two aliemnatives

asn

are feasible as usual, namely statie scope rules or dynamic
ones.

The use of explicit quantfiers allows to give static scope
rules t wvariables. However, scope mules for clauses are the
main concern of this paper. It is worth 1o notice that scope
rules for clauses can be more complex than scope rules for
procedures in conventional programming languages, because in
a logic program a predicate definiden is usually given by
means of several clauses which can be scattered throughout the
program in different blocks.

It is possible to see that the sbove semantics requires
dynamic scope mules, In fact, given the goal De>G to be
proved in the program P, after the program P has been
enlarged by adding the clauses in D, they are o more
distinguishable from other clauses of the program and can be
uged in the subsequent refutation as global clauses. The added
clauses are no more visible a5 soon as the proof of the poal G
terminates (ie. they arc removed from the set of global
clauses). Therefore, the set of clauses which can be used 1w
solve a goal G depends on the sequence of goals generated il
that moment in the proof containing G. Of course, this set can
be determined only dynamically. For instance, the proof of the
goal q in Example-1 uses the first clause (r->q) of P and the
clause r which is local to the second clause of F,

In this paper we pursue the idea of defining a logic
language with seatic scope rules for claose definitions, in
which, & in most programming lanpuages, the rules for using
a clause are determined by the statie nesting of blocks in the
program text. In this way to solve an atomic goal which comes
from the body of a clause declared in 2 block, only the clanses
declared in that block or in external enclosing blocks can be
wsed, Therefore the set of clauses which can be used in the
refutation of 2 goal depends only on the block structure of the
program amd can be stutically determined. For instance,
Example-1 would fail with statie seope rules because the
clause r, defined locally to the second clause of P, is naot
vigible from the first clause of P. On the conwrary, the
following example will succesd with static scope rles:
Example-2.

G=5

P'{'q:

((raq-=p)nryep)-2s3,
the goal G succeeds from the program P, since In this case ris
used in the same block where it is defined and q is used from
an inngr block,

Static scope rules have the well known advantages, to be
discussed at the end of the paper, to allow more efficient
implementations by allowing compilation of procedurs calls,
Thus, this kind of block appears 1o be a suitable extension of
Hom clauses wsed as a propramming language. On the other
hand, we remark that hypothetical reasoning cznnot be carried
on in this case. The idex to add the standard Programming
language concept of block to logic programming languages has
alrcady been proposed in (Manelli and Rossi 1936), mainly
from an implementation viewpaint In this paper we defing
blocks more rigarously,

In the next section we define more precisely the language
with statically scoped blocks by means of its operational
semantics. We show there that a unique implication

connective is not sufficlent, as in the case of dynamic scope
roles. Thus we must introduce rwo different implicatons with
different meanings: one in definite clauses (Gyh..AG,->A) and
the other one in goals (D=>0).

In section 3 we define the fixpoint semantics of the
language as an extension of the standard fixpoint semantics of
Hoern clauses. Instead of defining the semantics of a program P
25 2 subset of the Herbrand base B{P), we define it as a
function from 2% g 2°F) The operational semantics is
shown to be sound and complere with respect to this fixpoint
semantics. :

An interesting problem is to ses if this kind of language
allows also-a model-thearetic semantics, Indeed in section 4
we show that a very simple semantics can be given as an
extension of standard semantics by defining sadsfiability of
formulas with respect to interpretadons (subsets of B(P)).
Satisfiability is defined as in the standard case {80 -> is the
classical implication) with the addidon of the definition for
D=>(, which is satisfiable in an interpretation I if and only if
D implies G in all the interpretations I' which contain L Thus
we do not neéd a semantics with worlds as in the case of
N Prolog, whose model-theorctic semantics is that of
intuitionistic logic. This kind of semantics possesses
properties analogous to those of the classical case, such as a
minimal model which can be shown to be equal to the least
fixpoint,

It is easy to see that the model-theoretic semantics of ==
given in section 4 is different in general from the inmitonistic
semantics. However we show in section 5 that the two
semantics coincide for the language of the paper with respect
to Herbrand interpretations, and therefore we can consider <=
and =» a8 the classical and intuitionistic implication
respectively, :

In sections & and 7 we introduce more concrete
operational semantics for the language, an we give some hins
on the possible efficient implementstions of this language, in
the style of conventional programming languages.

2 THE LANGUAGE AND ITS OPERATIONAL
SEMANTICS

In this section we define a logical lanpuage which extends
positive Hom clause logie by introducing blocks, that is local
declarations of claiuses. To describe the syniax and the
semantics of this langusge we shall use the ootation of (Miller
19%6),

Let A, G and D be metalinguistic wvarigbles which
represent, respectively, atomic formulas, poals and definite
clauses and let T be & proposidonal constant (ue). The syntax
of the language is the following:

G :=T| A | G,AG, | JxG | D=3G
D = G->A | DyAD, | V2D .

A program is defined as a set of closed definite clauses,

Motice that what we call clauses are actually not standard
clauses, since they can be composed of a conjunction of
clauses and the left-hand part of a clause G-=A is allowed to
contain implicaions. Notiee also that a clause of the form
T-=A will be simply written as A.

As an example, let us consider the well known logic
program which implements the quicksort algorithm. First we
present the usuwal Prolog implementation and then the
comesponding implementation in the language we have defined
so far. We use a Prolog-like notation in which ", is uzed in
place of "a" to represent & conjunction of goals and a program
is a sequence of clawses separated by "%,

Example-3.

split(H, [AX] LAY]Z) <-
order{A,H),split{H, X, Y.ZL
splitdH,[ALK] Y. [A[Z]) <
order{H, A)split(H XY Z)
spliol_[L[LI 1)

quicksort{[H|T],S) <
splifH.T,A.B),
quicksort{A, ALY,
guicksor{B,B1),
append(A1[HB115L
quickson([L[1

Since predicate "split™ is used only by “guicksort”, we can
move its definition inside the body of “quicksort” in an inner
block declaraton as follows:

h’lﬁts quicksort([H|T,S) <-
A,B,A1B1
{ (VAX.Y.Z splif[AIXLIAIY).Z) <-
order(A,H), split(X,Y,Z)).
YAX,YZ spli[AJX), Y, [AJZ)) <-
order(H,A), split{X, Y. Z)).
split(f L0 1.0 13 3 == split(T, 4,8),
quicksori{A,Al),
quicksont(B,B1),
append(A1,[HIB1),S)).
quicksort(] 1,f 1

Wariables can be explicitly quantified allowing local
varisbles to be distingeished from global ones. For instance,
the scope of wvargble H is the wheole clause defining
"quicksort™; thus H can be used in the body of the "split"
procedure as a global varigble and must not be specified as a
parameter of the “split" procedure itself (the procedure has
now one parameter less than the previcus above definition).
Varlsbles can be quantified for each clawse and poal. For
instance, we have chosen to quantify varisbles used in the
body of "quicksort” inside the body iself using an existential
quantifier, whereas varisbles which are local to the definition
of "split" are universally quantified for each clause of the
procedure,

Given a program P and a closed goal G, we want now 1o
define the meaning of G being eperationally derivable from P,
that is P |- G. To cope with the situation in which a goal is an
implication (le. a block), we have to consider liser of
programs Py|.|P; instead of simply programs. The list is vsed
to record the ordering reladon among sets of classes (i.e
programs) which are introdeced during the computation of &
goal. In a list Py|.[P,, Py is the initial program while each Py,
for =1, is the conjunction of clanses contained in the Dy of a
block declaration Dy=>G;. As higher is the index i as deeper
is the nesting of the block D;=>G;. Thus the Iist P[P,
represents the static nesting of blocks in a program P, at some
step of & possible derivation of the given goal G from P. On
the contrary, with dynamic scope rules the union of clauses in

391

P and Dy is considered for each goal Dy=>(, so that local
definitions are no more distinguishable from global ones.

In order to avoid problems with varizble renaming and
substitutions we follow the approach of (Miller 1986)
replacing universally quantified variables in a program with all
their possible substimtions (an operational semantics with
substitutions {5 given in section §). Moreover, conjunctions of
clavses are replaced by the comresponding ser of clauses. The
program which is obtained from P in such a way is denated by
[Pl. [F] can be defined recursively as the smallest set of
formulas such that:

(i) Pc[P;
(i) if DyAD e [F] then Dye [F] and D= [F];
(ii} if "'i?xDe [P] then [x/t]De [P] for all closed term t,

We define the derivability of a closed goal G from a not
empty list of programs P|..JF, by induction on the struchore of
G, with the following males:

(D) Pyl [P, |- T;
{2} if A is a closed atomic formula, P[P, |- A iff, for
some i, there is a formula G->Ae [P;] and PP |- G;

(3) Pyl [Py |- GAG, iff Byl P, |- Gy and Pyl.fP, | G
(4) Pyl.|P, |- JxG iff there is some closed term t such that
Pyl Py |- [xtIG;

(5) By, | D=>G iff B, [P, D | G.

Consider first rule (2); when a clause G->A in Py iz used
to refule an atomic goal A, then the clauses in By, P, cannot
be wsed any more to prove . This is because the blocks
corresponding o Py....P, do not contain the block from which
G is called and therefore are not visible from G. As we can
s2e from rule (5), when the goal is a block D=, then the set
of loeal declaratons D is added wo the list of programs as the
tail element and G is proved from the resulting list of
programs, so that the clauses in D can be wsed only to refute
goals which eome from D iizelf or from G.

We define a derfvation of G from a not empey list of
programs Pyl.JP, @ @ finite sequence of pairs
{thI}l““l{"umlﬁn}- Whﬁlﬂ w'l-pllrrlpns G!-'-G! G—“’Tf and
for i=t,.,m, W; |- G;. The derivability of G; from W; can be
obtained from the members of this sequence which follow
{W;.G3,), using the above rules (how many members of the
sequence must be comsidered depends on the rule which is
spplied).

Example-4. Let ug consider the program P of Example-2. The
following is a derivation of the goal G=s from P:

Gy=5, W =P ={ T->q, (({rrq-=>pln(T->r))=>p)-25}

by rule (2): Ga=({thg->p)a(T->r)}=>p, Wa=F,

by rule (5): Gy=p, W=P [Py Pr=(eag>pip(T->1)
by rle (2): Gy=rhg, W,=P,lP;

by rule (3): Gy=q, Ws=P [Py

h!.f rule {2]: Gﬂ.Tr W“-P]

by rule (3) applied to (G, W g): Gq=1, Wo=P,|P;
by rule (2): GgeT, WgePi|P). .

If the first clause of P is replaced by r-=q, then the derivation
of G=s from P is no more feasible. In fact, in this case we
have: Gg=r, W,=F,, and P; does not contain the definiticn of r,
which, on ihe contrary, is defined in the inner block P and
therefore is not visible at this point.

kL,

In the next sections we'll present the fixpoint and model-
theoretic semantics for our language and we'll prove the
equivalence between the operational semantics and the fixpoint
semantics and berween the fixpoint and the model-theorede
semantics, All these semantics are defined by extending the
comesponding standard semantics given for positive Horn
clause logic (see (Apt and van Emden 1982) and (Lloyd
1984)).

3 FIXPOINT SEMANTICS

Given a program F, let U(F) be the Herbrand Universe
for P, that is the set of all ground terms that can be formed out
of the constant and functional symbaols occurring in P and let
B(F) be the Herbrand base for P, that is the set of all ground
aroms which can be formed by wsing predicates of P and terms
in U{P). An Herbrand interpretation for P is a subset of B(P).
The st of all Herbrand interpretations for P (the power set of
B(F})) is a complewe lattice under inclusion, with B{l*) as the
top elament and & as the bottom element.

LetT and X be Herbrand interpretadons for P. We define
a mapping Tp; from the lamtice of Herbrand interpretations to
itself as follows:

Tpa(X) =1 { AcB(P) : there is a G->Ac[F] and X} G },

where }is the weak relation of satisfiability berween Herbrand
interpretations and clozed goals and is defined as follows:

SXFT

- XbAIfA=X

-x}?.ﬂﬁzfﬂ'ka and X} G,

- X}3xG iff X} [x]G for some t= U(F)
= X b D=xG iff T (@0 }G.

Tt can be proved (see (Giordano et al. 1938)) that Tp; is
mengtone and coatnuous, and therefore that it has a lease
fixpoint 1pf(Te))=uiiloTH (@) (T73(@) for shom). The
semantics of a program P, in this case, is a mapping from an
interpretation X (a subset of B(P)) to another interpretation,
namely the least fixpoint of Tpy, TER(@).

The set 1 in Tpy is intended o convey all the necessary
informations about the enclosing environment of the program
P, Such informations are required since in our language a
program P cén be a subcomponent of a larger program P, that
is P ecan occur in a block inside P'. Since a Herbrand
intcrpretation consists of a set of ground atomic formulas on
the Herbrand Universe, we can consider such an interpretation
a5 an environment which associales with each predicats
symbol in the program 8 denotation, that is the set of tuples of
terms for which the predicate is true. Hence, thers is an
immediate parallel with standard programming languages,
whose denotational semantics is defined as a mapping between
environments.

We shall prove that Tep (@) is the set of all ground
atomic formulas operatdonally derivable from P, and, more
generally, using the relation of weak satisfiability, that

Teu(@ G iff P |-G,
namely, that the fixpoint semantics is equivalent o the
operational semantics. To prove this equivalence, we prove
separately soundness and completeness of the operational
semantics with respect to the fixpoint semantics,

Theorem 1 (Soundness). Let P be a program and G be &
closed goal.
FI-G = Tia(@)}0.

Frogf. If P |- G then there is a dedvation (W 1,0),....(W;.5,)
whare W =P, G=0 and G,=T. We prove by induction on i<n
that, if W, =P |.[Py, for some m, then Ty vm-a (@0} Gus,
where Yo=0 and Y)=Tgy_ (&) Thus for i=n-1 we have
that Te e (&) ?‘G

* [f i=0 the thesis holds trivially.

= We assume that the thesis holds for i<k and prove it for i=k

considering all possible eases for G (double induction),

= If Gyy=T, the thesis obviously halds,

- If Gyp=A then, for some jSm, there is & G->A« [P;] and, for
some he<k, Gpy=G and Wo=PFl.JP;. By inductive
h}'ﬂﬂul!sis Tﬁ;ﬂ_:{ﬂ}} G. So, bj" definifon of T:pj:(]-h
.I‘iET":.IJ_] ;:”...1(@}} = Tﬂlrl_[l:ﬂ}, MDW, fﬂr a]l j,
Y STy (d}:‘!{j“ and therefore, since jSm, Ty (€79
= Trmopmor (). Thus Ae Tl ym- ().

- If G,=GyAGy then there are two non-negative integers
hg<k such thar G,,=0G,, Gpj=0y and W,y -W._] =Wpog-
By inductive hypothesis, Tim ym- (20} G, and Ti%, yu-r (20}
Gz Thus Tom vy (&)} GG,

- If G, ="dxG" we proceed as in the previous case.

= If Guu=D=>G' then, for some j<k, G, =G' and
Wy =P} [PnD. By inductive hypothesis, Towva(E0}F G,
that s Y, } D=>G'. Thus, by definition of Y.,
Trm ¥ (@)} D=>G" O

To prove the completeness of the operational semantics
with respect to the fixpoint semantics, we shall make use of
the following lemmas. ' denotes the set {T->A: A=T}, where
I is a subset of B{F).

Lemma 1, Let Ixslisls... be a vence of Herbrand
interpretations. If G s a goal and WSl b G then thero exists
k=0 such that 1, }G. :

Lemma 2. Let Dy and Dy be programs, G a closed goal and
W a list of programs (possibly empty). If DDy then
DyW |- G = DJW |- Q.

Lemma 3. Let P be a program, G a closed goal, I a subset of

BE(P) and W a list of programs {possibly empiy).
I'uPW -G = 1I'PIW |- G

Lemma 4, LetP bea pmﬁram. G a closed goal. Then
[T->A:FlA} -G =P | G.

Lemma 1 can be proved by induction on the structure of
G. Lemmas 2, 3 and 4 can be proved by double induction on
the length of the derivation and on the stucture of the goal G
(Giordano ot al. 1988).

Theorem 2 (Completeness). Let P be a program, G a clased
goal, I a subset of B(F).
Tra@}G = Pul*|-G.

Progf. We only sketch at the proof of the theorem, We
proceed by induction on the highest number n of levels of
nesting of == in P and G.
o If n=0 then there are no occurrences of == neither in P nor
in G. It can be proved that, for every k20,

TE(@)}G = PU' |-G (*)
by double induction' on k and on the stucture of G. Since,

by Lemma 1, if Tey(@)} G then there is a k20-such that
TE (@)} G, we conclude by (*) that PUI'|-G.
» Now we consider the case n=0. We assume, by inductive
hypothesfs, that the thesis holds for at- most n-1 levels of
nesting of == in P and G. It cen be proved (see (Giordano et
al. 1988)) that, given am Herbrand interpretation I and a
program P with at most a levels of nesting of =>,
T (@) ¢ {A : Pul’l-AL
By making use of this inclusion we can prove the thesis for
ne=0 by induction on the structure of G.
- If G=T, it is obwvious.
- If G=A, then T\(B)} A = AeTS(@)c{A : PUI'FA} =
Pul-AL

= If G=0AGy, then Tp.](ﬂ]}ﬂ |’|G1

= Ty (@)} Gy and T25(@0} G,

= PUI"|-G, &nd PuI®|-G, (by inductive hypothesis)

= PG 1 AG 5.
- If G-am‘.]', we proceed as in the previous casa,
- If G=D=>0", then T (@)} D=>G"

= Tpx (@)} G, where X=Tg3 (&)

= DuX*-G', where X=Tgj(@) (by inductive

hypothesis, since D and G° can comtain at most
n=1 levels of nesting of =),

= X*ID}-G", where X=Tg}(&) (by Lemma 3)

= X'[-D==G", where X=Tg) ()

= (Tf) (@N[-D==G

= {T-»A : Pul*}-A} |- D=>G" (by Lemma 2, since

Tr(@)lA : PUI'AY

= Pul*|-De>G" (by Lemma 4). (m]

Finally, from Thecrems 1 and 2, for I=8, we have
Tro(@)}G iff PLC
that is the operstional semantics is sound and complete with
respect to the fixpoing semantics,

As a particular case, for G=A
ﬁETp"ﬂ E@'} iff PE‘-AH:
that is
Tra(@)={A : Pl-AL

Az gn example, let us consider onee again the program P
of Example-Z. We want to determine whather G=5 can be
derived from F, that is whether se Tpa (&)

Example-5.

Te s {@k={q}
?{@hTr.u{{q}}-{ng}
{E)=Tp el f5D =053 =1ip(Tp 2

Motice that to determine whether s belongs to Tpa(X) it
is necessary to determine whether TR'x(@)} p with D=
{qnr->pIn(T==r) (fifth rule of the definiton of §. For X=2 we
have Ifp{Tp x }={r} so that p is not satsfied in Tfp(@). On
the contrary, for X={q} we have Ifp(Tp x)={q.r.p} so that p is
satisfied in TY (@) and seTdz (€. If we replace the first
clause of P with the clanse r->q, the geal G=s is no more
satisfiable by F, since in this case Ty (@)=,

4 MODEL-THEORETIC SEMANTICS

Let o be a closed formula, that is a goal or a definite
clense. Given an Herbrand interpretadon I for o, we define
Nl=ct {1 satfsfies o) by induction on the sructure of o as
follows:

393

-I=T

- Il=A iff Ael

- I|=G AGy iff T|=Gy and I=G;

- [|-3xr:] iff I|=[x/t)G for some ta Ule)

- [|=D=>G iff, for all I', (Il and I'|=D) = I'|=G
- l=G-=A iff =G =1I=-A -

= Tl=YxD iff I=[x/t]D for all te Ufo)

= Tl=DADy iff 1l=D; and [|=D.

Let P be a program and T an Herbrand interpretation for
P I satisfies P ([|=F), that is I is a model for P, if | satisfies all
clauses in P. We denote with M(P) the set of all Herbrand
models of P. A closed goal formwla G is a logical
consequence of P (Pl=G) iff for all interpretations 1 of P, Ij=P
=3 Jj=G. Motice that, from the definition of [[] given in
section 2, it follows that I}=P iff for all G-=Ae[P], [|=G-=A.

It nesds to be noticed that the two different implications
-> and => have been given different semantics. The
implication -> is the classical one, while the implication ==
has a semantics similar, under some respects, to that of the
implication of intwidonisdic logie. Our model-theoretic
semantics is, nevertheless, simpler than Kripke semantics for
intuitionistic logie (see section 5), since ‘an Herbrand
interpeetation is defined to be a subset of the Herbrand base as
for classical logic; we don't need to intoduce the notion of
worlds as in Eripke interpretations. As a result, wé shall see
that, for every program P there exists a least Herbrand model
of P and this gives the possibility to prove the equivalence
betwesn model-theoretic and fixpoint semantics in the same
way as it is done for Homn clause logic in (Apt and van Emden
1982),

To prove the eguivalence between the two semantics, we
establish some lemmag first.

- Lemma 5. Let P be a program, G a closed goal and I, and I

two Herbrand interpretations for P,
and Ty/=G.

Progf. Obvious, by induction oa the strucure of G.

If I;nly)=G, then I)|=G

Lemma 6 (Model intersection property). Let P be a program
and I; and Is two Herbrand interprétations for P. If I; and I,
are models of P, then 1,1 is a model of P.

Proof. Tt can be proved, by induction on D, that, for every
clause D in P, I;|=D and [Jd=D = I;rl,|=D {see (Giordano et
al. 1988)).

As a comsequence of Lemma 6 we have thet the
intersection ~M(P) of all Herbrand models of P is a model of
P, namely the least Herbrand model of P.

Lemma 7. nM{F) = {A ; Pl=A}.

Proof. Pl=A
= for all I, =P = I|=A
= for all 1,]|=P = Ael
Since M@P)={I : I|=-P}, we have that for afll Herbrand
interpretations I, Te M(P) = Ael
But ~M(PjeM(P), thus Ae~M(P). O

We now prove soundness and completeness of the
fixpoint semantics with respect to the model theoretic
semantics,

394

Theorem 3 (Soundness and completeness). Let P be a
program, (i & closed goal and 1 a subset of B(F) (remember
that I*={T-=A, A=l}),

TE (@G iff AMPUIY)=G.

Progf. By induction on the highest number o of levels of
nesting of == in P and G,
If ne0 then there are no occomences of => neither in P nor
inG. Letl and X be two Herbrand interpretations. We shall
show, thar

(I} X}GifFX-0 and

(2} TF{@)=rMPuI),
From these relations the thesis can be immediately derived.
(1} can be easily proved by induction on the structure of G.
If G=T, it is obvious.
If G=A, X} A iff AcX iff X|=A.
If G=G]I'IG':| Xlr GGy

iff X0, and X} G, g

iff X|~G, and X|~G, (by inductive hypothesis)

iff XF-G ||'IG;.
If G=2xG', the praof is similar,
The case G=D=>0G" does not occur, since n=0,

To prove (2) it is sofficient to show that, given 1wo
Herbrand interpretations [and X,
(3 IcX and XeM(P) iff Tp (X=X,

In fact, T{3(@)=
=X : Tp (X)X}
={X : XaM{P) and I=X}, by (3),
=n{X : XeM(P) and X}=I*}
=n{X : X|=Pul'}
=rMi{Pu1").

We shall prove that (3) holds for =0,
From left to right. Let us assume that IgX and XeM({P). We
want to show that Tpy (XX, I AeTp (X) then either AcT
and then Ae X, or there is a G-»Ae [P] such that X} Q. G does
not contain occurrences of =, therefore X} G implies X]=G.
Since, in addition, XeM(P), that is for all G->Ac [P] X|-G
implies X|=A, we have that X|=A. Thos AcX.
From right o left. Let us assume that Te(X)=X, We want w0
prove that 12X and Xe M(P).

Tpy (X)X

= for all A, AeTp;(X) = AeX

= for all A, (Ael or there is G->Ae [P] such thar

XG0y = Ack.
Thas for all A in I, Al implies AeX, that is I=X, and if
there exists a G->A=[P] such that X} G then AeX. Since
X} G implies X}=G, we have that, far all G-sAe [P, if Xj=0
then AeX, that is XeM(P). Thues we have proved (3),

* If n=0 we assume, by inductive hypothesis, thar the thesis
holds for at mose n-1 levels of nesting of => in P and G. We
prove the thesis for n levels of nesting, as in the cuse n=0, by
proving (1) and (2). Again, {1) is proved by induction on the
structure of (.
If G=T, G=A, G=G AG, or G=Jx(' we proceed as in the case
n={l.
If G=D=3{", X} D=>G'
iff TEx (@) G
iff AM{DUX")=G" (by inductive hypothesis, since D
and (3 ean contain at most 0-1 levels of nesting of =).
iff for all I, Te M{DUX") = T]=G*

iff for all 1, I=Doi” = 1)=G’
iff for all I, X1 and 1D = I|=G'
iff X|=D=3(3",

(2} is proved as for n=0 by showing that (3) holds. In doing
this, we use the fact that each formula in P containg at most n
levels of nesting of => and that (1) holds for n. o

From Theorem 3, for 1=@, we have
T;:':B{Q:I F G iff I"‘IM[PH-G'.
Since mM{PI|=G
iff for all I, Te M(F) = [|=G
(by lemma 5 and since ~M{P)e M(P))
iff for all 1, Ij=F = I=G
iff P|=(,
the fallowing reladon holds
Trp (@G iff Pl=G,
that is the fixpoint semantics is sound and complete with
rezpect to the madel-theoretic semanrics.

5 AN ALTERNATIVE MODEL-THEORETIC SEMANTICS

BASED ON KRIPKE INTERPRETATIONS

In the last section we have defined the model-theoretic
semantics of our language by employing Herbrand
interpretations defined as subsets of the Herbrand base. We
shall now define ancther model-theoretic semantics for the
languzge, by making use of Kripke interpreations. Again we
restrict ourselves to comsider inerpretations defined on the
Herbrand universe. The satisfiability relation is defined in the
same way as in positive intitonste logie, with an extenslon
due to the presence of the two different kinds of implication,

Let o be a closed formula, thet is 4 goal or a definite
clavse. A Kripke interpretation M for o is a triple <W,gl,>,
where W2 is a partially ordered sst of worlds and T,e W
i% a world of M such that 1], for any world Tof M (Le. Iy is
the least world), We define the satisfiability relation berwesn
an interpretation M and a formula o in 2 given world T of M
by induction on the structure of oo, as follows:

- Mi=T

- M=A iff A=l

- M= G AG iff M|=;G, and M |G,

- M= 3xG iff Mi=; [x]G for some t= Ulc)

= M|m D=2 iff, for each world I" of M,
(Il and M|=D) = M|=pG

= Mg G=A iff M|5G = MgA

- M= VxD iff M= [2]D for all 12U

- M|=DAD; iff M|5,D, and M|=D,

An interpretation M=<W,c,l,> satisfies a formula o iff
Mi= . Let F be a program and M a Kripke interpretation
for P. M satisfies P, if M satsfies all the clauses in P. Let G
be a closed goal formula. G is a logical consequence of P
(P|="G) iff for all Kripke interpretations M for P, M|s P =
Mi= G (we use am apex to distinguish between logical
consequence in the two different model-theoretic semantes).

Motice that if we restrict the language to the propositional
case and to have a unique implication symbol {used both in
goal and in clause) with the semantics of ==, this semantics is
the same (with @ change of notaton) as that presented in
{Gabbay 1985), which is the semantics of intuitionistic logic.

On the other hand, if we restrict the language by eliminating
block goals and so the implicadon ==, we have clearly a
semantics for classical logic (only the least interpretetion in a
world is uwsed). We can therefore consider == tn be the
inmuidonistic implication, while > is the classical one.

This model-theoretic semantics is not equivalent to that of
the previous section in the geperal case. In fact, for example,
a=>b|=b and a=>b|w'b.
In fact, every interpretation 1 that satisfies a=>h must satisfy b
o, because, if not, there i3 an interpretation I'=Iuw{a}
reachable from [which satisfies & but not b (against the
definition of satisfiability for an implication goal). On the other
hand, there are Kripke interpretations which satisfy a=>b in
their initial world but do not satisfy b, such as for insmance the
imterpretation M=<{1,l}.=.Ts>, where 1= and I,={b}.
Mevertheless, if we restrict ourselves to determine whether a
program is a logical consequence of a goal in cur language,
the two semantes are equivalent. In fact it can be proved that,
given a program P and a closed goal G,
Pl="G iff PI=G (*¥).
The previous example, since a=>b iz & goal, doss not satisfy
the restriction and so the equivalence doesn’t hold.

To prove (**) we state the following lemmas.

Lemma 8. Let o be a formula (that is a goal or a definite
clause), T a subset of B{x) and M the Kripke interpretation
=W,z >, where W={I" : I'e 28 and 11"}, Then

Tlct iff M=o

Proaf. By induction on the smocure of the formula oo

Lemima 9. Let D be a definite clause, G a closed goal (we
assume that G contains only non-legical symbols that occur in
D), 1, and I subsets of B(D) and M the Kripke interpretation
=W, l=, with W2 ®? and Ie W, Then

(1) I|=G = M|=G.

(2) 12D = M|xD.

Progf. By induction on the number of levels of nestng of ==
in Dand 3.

Since a program is a set of closed definite clauses, if I[=P
then there is @ clanse D such that I[#D and, by Lemma 9, we
have that M| D. Thus M|#P. Therefore, relation (2) holds
for any program P, not only for any definite clauses.

Theorem 4. .Lal:Pbeapmgrm.andGheagual.
PI="G iff PI=G.

Proof. From left 1o right. By hypothesis, for all interpretarions
M, Mi=P = M= G. We want 1o prove that for all the
interpeetations I, I|<P =+ I|=G.-Let I be an interpretation such
that Il=P. By Lemma 8§ then M|=P, where M is the
interpretation <W,g,I> and W={I' ;: 'e2®®} and IgI'}. Thus,
by hypothesis, M|=G and, again by Lemma &, I|=G.

From right to left. By hypothesis, for all interpretations T, T|=P
= [l=G. We want to prove that, for all interpretations M,
M|= P = M|=G. Given an interpretation M=<W.clg>,
there are two possible cases: either Ioj=G or TP, If Ih=G
then, by Lemma 9, Mi=G; if Ig#P then, by Lemma 9,
M= P. Thus we have that either M|= G or M|# P, namely
Mis P = Mi= G (m}

395

6 AN OPERATIONAL SEMANTICS
WITH SUBSTITUTIONS

The definition of the operational semantics given in
sectlon 2 is wery simple since, given a program P, it
intradirces, such as in (Miller 1986), the set [P] of all ground
instances of the clauses in P and doesn’t involve the notions of
substinytion, unification and varable renaming. We shall now
present a less ahstract operational semantics, which is clearly
equivalent to the provious one and s defined using
substimtions, unification and varisble renaming,

Let Pyl.[P, be a not empty list of programs, let G be a
elosed goal and let & be a substitution. 'We define derivability
of G from the list P;|.|P,, with substitution 8, by induction on
the structure of G, in the following way.

{1} PylfP, |- T with substitudon I {identity substitution);

(2} if A is a closed atomic formula, Pyl JP, |- A with
substitution @ iff
for some i<n thers iz a formula ¥x,..¥x,G->BeF,; such
that p=mgu(A.B") and Pyul.JPp | G'J with substitution
¢ and B=pd, where G'->B' is the clause obtained
renaming the universally quantified variables xg,..,%;

{3) PyL.JP, |- G1AG; with substitution @ iff P[Py [- G, with
substitution & and Py3lJP,é |- Gub with substitution p
and B=tyL;

(4) Py|JP, |- 1xG with substitation § iff Py|.JF, |- G' with
substitution 8, where G' is chiained from & by renaming

X
(5) Pyl.JP, | D=0 with substimtion 9 iff P JFD |- G
with substitution 8,

Motice that free variables can occur both in a goal and in
programs of the list Py|.[P,. For this reason in rules (2) and
{3) we apply substitutions not only o the goals, but also to the
programs in the list. Since the initial program P, is a set of
closed clauses and the inital goal is a closed goal formula,
they do not contain free variables. Free wvariables can be
inroduced in 2 goal by renaming the existentially guantified
variables associated to the goal itself (rule (4)); fres variables
can be introduced in the list of programs by mle (5} whenever
there is some free variable occurring in D, in the block goal
D==(. Existential variables are renamed once, as soon as the
existential gquantifier is dropped out by mile (4), whereas
universal varigbles of 2 clause are renomed every time the
clauss is selected to resolve an atomic goal (rule (2)); the free
variables which can occur in that clause are not renamed.
Rule (3) is defined in such a way to preserve the sharing of
variables between Gy, Gy and the programs in the st and to
prevent from an improper use of the free variables in the

programs.

For example, the goal Gep(a)ap(b) must not be
operationally derivable from the list of programs L=
{qla)aib)} | {a(x)-=p(x}}, since the variable x in the list is
free and not eniversally quantified. Instead, the goals p(a) and
pib) are individually operationally derivable from that list

396

TTOWARDS A CONCRETE IMPLEMENTATION

Static featyres of programming languages allow efficient
implementations, especially as far as compilation is concerned.
In order to show this in the case of the blocks of this paper,
we outline here a more concrete operational semantics, where
substitutions are not actually carricd out but only kept in the
form of variable bindings.

According to the formalism introduced in (Martelli and
Rossi 1986) and based on that used by the unification
algorithm in (Martelli and Montanari 1982), a substiution can
be represented by a sysrem of eguations in solved form, ie 2
system of the form {x;=t;X;=ls,...%5=1; }, where the x,"s are
distinet variables and the ;s are terms,

Analogoosly to conventional programming languages, in
this semantics programs are considered as code {source terms)
and are pever modified during the compuration, whereas the
terms in a system of cquations are considered a5 daove
{construcied terms). The renaming of variables in a source
term is described by means of an environment where variable
idendfiers of the source term are associated with aew variable
names, For instance, to rename the clavse qQosn(y)->pixy)
we define an environment (xixyyfy;) and a system [x,=,
¥i=27} to represent the fact that initatly the two varisbles are
not bound. Subsequent steps of the computation can chanpe
the bindings in the system, whereas the environment will not
change. Thus we see that the system of equations plays the
role of the sfore in conventional (imperative) languages.

According to this semantics, the meaning of a geal in
standard Horn clause logle depends on a program P, an
environment Env and a system of equations Syvs. For instance,
if the goal is an atom A, its semantics is <F,Eov,Sys> |- A
with solution Sys" iff
there i a clause G->Be P with variables x,,...x, such that
Sysy=unify{ A Env, B(x /" aXe 0%,) Sysi{x"=@,..x, "=0})
and <P(xfx ", %0%,"),8ys,>G with soluton Sys', where
xy".x, " are new variables,

“unify(TE;,To.Es5)" uniftes the two source terms T
and Ty in the environments E and E; respectively with respect
o the system 5, and retumns, if the wnification succeeds, the
madified system.

In the case of our extended language, bath the program
and the environment must be modified to take into account the
block structure, Thus Env becomes a list of environments and
P becomes 2 list of pairs (P,Env), whers Env; is the
environment where the variables of P, are bounded.

The operational semantics is now:

(1) <P.Env,Sys= |- T with solution Sys;

{2) if A is a closed atomie formula,
<P E) (P B) Env,Sys= |- A with solution Sys' iff
for some i there is a formula Y¥x,,..,¥x, G->Be P, such that
Sys;= unify(A,Env,BElxyx," meln), Sysuix,"=Br.,
% =@} and <[PyE)|LHP B LE xyfny . g "), Sys > |-
G with solution Sys', where x,",..,x, " are new variables;

(3) <P,Env,3ys> |- G;AG; with solution Sys© iff
<P, Env,Sys> |- G, with sclution Sys; and
<P.Env,Sys = |-G, with solutien Sys';

{4) <P.Enwv,Sys> |- dxG with solution Sys' iff

<P Envi(x/z")Sysw{z'=E)= |- G with selution Sys';
{5) <P,Env,Sys> |- D=0 with salution Sys" iff
<P[{DEnv),Env,8ys> |« G with solution Sys'.

Matice the different treatment of variables and clauses in
the above semantics. Variables are introdoced by quantifiers;
clanses by blocks. There are two different lists for for
variables and clavses, the environment list and the program lst
respectively. The envircnment list is extended with a new
block either when there is an existentially quantified goal (rule
(4)) or when a universally quantified clavse is selected as input
clause for resolution (rule (2}). On the contrary, & new block is
added to the list of programs only whenever a goal (D=>0) is
encoungered.

This semantics is very close to actual implementations
and can be used as a gulde for writing an interpreter or a
compiler. In particular, the system of equations can be easily
implemented in & heap-like structure as a graph, where each
node corresponds to an equation, and the environments can be
put, 25 in uspal block-structuréd languages, on a stack of
activation records. As peinted out in (Martelli and Rossi
1986}, the extensions required to handle blocks with respect to
implementations of standard Prolog can very naturally be
achieved, by applying well known techniques for accessing
non local varisbles such as static pointer or desplay. Further
run time structures are of course needed to implement the
nondeterminism by means of backracking. Starting from such
an implementation, it is then possible to apply wvarious
optimizations which are well-known in the literatre desling
with implementation of Prolog-like languages.

REFERENCES

Apt KR, van Emden M.H., "Contributions to the theory of Logie

ing", J. ACM, 20,1982, 841-B62.

Bowen K.A., HKowalikd R.A., “Amalgamating Langnape and

age in Logic Programming”, in Legic Pro
{Clark and Tarlund, eds.), Academic Press, 1982, 153-172.

Giordano L., Marnelli A, Rossi GF, "Local definitions with static
scope rubes in Logic Languages”, Intemal Report, University of
Turin, May 1985,

Gabbay DM, Reyle M., “M_Prolog: An Extension of Prolog with
Hypothetical Implications 1", Journal of Logic Programuning,
nod 1984, 319-355, .

Gabbay D.M., "N_Prolog: An Extension of Prolog with Hypothetical
Implications.II. Logical foundations, and negation as failore”,
Jowrnal of Logle Progranuning, nod, 1985, 251-283,

Lioyd J.W., Foundations of Logic Programming, Springer-Verlag,
1924,

Martelli A, Montanari U., “An Efficient Unification Algorithm™,
ACM TOFPLAS, 4, 2, April 1982,

Martelli A, Rossi GF, "On the semantics of Logic Propramming
Languages®, in Proc. af the Third fat. Conf. on Logic
Pragramming, LNCS, vol. 225, 1986, 327-334,

MeCarty LT, “Clausal Inteitionistic Logie. 1. Fixed-Point
semantics” Journal of Logic Programming, no.d, 1985, 251-283,

Miller Dn A, "A Theory of Modules for logic Programming”, JEEE
Symp. on Lopic Progranuming, Sept. 1986, 106-114.

Mait Abdallah MA., “Tons and local definitons in Legic

ing", in STACS &6, LNCS, vol.210, 1986, 60-72.

Warren 5., "Database updates in Prolog”, Proc. of the Int. Conf,

on Fiftk Gensration Compuler Systems, 1984, 244-253,

