PROCEEDINGS OF THE INTERMATIONAL CONFERENCE
0OM FIFTH GEMERATION COMPUTER 5YSTEMS 1958,
edited by 100OT. & 1COT, 1988

COMMITTED CHOICE FUNCTIONAL PROGRAMMING

Giaran Bage

Gary Lim:istrnm

Computer Science Laboratory Depertment of Computer Sclence

Ellatntel
§-125 25 Alvsid, Sweden

ABSTRACT

We ocutline the design, semantics, implementa-
tion, and application of a normal crder functional lan-
guage entiched with logical variables and commitied
choice indeterminacy. Our notion of committed choice
functional programming, motivated by Ueda's Guarded
Horn Clauses, iz besed on trial unification of formal
parameters (serving as guards) and actual parameters
(serving as goals). An implementation based on fine
grain (8, K, 1) combinators is described. Compilation
is accomplished through a simple extension of Turner's
classical abstraction method, accompanied by a paral-
lel combinator graph reducer. This system uses three
extensions in support of committed choice: (i) a guard
notation applicable at each level of function Currying;
(ii} & solve library function that conducts commitment
competitions, and (iii) a combinator R that “protects”
Iogical variables in goals during trial unification (unifi-
cation where all goal variables are treated as read-only).
The reducer has been implemented and empirically val-
idated on machines with both peende and real conenr-
rency. Pragmatically, we have learned that normal or-
der and unification are a very powerful semantic com-
bination, but require careful use due to the semantic
visibility of subtle evaluation causality effects, These
effects are illustrated on a one-pass definitionfuse ex-
ample using indeterminate fair merge.

1 FUNCTIONAL PROGRAMMING WITH
LOGICAL VARIABLES

1.1 The Added Power of Logical Variables

Functional and logic programming languages share
common roots as declarative programming methodolo-
gies, but exhibit several distingisishing characteristics
as well. Functional programming relies heavily on al-
gebraic concepts, with a sirong emphasis on combin-
ing forms, facilitated by higher order functionals and

University of Utah

Salt Lake City, Utah 84112 USA

Curried notation. However, the pervasive producer-
consumer orientation of functional programming dic-
tates that all variables must be bound at the place of
their introduction,

In contrast, logic programming offers the notions
of logical variables and delayed binding via unification.
Several researchers have discovered that logical vari-
ables, even when unification is required to always suc-
ceed, can add significant power to normal order fune-
tional programming languages. Capabilities facilitated
by this extension include:

1. Computation by constraint intersection, e.z. poly-
morphic type checking (Milner 1978);

2. "Micro object” support for object oriented pro-
gramming, e.g. for direct message delivery;

3. Monotonic refinement of shared data structures,
e.g. functional representation of graph reduction
interpreters (Pingali 1986, 1987), and

4. Stream interconnection of processes that are not
designated a priori as producers or consumers,
e.g. simulation of hardware systems involving
bidirectional or broadeast communication {buses
oI pass transistors).

1.2 Logical Variables and Functional Pro-
cesses

It has been widely observed that normal order func-
tional languages (NOFL's) constitute a natural frame-
work for diffusing processes over parallel architectures.
These process relationships, simple or intricate, fun-,
damentally rely on overlapped production and con-
sumption of lazily evaluated data structures (notably
streams). All efficient implementations of functional
programming exploit this predictable information flow,
e.g. dataflow, demand propagation, or normal order
graph reduction.

When logical variables are introduced into a func-
tional language, the induced process organization be-
comes more subtle, In effect, logical variables permit
the deferred specification of the “producer™ of the bind-
ing of a variable, resulting in unpredictable information
flow directionality among processes (Reddy 1986). As
Shapire has observed (Shapiro 1983), this “isotropic”
flow of infermation through logical variables greatly en-
riches the possible patterns of process synchronization
and eommunication.

One may ask whether the traditional NOFL im-
plementation strategies can be adapted to deal with
these new dimensions of process interaction, while re-
taining lazy semantics, higher order functions, and Cur-
rying. In a previous paper (Bige and Lindstrom 1987)
we showed that the answer is afiemative, at least for 5,
K, I combinator reduction implementations.

Mevertheless, the semantic and pragmatic inter-
actions of normal order evaluation and unification can
be quite subtle. Introducing logical variables weakens
the doctrine of referential transparency, by the follow-
ing argument, Suppose a function 1v(n) delivers a list
of n logical variables. Then whether append(1vin),
lv{n}) shares or replicates its calls on 1v{n} will be
semantically crucial {e.g. suppose the appended list is
unified with [1, 2, ..., 2#a]).

Moreover, sinee the “read-only™ access of a logical
variable does not “force™ ite evaluation, processes mak-
ing such accesses must be prepared to suspend, await-
ing & future “action at a distance” binding the variable.
The resulting looser process coupling has many adwvan-
tages, but poses new implementation challenges as well.

1.3 Dealing With Unification Failure

In (Lindstrom 1985) it is shown that logical variables
can be inearporated inte a NOFL while preserving par-
zllelism, determinacy, and “definiteness™. By the last
term we mean, informally, “each complete response to
a finile top-level demand pattern, not reporting & uni-
fication error, will not later be determined to involve &
unification error unless the demand pattern is refined.”

While this well-behavedness for “correct” pro-
grams is pleasing, we are nevertheless left with a vexing
problem: how to recover fram unification failures. Note
that in a parallel setting an if unify(x, y) predicate
would be necessarily be indeterminate since its result
may be true or false depending on the current state
of evaluation of x and y, if their ultimate bindings are
incompatible.

“deal with the same phenomencn.

667

Concurrent logic programming languages musi
r While some re-
searchers have proposed io retain (at least set-level)
determinacy by careful blending of AND and OR par-
allt:];'mm., others have chosen to embrace indct.r:-.rmim.cy
and exploit its operational sensibility and applicational
versatility. In this paper we follow in the footsteps of
the latter *commitied choice” language designers, and
adapt their concepts to a NOFL with logical variables.

2 SASLH+LV

In (Bige and Lindstrom 1987) we introduce
SASL+LV, a prototypical NOFL with logical variables.!
This language is meant to be a platform for experimen-
tation in semantic “gene splicing.” and not an example
of hew logical variables should be introduced in a fully
reasoned manner into a lazy functional language.

SASL4LV is (essentially) a subset of SASL
{Turner 1983), extended to include logical variables and
parameter passage by unification. SASLHLV differs
syntactically from its base language only through the
generalization of formal paramelers to arbitrary expres-
sions, rather than the customary sequence of distinet
identifiers {or palterns reducing to such). The informal
sermantics of a SASL4LV function £ formal = body
applied to exp are:

1. Create new instances of formal and body;
2. Unify exp with this instance of formal;

3. I successful, return the value of this instance of
body under the bindings that resulted from the
unification;

4. Otherwise, return the atom ERROR.
2.1 Semantic Impact

The impact of logical variables on the formal seman-
tics of SASL4LV is essentially the injection of a well-

YThe name is in homage to David Turner, and is not intended
to sugpest that SASL+LY bears any direct relationship to the
“real” SASL, or its descendants,

668

diff (difF((1:(2:X1):3) ((3:7):Y))
{({4:ni1) :mil)
vhare
diff (A:B) (B:C) = A:C

Figure 1: Sample SASL4LV function.

behaved (i.e. monotonic) form of side-effects. In par-
ticular, the sharing of all references to 2 given logical
variable is semantically vizible via unification.

To illustrate, consider the SASL4LV function
A:B B:C = A:C

which mimiecs the Prolog append relation on a form of
“difference lists”. We assume that &, B, and C all de-
note logical variables (we adopt the upper case initial
letter convention of Prolog). The right associative in-
fix operator : denotes lagy pairing. The application
diff (1:2:X):X (3:nil}:nil (where nil is a special
list ending atom) returns {1:2:3:ni1) :nil. The cor-
rectness of diff directly depends on both oceurrences
of symbol B denoting the same logical variable.

A combinator-based implementation strategy for
SASL4+LV is described in detail in (Bige and Lindstrom
1987). As a foundation for our committed choice exten-
sion, we brielly summarize its salient features here.

2.2 Fi Compilation
The general rule for compiling a function
f formal = body

is as follows. Suppose formal introduces n logical vari-
ables, vi, ..., v,. Then the compiled image of £ is
FM fb, where:

¢ [Rule CFM0:]1 Ifn = 0, fbis simply the Turner
compilationof P formal body (F is the lazy pair-
ing combinator). However, function definitions
within body (or formal, for that matter!) must be
compiled with awareness of rules CFNO and CFN1.

+ [Rule CFN1i:] Otherwise, n > 0. In this case fb
iz g?, where:

— g' is the compilation of
E ¥4 ... ¥y = P formal body.

— Since the variables vy, ..., v, are all dis-
tinct, comventional Turner compilation ap-
plies, ie. g* = [v1(...([v,](P formal
bodyld ...0

[Rule RFNO:]

FH (P formal body) actual =»
COND (UNIFY formal actual) body ERROR

[Rule RAFN1:]

FN £fb actual w=>
FN (fb new_lv) actual

Figure 2: FN combinator reduction rules.

— As in rule CFNO, inner function definitions
must be compiled in cognizanece of rules CFNO
and CFN1.

2.3 PN Graph Reduction

The reduction rules for the FN combinator are given in
Fig. 2. Note that:

1. Bule RFNL is to be applied only if Tale RFNG does
not apply.

2. Bule RFNO is the “base case” resulting from com-
pilation rule CFNO, i.e. where no further logieal
variables need to be instantiated and distributed
inte formal or body.

3. Correspondingly, rule RFN1 applies to representa-
tions resulting from compilation rule CFN1. Since
compile time abstraction was done over at least
one variable, the outermost combinator cannot be
F. -

4. The notation new.lv indicates the creation of a

© new logical variable node. Logical variables are
represented as node sets tail-chained into cycles.
A logical variable is created as a chain of length
one, denoted x=>(LV =),

As described in item 4, logical variables are repre-
sented as circular chains of nodes, anchored by a unique
instance of the LV combinator. Other logical variables
equated to the base LV are chained in as BV combinators.
Finally, read-only accesses of the LY anchoring the cycle
are also chained in, pending notification of its binding.

The rules for UNIFY exploit this chained represen-
tation of logical variables. UNIFY is strict in both its
arguments. Onece both arguments are evaluated (to an
atom, pair or logical variable), the UNIFY reduction rules
illustrated in Fig. 3 are applied. Of special interest

{Highest priority}

[Rele UN1:]
UNIFY x=*(LV tailx)
#=->(L¥ tailx) => I TRUE

[Rule UNZ:]
URIFY x->(LV tailx)
y=>(LV taily) => I TRUE
(merge cyclas)
x-» (LY tailx) => x->(LV taily)
y->(LV taily) => y->(BV tailx)

[Fule TH3:]
UNIFY x-»{LV tailx)
y =» I TRUE
(bind x to y)
[Rule UHS5:]
UNIFY x

y->(LV taily}} => I TRUE
(bind y to x}

[Rule TUNS:]
UNIFY (P ax bx)
(P ay byl = AND (UNIFY ax ay)
{UNIFY bx by)
[Bule UN10:]
UNIFY = x s> I TRUE
[Rule UHi1:]
UNIFY = y =» I FALSE

{Lowest priority)

Figure 3: Unification reduction rules (partial list).

is rule UNZ, which equates two logical variables. This
action is accomplished by “twisting” their tail links,
thereby merging their cycles, and converting one of their
LY combinators to BY. (The potentially anomalous case
of equating a variable to itself is handled by rule UN1.)

3 GUARDED SASL+LV

We now consider the primary subject of this pa-
per: extending SASL+LV to encompass a form of com-
mitted choice indeterminacy.)

3.1 Extensions to SASL4LV

The key ingredients in our committed choice extension
arc the following:

569

1. Goals: a means of applying competing guarded
functions to a common actual parameter,

2. Guarded funclions: syulactic and semantic de-
vices that designate functions as being guarded in
their application to goals. In the spirit of SASL,
this should be done per Currying level

3. Trial unification: insurance that logical variables
in goals should not become bound during commit-
ted choice competitions.

4. Arbitration and commilment: an indeterminate
operator that arbitrates among competing guard-
ed functions, and selects an individual winner
from among those reporting successful Lrial unifi-
cation with the given goal.

3.2 Syntax and Semantics

Goal expressions require no special notation. Guarded
functions are indicated by the keyword guard preced-
ing the formal parameter to be unified at that Cur-
rying level. Committed choice competition is denoted

by a solve operator, solve [gy, ..., gi] goal, for
B =0
The informal semantics of selve [g1, ..., Bl

goal is as follows:

1. An arbitrary selection is made of some g; that trial
unifies with geal.

2. Il none trial unifies, solve returns ERROR.

3. Otherwise, solve applies g; to goal using irue
unification.

We illustrate our experimental notation for
Guarded SASL+LV on a “fait” merge psende-function,
shown in Fig. 4.

merge [a, b] =
solve [gl, g2, g3] [a, B]
whera
gl (guard [H : T, 8]} =
H : merge [S, T1,
g2 (guard [8, H : T1) =
_ H : merge [T, 2],
g3 (sua;cd [nil, nill) =
nil

Figure 4: Fair merge in Guarded SASL+LV.

670

solve glist goal =
glist = nil -> ERROR;
gi goal
whare
- gl:igtail = glist,
gi = winner {gi goal} (solve gtail goal),
winner x y =
commit x y -> X;

v
Figure 5: The sclve operation.

COMMIT x y => TRUE {x != ERROR}

COMMIT x ¥ =» FALSE {y != ERROR}

COMMIT ERRDR ERROR => TRUE
COMMIT ERRDR ERROR => FALSE

Figure 6: Commit combinator definition.

4 COMPILATION OF GUARDED
SASL+LV PROGRAMS

4.1 Guarded Function Compilation

The compilation schema in Section 2.2 can be adapted
to deal with guarded functions by the introduction of
one new combinator G. In facl, the compilation of a
guarded function is simply that of its unguarded ana-
log £ fermal = bedy, but with the 8 combinator sub-
stituted for the FN combinator: (6 [wJ(...[w.J(P
formal body)...)).

4.2 The selve Operation

Fig. 5 gives the definition of solve. The auxiliary func-
tion winmer handles arbitration and commitment of
guarded functions in glist, as applied to geal. The
delivered guarded function (in ungearded form, indi-
cated by a non-ERROR value) is then applied to goal.

Note that solve itself does not use logical variables, let

alone guards.

The commit operation translates to a direct ap-
plication of the pseudo combinator COMMIT, defined by
the indeterminate rules given in Fig. 6. Although prob-
lematical from a formal semantic standpoint, its opera-
tional semantics are clear and easy to implement.

[Rule RGO:]
G fb actual => H fb fb actoal

[Rule RHO:]
" H (P formal body) fb actual =>
COND (UMIFY formal (R actual))
(FN £h)
ERROE}

[Rule RH1:]
H fb fb' actual =>»
H (fb new_lv) b’ actual

Figure 7: G and H reduction rules.

5 PARALLEL GRAPH REDUCTION OF
GUARDED SASLALV

It remains for us to deseribe how guarded func-
tions can be equipped to first do trial unification omn
a goal, and then deliver unguarded instances of them-
selves if that trial unification succeeds. To achieve this,
we must intreduce two additional combinators H and R,

5.1 G Combinator Reduction

The G combinator, and ils partner H, serve to intre-
duce read-only protection of the goal (actual param-
eter) during guard trial unification. This is arranged
by reduction rules that are close variants of RFNO and
RFW1, shown in Fig. 7. Rule RH1 applies only when
fb £ (P a b). Note the double instance of £b in the
righthand side of rule RG0. The first cecurrence is in-
stantiated with (local) logical variables by applications
of rule RH1. When these instantiations are completed,
irial unification is performed by rule RHO. The second
instance of the original £b has been kept “pristine”, and
can be used to construct the unguarded instance of the
function in (FN £b).

5.2 'Trial Unification In Guarded Functions

Rule RHO performs trial unification of the function guard
(formal parameter) and the goal (actual parameter)
with the aid of the R combinator. The R combinator
reduction rules are as follows:

[if a iz not LV:]
R (ab) =) (R a) (R b)
[if a iz an atem:]
Ha = Ia

Note that an B combinator forms & barrier between the
UNIFY that introduces it and any non-local logical vari-
able imported by a goal. In particular, any function
bodies referenced via B combinators have R-protection
distributed throughout them, lest they be carelessly ig-
nored as “Trojan Horses™ bringing in unprotected ex-
ternal lagical variables.

5.3 B Combinator Operational Control

The R rules can be freely applied. However, like all
combinator reduction rules, they must be applied with
a measure of restraint to avoid massive node copying
or even needless divergence. In fact, the R rules can be
applied very sparingly. The following “lazy™ strategy
is sufficiently thorough, and does not incor excessive R
combinator propagation. To reduce (R x):

1. Evaluate x.

2. Ux = (LV y) for some y, suspend unless a UNIFY
rule applies (see Section 5.4).

3 IHx=(ab c), a must be in normal form. Re-
duce {R x} to {a (R B} (R c}).

4. Hx = (a b), again a must be in normal form.
Reduce (R x) to (a (R b)).

5. Otherwise, x must be an atom; reduce (R x) to
(I x).

Several desirable eflccls result:

» The evaluation of x in a (R x) expression is done
in the ordinary (normal order) manner, This obwi-
ates any need for a special “read-only” evaluation

mode,

s Guarded functions will be protected from unifying
any LVs accessed Lthrough goals, as noted above.

s After evaluation of (R x), all B applications
within x will be “pushed below™ the levels in-
spected by any reduction rules applicable to this
{or other) usage of x. Examples:

1. (hd (B (P a B)))
=» (hd (P (R a) (R B)})
=> (R a);
2 R{8fg ¥
= (5 (Af) (BRgy
.=>» ((Rfy) (Rgyl

a7l

5.4 UNIFY Rules

We observe that by the operational policy just de-
scribed, any evaluated argument (R z) to a UNIFY com-
binator can only be of the form (R (LV x)). The uni-
fication rules in Section 2.3 (notably UN3 and UNS) will
handle all the resulting cases except the following:

1. (UNIFY (R (LV =)} y): Necessarily, y is not of
the form (LV =), since that case is handled by
rule UNS. Action: suspend until {LV x) becomes
bound to a non-LY valuoe.

2, (UNIFY x (R (LV y))J): Symmetric to case 1.

Note that the case (UNIFY (R (LV x)) (R (LV y)))
is subsumed by these rules. The effect in this case is
to suspend on the first argument, and then on the seec-
ond (since the UNIFY cannot complete until both become
bound}.

6 EMPIRICAL RESULTS

6.1 Implementation Status

Guarded SASL4LV has been implemented and val-
idated on examples such as the merge-based one-
pass symbol definition/usage problem given in Fig. &
((0:1d) indicates wsage of label id, and (1:id) indi-
cates definition of label id). Our compiler generates a
graph with 634 combinators for this example; reduction
yields the following answer within a few seconds en a
VAX 8600:

[0:7, ©:3, 1:3, 0:8, 0:8, 1:6, 1:7, 1:3]

Our compiler uses yace to produce an absiract
syntax tree, which is then converted to a combina-
tor tree through a compiler written in approximately
five pages of Standard ML. The reducer is written in
C (slightly over 3000 source lines), and builds on the
link permutation techniques used in SKIM (Stoye et
al. 1984) and Norma (Schesvel 1986) . As explained
earlier, the use of some form of multi-tasking (at least
gimulated) is inherent in the semantics of SASL--LV.
We model such concurrency using & Simmla-like simu-
lation package written in C++ (Stroustrup 1985). The
reducer also is operational on our 18-node BEN But-
terfly multi-processor, using a “task pool™ library task
package (Tinker and Lindstrom 1987),

6.2 MNormal Order Committed Choice In
Practice .

As we proclaimed from the outset, we do not consider
Guarded SASL+LV iizelf to be a coniribulion to lan-

672

strict (defuse (merge [=1, s2]})

whara]
gl = [(0:1000), €1:20003, (0,3000)],
82 = [(0:2000), (0:3000), (1:4000),
{1:1060), €1:3000)],

defuse & = bind 1 s nil,

bind n p Symtak =
P = mnil =» nil;
build (£ = 0 => H; n)
whare
build v =
(f:v):(bind n+i ptail
{enter (id:v) Symtab)},
(£:id):ptail = p,
enter (id:v) symtab =
lookup (id:v) symtab -» symtab;
(id:v) :aymtab,
lockup (id:v) symtab =
gymtab = nil =» falme:
1dl = id -» fixdef v wi;
leckup (id:v) symtabl
whara
(idi:v1):eymtabl = symtab,
fizdef X X = true

Figure 8: Fair merge one-pass definition/use example.

guage design. Rather, it is a laboratory vehicle for in-
vestigating the compatibility and synergy of two very
powerful semantic concepts: unification and normal or-
der evaluation, Our studies are still underway, but the
initial results have taught us that our initial enthusiasm
should be tempered with some caution.

s Advanfages: SASL+LV supports the composition
of higher order functions on infinite data struc-
tures, while expleiting deferred binding and inter-
process communication by monotonic refinement
of shared data structures. This opens genuinely
new possibilities for the design of declarative pro-
grams.

¢ Disadvantages: However, lazy evaluation can
cause unenvisioned delays in the binding of log-
ical variables. Indeed, sinee variable binding ae-
tions are a form of “gentee] side-effects,” they can
make visible when, and in what order, subexpres.
sions are evaluated. For example, in Fig. & the
applicative order function strict (not shown) is
necessary to prevent a deadleck in our implemen-
tation. Otherwise, the top-level (sequential) print
function would await the binding of the first us-
age logical variable, without forcing its binding by

evaluating the tail of the output string! Similarly,
in the same figure, one might have alternatively
defined enter as follows:

enter (id:v) symtab =
symtab = nil -> nil;
idl = id =-» fixdef v vi;
(idi:vi):{enter (id:v) symtabl)
vhera
(idi:v1) :symtabl = symtab,
fixdef X X = symtab

However, this often fails to “set” the value of the
final symbol defined, for the lazy top-level list con-
structionin (idl:vi):(enter (id:v) symtabl)
means the binding is never actually done unless
the symbol is subsequently used!

7 COMPARISONS TO PREVIOUS WORK

7.1 Functional Languages With Logical Vari-
ables

Many languages combining functional and logie pro-
gramming have been proposed, with varying degrees of
semantic and implementationsal ambition {DeGroot and
Lindstrom 1986). However, most do not directly corre-
spond to Guarded SASL+LV, e.g. by admitting only
deterministic parallelism, or by presuming cnly sequen-
tial evaluation. The closest examples are:

o [d Nouveau (Arvind et al, 1987, Nikhil et al. 1936,
Nikhil 1987}, which uses write-once [-structures
as a form of logical variables in a dataflow frame-
work;

o Kieburiz's F4L (Kieburtz 1986, Kieburtz 1987),
employing equational clauses within function def-
initions to solve for logical variable bindings.

Danforth has critically examined this language design
area as & whole (Danforth 1885).

7.2 Committed Choice Logic Programming

We have clearly benefited from the insights and experi-
ence of researchers working with the three best-known
commitied choiee logic programming languages.

& Concurrent Prolog: Even in its “fat™ form, Con-
current Prolog offers more power than Guarded
SASL4LV through its ability io create shadow
environments holding private copies of variables

conveyed into guards by goals. This permits cer-
tain categories of guards to succeed in CP that
would fail, or deadlock, in Guarded SASLHLV. [t
is difficult to imagine such a mechanism in a dis-
tributed graph reduction environment such as we
have described here, However, Concurrent Proleg
has a genuinely more difficult problem in its re-
quirement to export atomically all the bindings in
& guard's shadow environment upon commitment

{Taylor et al. 1986).

Parlog: Guards in Parlog are required to be safe,
i.e. not bind any variable in an input argument
in the head of a clause. This is quite comparable
to our trial unification policy. Indeed, Guarded
SASL+LV might be viewed as an attempt to el-
avate Kernel Parlog to a normal order user-level
language, without explicit mode annotations.

o Guarded Horn Clauses: Finally, we acknowl-
edge our primary inspiration from Guarded Horn
Clauses. Except for GHO's eagerness in ini-
tiating body trial evaluation concurrently with
guard trial evaluation, Guarded SASL+LV con-
ducts its commitment competitions in a manner
very similar to GHC (Ueda 1986). QOur imple-
mentation technique bears many resemblances to
techniques developed for distributed implementa-
tions of GHC, e.g. (Ichiyoshi et al. 1987}

8 CONCLUSIONS AND FUTURE WORK

We have outlined the design, semantics, imple-
mentation, and user pragmatics of a normal order func-
tional language enriched with logical variables and com-
mitted choice indeterminacy based on trial unification
of goals. Our findings indicate that normal order and
unification are a very powerful semantic combination,
but raise delicabe issues that must be investigated in a
full language design and implementation before a con-
clusive appraisal can be made.

Our work will be continued in the following direc-
tions:

1. Static analysis: Fine grain 5, K, I combinators
are very attractive for prototyping systems, but
have unattractive economic properties in larger
scale usages. We have preliminary results on
how static analysis can be applied to to the
compilation of SASL+LV to larger grain combi-
nators (Lindstrom 1986, Lindstrom et al. 1987,
Lindstrom 1988). These techniques cluster pro-
gram operators into larger granularity combina-
tore through a static analysis technique that as-
sesses both operator strictness (graph partitioning

673

into co-evaluation equivalence classes) and mode
effects on logical variables (e.g. “read-only™ occur-
rences). g

2. Applications: We plan more thorough appraisal
of the pragmatic merits of Guarded SASL+LV
through application to the construction of a sys-
tem for concurrent object oriented programming
(Kahn et al. 1986), and its demonstration for
hardware description {Sheeran 1985). In the lat-
ter application, we view lazily evaluated streams.
of logical variables as potentially very atiractive
for modeling such phenomena as synchronous sys-
tems using pass transistors and arbitrated buses.

3. Shadow bindings: Finally, we aspire to incorpo-
rate some form of prnviaiuma] Hnding environ-
ments local to guards, as per Concurrent Prolog.

ACI{NGWI.EDGEMEN‘I‘S

We are indebted to Lal George for his tutelage
on committed choice logic programming languages; to
Peter Tinker for the Butterfly task library package; to
John Evans for the yacc-based compiler front end, and
to Dewming Yeh for his insights on static analysis.

This research was supported in part by grani
CCR-8T047T8 from the National Science Foundation,
and by an unrestricted gift to the University of
Utah from Telefonaktiebolaget LM Ericsson, Stock
holm, Sweden.

References

[1] Arvind, R. S. Nikhil, and K. K. Pingali. I-
Structures: Data Structures for Parallel Comput-
ing. In Joseph H. Fasel and Robert M. Keller,
editors, Graph Reduction: Proceedings of o Work-
shop, pages 336-369, Springer-Verlag, 1987, Lec-

. ture Notes in Computer Science No. 279,

[2] Goran Bige and Gary Lindstrom. Combinator
Evaluation of Functional Programs with Logical
Variafles. Technical Report UUCS-87-027, De-
partment of Computer Science, University of Utah,
October 1987,

[3] 5. H. Danforth. Logical Variables for a Functional
Language. Technical Report PP-120-85, Microelec-
tronics and Computer Technology Corp., 1985,

[4] D. DeGroot and G. Lindstrom. Legic Pro-
gramming: Functions, Relations and Eguations,
Prentice-Hall, Englewood Cliffs, NJ, 1086, $39.95;
reviews in Computing Reviews Aug, 1987, no, 8T08-
0643; SIGART Newsletter, July 1987, no. 101.

674

[5] M. Ichiyoshi, T. Miyazaki, and K. Taki. A Dis-
tributed Implementation of Flat GHC on the
Multi-PSI. In Jean-Louis Lassez, edifor, Proe.
International Conference on Logic Programming,
pages 257-203, MIT Press, Melbourne, Australia,
May 1987,

[6] K. Kahn, E. D. Tribble, M. 8. Miller, and T, G.
Bobrow. Objects in Concurrent Object Program-
ming Systems. In Proe. GOPSLA 86, pages 242-
257, Portland, OR,, 1986.

[7] Richard B. Kieburtz. Functions + Logic in Theory
and Practice. Febroary 25, 1987, 21 pp. unpub-
lished paper.

[8] Richard B. Kicburtz. Semantics of & Functions +
Logic Language. September 3, 1986, 17 pp. un-
published paper.

[9] G. Lindstrom. Functional Programming and the
Logical Variable. In Proc. Symp. on Prine. of Py-
mming. Lang., pages 266-280, ACM, New Orleans,
January 1985, Also available as INRIA Rapport de
Recherche No. 357.

[10] G. Lindstrom. Static Evaluation of Functional
Programs. In Proc. Symposivm on Compiler Con-
struction, pages 196-206, ACM SIGPLAN, Palo
Alto, CA, June 1986,

{11] G. Lindstrom, L. George, and D. Yeh. Generat-
g Efficient Code from Strictness Annotations. In
TAPSOFT'8%: Proc. Second Internetional Joint
Conference on Theory and Practice of Seftware
Development, pages 140-154, Pisa, Italy, March
1987. Springer Lecture Motes in Computer Science
No. 250,

[12) Gary Lindstrom. Static Analysis of Funciional
Programs With Logical Variables. In Prec. In-
ternational Workshop en Programming Language
Implementation and Logic Programming (PLILP
'#8), pages L1 - L18, INRIA, Rocquencourt,
France, March 16-18 1988, Edition Provisoire; to
appear in Springer LNCS series,

[13] R. Milner. A Theory of Type Polymorphism. J. of
Comp. and Sys. Sei., 17(3):348-3T3, 1978.

[14] R.S. Nikhil. Id World Reference Manual (for Lisp
Machines). Technical Report Computation Struc-
tures Group Memo, MIT Laboratory for Computer
Science, April 24, 1987,

[15] R. 8. Nikhil, K. Pingali, and Arvind. Id Newveau.
Technical Report Computation Structures Group
Memo 2685, MIT Laboeratery for Computer Science,
July 1986,

[16] Keshav K. Pingali. Demand-Driven Evaluation on
Dataflow Machines. PhD thesis, Mass. Inst. of
Tech., Cambridge, Mass., May 1986,

[17] Keshav K. Pingali. Lazy Evaluation and the Log-
ical Variable. In Proc. Inst. on Declagrative Pro-
gramming, Univ. of Texas, Austin, Texas, August
24-29, 1987.

(18] 1.5, Reddy. On the Relationship Between Fune-
tional and Logic Languages. In D, DeGroot and
G. Lindstrom, editors, Logic Progremming: Func-
tions, felations, and FEguations, Prentice Hall,
1986.

[19] Mark Scheevel. NORMA: A Graph Reduction Pro-
cessor. In Proc. Symp. on Lisp and Func. Py-
mming,, pages 212-218, ACM, Cambridge, MA,
1986.

[20] E.Y. Shapiro. A Subset of Coneurrent Prolog and
fts Interprefer. Technical Report TR-003, Insti-
tute for New Generation Computer Technology,
January 1953,

[21] Mary Sheeran. Designing Regular Array Archi-
tectures Using Higher Order Functions, In Proe,
Conf. on Functional Progromming Languages and
Compuler Archilectures, pages 220-237, Springer
Verlag, Nancy, France, 1985, Lecture Notes in
Computer Science, number 201.

[22] W. R. Stoye, T. J. W. Clarke, and A. C. Norman.
Some Practical Methods for Rapid Combinator Re-
duction. In Proe. Symp. on Lisp and Func. Pgm-
ming., pages 150-166, ACM, 1984,

[23] Bjarne Stroustrup. A Set of C+- Classes for
Co-routine Style Programming. 1985. Appendix

lo UNIX (tm) System V C4-4+ Translator Release
Notes.

[24] Stephen Taylor, Shmuel Safra, and Ehud Shapiro.
A Parallel Implementation of Flat Concurrent Pro-
log. International Journal of Parallel Program-
ming, 15(3):245-275, June 1986,

[25] P. Tinker and G. Lindstrom. A Performance Qri-
ented Design for OR-Parallel Logic Programming.
In Jean-Louis Lasses, editor, Proc. International
Conference on Logic Programming, pages 601-615,
MIT Press, Melbourne, Australia, May 1987,

[26] D. A. Turner. SASL Language Manual, November
1983. Revision of August 1979 version.

[27] K. Ueda. Guarded Horn Clauses: A Parallel
Logic Programming Language with the Concept of
o Guard. Technical Report TR-208, ICOT, Tokyo,
1586,

