PROCEEDINGS OF THE INTERMATIONAL CONFEREMCE
OM FIFTH GENERATION COMPUTER SYSTEMS 1983,
edited by ICOT. © [COT, 1988

LAZY EVALUATION OF FP PROGRAMS:
A DATA-FLOW APPROACH!

Yi-Hein Wei

Computer Science Department
IBM Thomas J. Watson Research Center
Yorktown Helghts, New York 10598

ABSTRACT

This paper presents a lazy evaluation system for the list-
basged functional language, Backus® FP in data-driven
environment. A superset language of FP, called DFP
(Demand-driven FP), is introduced. FP eager programs
are transformed into DFP lazy programs which contain
the notions of demands. The data-driven execution of
DFP programs has the same effects of lazy evaluation.
DFP lezy programs have the property of always eval-
uating a sufficient and necessary result. The infinite
sequence generator is used to demonsirate the eager-
lazy program transformation and the execution of the
lazy programs.

1 INTRODUCTION

Lazy evaluation and eager evalualion are two methods
for the execution of functional programs (Vegdahl 1984).
The execution in lasy evaluation iz driven by the need
for function values (eall by need). This has also been
termed demand-driven. On the other hand, the exe
cubion in eager evaluation is driven by the availability
of the function arguments (call by value). It is often
termed data-driven and has spurred the development of
several data-flow architecture models {Veen 1986). Lazy
evaluation can handle unbound data structures such as
infinite list: and makes inferactive input/output pos-
gible {Johnson 1984)(Friedman and Wise 1976). Be-
sides, it may support a better execution efficiency since
only the necessary computation is performed in the ax-
ecution. These characteristics are not shared by eager
evaluation.

Lazy evaluation can be implemented by two meth-
ods: (a} The normal order reduction treats a program as
a syntactic object. The execution is a sequence of “nor-
malkarder” rewrite processes to the program that suc-
cessively replaces the sutermost functions by the func-
tlon definitions at each step of execution until the re-
sult value is obtained (Kennaway and Sleep 1984); (b)
The data-flow execution with dermand-driven semantses
treats a program as a data-flow graph with backward
demand arcs as well as forward data ares ai function
nodes, The execution relies on both demand and data
propagations through function nodes on this
mixed demand/data-flow graph (the lasy graph). With
demand propagations, the effects of the evaluation “by
need of the function value® is obtained.

!This material is based upon work supported in part by the U.S.
Department of Energy under Grant Mol DE-FG03-3TER 25045

Jean-Luc Gaudiot

Computer Research Institute
Department of Electrical Engineering - Systems
University of Sduthern California
Los Angeles, California

Several important results in the second approach
have been obtained in previous work (Pingali and Arvind
1985) [Amamiya and Hasegawa 1984). The lazy graph
schemas and the graph properties for a stream langtiage
L have been studied extensively. However, the efforts
have mainly been on the graph level analysis, Due to the
lack of a formal description of lazy programs, the precise
meaning of the lazy programs dealing with more general
data-structures other than streams such as nested lists
is not clear.

In this paper, we deal with the complex data struc-
tures in the second approach. The study involves the
defining of the lazy version of languages, the eager-lazy
program transformation, and the lazy graph generation.
We use the Backus® FP (Backus 1678) as a source lan-
gnage since it is & nested-list based language with a
simple syntax and semantics. The methodolegy devel-
oped here will be applicable to the development of lazy
evaluation systems in data-driven environment for the
other first order functional languages.

In section 2, a basic FP system is briefly reviewed,
In section 3, the lazy counterpart of FP, DFP (Demand-
driven FP) and the eager-lagy (FP-DFF) program trans-
formation are defined. In section 4, an example of pro-
gram transformation and execution is given. In section
5, the lazy graph schemas and an example of lazy graph
generation are described. Conclusions are made in sec-
tion 6.

2 FP PRELIMINARY

An FP system has: 1} a set of chjects Opp, 2) a sat
of primitive functions, and 3) a set of functional forms.
Every FP function is monadic (requires one object]). An
FP function maps an object into an object. The function
application of a function f to an object in Opp, denoted
by f : =, is the basic operation.
A. Objects: The set of objects is defined recursively
with a given set A of atoms: (1) All atoms, the L {an
undefined object), and the empty sequence <> are ob-
jects; (2) < =,....,z. > iz an chject provided that
z; (for all § = 1,...,n) is an object. If any = = L,
< FgyessyEa 2= 1,
B. Primitive functions: Either the function input or
the function value is a single object. Every primitive
function iz boftom preserving. That is f: L = L.

Object reformat functions:

{apndl, apndr, trans, reverse, rotl, rotr}

apndl 1 1= £ =< £, <>> < 5
E=< TS Paee s ¥ FE X EL il =l
TEVETSE I T = T == >—+< >}
PN TR S S -t

Select functlons: {n,nr,tl,tr}
niE=r=<f.. fp>&m2anzl— 2,1
Hiz=Sg=<z 2=

L= Blyenry By T &R 22 < 2y B 5L

Broadcast functions: {distl,distr}
digtl : T =S =< 3, <=
=< 21, S Yyeeoa i 22
bl Bl e R Byl 2

Arithmetic, Logic, Predicate, and other func-
tions:

{+,=,%,=, gt le, and, or, not, eq, atomn, null,
length,id}
+:xz=x=< 13,23 > & 3, T2 are numbers
—+ Ty + Xzl
id:z=x
C. Functional forms: Functional form is the mech-
anism for combining known functions to obtain more
complex functions.
Composition:(feg) : 2= F:(g:x)
Construction:|f1,..., fal ;=< fii 3.y fuiz >
Conditional:(p — f;g) : z E‘[p: g)=T— f:=
p:rj=F=g:x Ll
Apply-to-all:
gf 1z =z =<3
LT . . e A - TR - S
Insert:
Jfrz=so=<m >— 2
$='€ $1,+-a,$n } & n"f 2
— fig o, [fi€ .. 30> L
Constant: T:z=z= 1 — Ly

3 DFP: DEMAND-DRIVEN FP

The principle of lazy evaluation is: only the ‘neces- '

sary and sufficient’ arguments be requested and used
to compute only the ‘necessary and sufficient” values in
response to the request of the consumer. Since every
function in an FP system is monadic, either the fune-
tion argument or the funetion value is a single object.
In order to follow the principles of lazy evaluation, func-
tions in FP should be allowed to be ‘non-strict’ and the
function argument and value objects should be able to
carry a portia! information. This partial information
would be “necessary and sufficient’ for the proper eval-
uation of the program, This leads to semantics for the
partial request and production of function values.

An extension of the language is required to support
these operational semantics. The domain of objects in
the original FP systems have to be extended to include
an extra atom £ in the set A of atoms. An e represents
an unknown object that has not vet been evaluated. The
extended object domain will then contain sequences in
which £ oceurred in one or more places, These sequence
objects are partfal objects. The sequence objects which
contain no £ atom are total objects. Each total object,
an original FP object, and its associated partial ebjects
make up a partially ordered object set. An example is
shown in Fig. 1 which shows the partially ordered ob-

659

ject set for the total object < 1,2 >. The partial objects
< 1,6 and < £,2 > contain different partial informa-
tion of < 1,2 >. A single ¢ denotes the totally uneval-
uated < 1,2 >. The L below ¢ is the undefined object
that may represents the erroneous condition, namely the
undefined computation. Note that ¢ is different from the
empty sequence <> (or 4} in FP where £ is a notation
representing the unevaluated object which could be any
data object.

—
L § <L3m
£lix Cal> chex <oi> g Lex <gi>
\/ -~
€ i '
| I |
L L L

(=} b]

Figure 1: (a) Partially ordered set for < 1,2 >; and (b)
The object function for < 1,2 >.

If 2 function f with an argument < 1,2 > eval-
uates to a value < 2,4 > in a data-driven fashion, the
function value could however be partially requested and
evaluated in a demand-driven (lazy) fashion. When only
the second element of the function value is of interest,
a demand on the partial object could initiate & partial
object evaluation and cause the production of partial
ohject < £,4 > instead of the entire < 2,4 >. The
portion(s) of the program which do not contribute to
the computation of this partial object are deemed not
necessary to the program and should not be evaluated.
Furthermore, only the second element of function ar-
gument must be requested by a demand to the parent
funetion if the first element is irrelevant to the compu-
tation.

The addition of the ‘c” atom to the language en-
ables the formalization of the demand-driven execution
of FP programs. This formalism is defined through a
superset language of FP, Demand-driven FP (DFP). An
eager-lazy program transformation will create demand-
annotated DFP lazy programs from FP programa. This
DFP program could be executed directly by a data-
driven interpreter for DFP.

In addition to partial objects, the DFP object do-
main has a set of demand objects with which the ‘de-
mand to the partial object’ can be represented. The set
of DFP primitive functions include data functions (FP
primitives) and demand functions, A demand function
determines the demand propagation for the correspond-
ing FP primitive function. A demand function takes a
demand object and evaluates to a demand object of a
proper form. A data function takes a data object and
evaluates to a data object. An ohject function is a func-
tion that takes 2 demand object and evaluates to 2 data
object. A DFP lazy program represents an object func-
tion. A object function is constructed by data functions,
demand funetions, and object functions. The FP-DFP
transformation rules for eager-lazy program transforma-
tion define the DFP function forms for FP primitive
funections, and various FP functional forms.

3.1 DFP objects.

660

The set Op of objects in DFP is the union of the set
0, of data objects and of the set Oy of demand objects,
Op = 0, U Oy, where 0, and Oy are recursively de-
fined: Oy = {atoms, e} U{L}U{< 5,...,2, > |n €
N,z € Op— {L}hi=1,...,n}; and Oy = {§,e} U {<
d;,,..,dﬂ}|nENd,EDd,t-l .yn} Where N is
the set of natural numbers.

Objects in O, are data objects (for examples: <
1,2 >, 1,e ») The data objects which contain no
€ atom are fotal data ebjects (e.g. < 1,2 =), other-
wise they are partial data objects (eg. < 1,6 >). Ob-
jects in Oy are demand objects (for p_xnmple < 6,8 =)
‘.Lett‘.'.l.;—{é} {"-".dh+.,lin.}!ﬂENd;E
O5i=1,...,n} and O;, = {e}U{< dyy...,ds > |n E
N,d; €0,,i=1,...,n} The demand objects in Oy are
called total demand objects(for examples: §, < §,6 =).
The demand ohjects in O, are emply demand objects
(for examples: &, < e, >). The demand objects in
04— Qs — O, are partial demand objects (e.g. < 6, >).
d £ Oy is replaceable by & [for example: < 6,6 >—
Therefore, § may represent any total demand object.
Similarly, any d in O, is replaceable by £ and thus &
imay represent any empty demand object.

For notational convenience, d = 0y, < d™ > denotes
< d,...,d > and < d* > denotes < d,... >. Where m
e i o

L m
is an undetermined natural number. For examples:
1. <8 >=<§ 66>
2, <, 6 et n=ce,b,bE... >
The demand object in the first example represents a
demand wvector for a triplet of data where all three data
elements are requested. In the third example, only the

2nd, and 3rd, elements of a list of indefinite length are
requested.

3.2 DFP primitive functions
Ef"he set Pp of primitive functions in DFP is the union

1. The set Py, Py C [0z — O], of demand functions;
2. The object function &, & € !)Dg — 0,);
3. A mask funclion, mask €
4. The set F,, P, [0: — 04, of dala Iurm:mr:.s
(primitive functions in FP).
All functions f in DFP verify the bolfom-preserving
property. The extended definitions of some of FP prim-
itive functions will also be described.

A. Object function [0 — O]t An object function
defines a one-to-one mapping from & set of demand ob-
jects into a set of data objects. For example, an FP
object £ =< 1,2 > is transformed ’mto the DFF ohject
function ¥ which defines a set of mappings (Fig. 1b):
[[[E—n-.:l 12>), (< b e>a<le>),
<glf>—=<e2>),(e—=e}
The first § in the first mapping is interprefed as <
§,8 =. The range set is the partially ordered data ob-
ject set for < 1,2 >, while the domain set is the corre-
sponding partially ordered demand object set. When
an object function is applied to a demand object, a
unigue data object will be mapped. The object fune-
tion is therefore considered as a producer of data ob-
Jjects driven by demand objects. For example, assuming

‘In the following, d (with or without subscripts) denotes 3 de-
mand variable, while x denotes data variable.

=< 1,2 >, if demand d iz total, &, the application
T:d mluatea to tofal dota object < 1,2 =>. Otherwize,
if dernand d is partial, sucha.s-::n!l'} % : d evaluates
tn- partial data olbject < £,2 >, If demand d is empty, &,
: d evaluates to a totally unevaluated object .

Definition: An FP data object = is transformed by
operator p inte a DFF object function . This object
function is defined by:

plz):d=Eidsd=f=n5d=c=g
d=<dj,...,dn > &z =< 1,,...
_’{Il dh |£n:d-n}i
i

A demand object matehs with a data object when the
demand object is: 1) a total demand or an empty de-
mand, or 2} of the same length as the data object and
every component demand object matches with a corre-
sponding component data object. If a object function is
applied to & mismatched demand, it evaluates to a L.
For examples, if =< 1,2 >, 5: § =< 1,2 > (matched
demand), £ :< £,§ >=< £,2 > (matched demand), and
& 1< 6,8, >= | {mismatched demand, since the de-
mand object has three elements while the data object
in # has only two elements 1 and 2).

B. Mask function:[0, x 04 — O] This function is
used together with broadeast functions, such as distl
and distr, to remove extraneous duplicated data (refer
toe FP-DFP ftransformation for dist! and distr in the
following subsection). It is defined by:
mask < s d>=d=4§ = 5d =€ — £
$=""-: -Wi.ﬂ-r-.-m'n ::"' &d ={d11+1r1'dn :'"
—+ mnesk 1< zy,dy >, .., mask 1L Ty, dy >
L

Examples:
1. mask << 1,2, >, < g,6,e >>=<¢,2,e >
2. mask :<<1,2,8 >, < 6,8, >>=<£,2,3 >

C. Demand Functions [Oy — O4): A demand fune-
tion corresponding to a data function evaluates the de-
mand propagation for the data function. For example, 2
total demand § to the scalar value of function + is con-
verted into a demand < §,§ >. This demand is made
to a two-element data object for function +.

l.'il

s T =

1. Arithmetie, Predicate, and I.ng!c demand
functions: Forall f, 1 € {+,—,x,+,gt,le,
eq, and, or, not, eq0, 1d, length, atom. ﬂui'f}

fi:d=d=8§—38;
d=g—g L

Since the function value of f 15 an atom, a de-
mand object to f* should be either § or £. An
identity function ¢d may serve as a weak definition
of f%. The difference between f¢ and id is that id
does not deteet the mismatehed demand object.
This weak definition is useful since id is removable
when it is either pre-composed or post-composed
with any other function. While the detection for
mismatched demands can be postponed.

2. Reformat demand functiona:
The functions aprdl, trans, rofl, reverse, ete. are
used to rearrange the object elements. The same
as that of the nonstrict constructor cons in LIS P,
reformat functions should not force the evaluation
of their arguments. Reformat demand functions
should rearrange object elements in a reverse man-

ner to reflect the proper locations of the requested
elements.
apndi® :d=d=6—= §;)d=g — £;
d=< di:d!r-“-:dn e dl: < dﬂ-v “:fin ==
L

trang? = trans

reverse? = reverse

rotlt = rotr

Example:

apndld 1< §,5,6 >=< §, < e, 6 >>

(Note that apndl :< a, < e,b>>=<a,5,b >}

3. Select demand functions: Select functions, such
as n, H, etc., are nonstrict since they do not make
use of certain portions of the input object. They
are similar to the selectors car and edr in LISP.
Select demand functions should ereate partial de-
mands to reguest required partial objects.

nl:d=sd=c—ed € 0y =<l det =1
tl:d=d=4§ 2< g, 8t >;
d=g —g;
d=<dy,...,dy =< g, dy,...
L

stn =5

Examples:

(a) n: 6 =< g™, 6,e* =

(b) n?:< b >=<e™ < fe>,et >

eyt =<gbt >

(d) 14 :< e >=< g, 6,2 >
In the first example, a demand function for the se-
lector n converts a total demand #§ info a demand
object of undetermined length with a & at the nth
element and s elsewhere.

4. Broadeast demand funetions: distl and distr
are considered as data broadcast fanctions.
disti:d=d=6—=6;d=£ — &

d=<dy,...,d; >— apndl ¢ [foin o a1, 02| : d;
L .

distl? performs the reverse operation as the distl
does. However, the demand for the first element,
which is the one to be copied, is the join of all
demands for the individual copies.

Examples:

(a) distld :< §,6,6 >=<§,< §,5,6 >>

(b} distl? :c<< b e,e>,6 >, << f> 0>

yEr=<< b d >, <66

Where the jein function performs the union of
all demands for copies of every subelement of the
demand object. It works like an bitwise OR oper-
ation on two sequences of the same length where
& is & boolean True and ¢ is a boolean False.
In the second example, < 6,£,8 = is the join of
< 8,6 > and < g,6,8 >,

D. Extended definitions of FP functions: The def-
inition of several data functions is extended to allow
handling demand objects. For examples:

1. trans and reverae.

2. nid=sd=§—=fid=e—g
d=<dy...dm>man>1l—=d; L

561

3. tt:dEd:EqE;¢=E.ﬂs;
d=<dyp,....dy > &n =2 =< dpy...ydy >0

4, For any FP function f, f:e=¢
5. apnd! :< z, £ >=< 5,6t >

3.3 FP-DFP Transformations

The transformation of FP objects to DFP object func-
tions is defined by transformation operator p, p : Opp —
04 — O4}. Each FP object can be transformed into a

FP object function. The FP cobject to which the FP
function application f : £ evaluates is also transformed
to its corresponding DFF object funetion p(f : z). This
object function represents, in fact, the DFP lazy pro-
gram that corresponds to f : in FP. When this DFP
program has a total/partial demand object as its input,
it generates a total/partial data object. Note that the
total data object is f :z. p iz defined as follows:

* For z € Opp, p(z) = £ p maps an FP object =
into DFP object function . [Refer to the example
of the object function for < 1,2 > in section 3.2.)

» For an FP function f, its argument object z £
Opp, and function application [: = (Fig. 2a),
plf : z) = (f e p(x))* = (f o 7)* (Fig. 2b).

The expressions marked with asterisks are recur-
sively defined as follows:

(foz) =
f=hohfs = (fie {f:ﬂi]'}‘;' '
f=(h—=fifs) = ((iod) = (facE);(facE));
-f=|‘ﬁ-="'!.rﬂ] "‘*I[fl':'i]'ﬁl.'”., {facE)* on];

f=aof — {(apndl o [f o1, &f otl]) o)"
f=/f = ((f'e[1,/f otl]) o 2)";

=7 =+ T

[e {distl,distr} — mask o [(f o 2)*,id);

f € Po— {distl,distr} — foZo f%

L

(fezl smaske|feze M id]

alf =) = (f=2)" wEl = foko ¢
N
] e
f ' . 3
f f " .
T ¥ i
fra | : % !
(s}) i
' . mask i
JePy = {dist!, disir) H
Fefdiatl, disir}
(=) [£1]

Figure 2: (a) FP function application f : =z; (b)
DFP function for f : = (¢) Transformation for
f € P, — {distl,distr}; and (d) Transformation for
F & {distl distr}.

662

The FP function application f : zin Fig. 2a is trans-
formed into (f o £)* as shown in Fig. 2b in which the
solid lines are data paths and the dashed lines are de-
mand paths, The transformation rules involving expres-
sions marked with an asterisk are determined according
to the following observations:

1. Primitive functions except distl and distr: As
shown in Fig. 2¢, the DFP program of f @ =z
is & composition of demand function f, object
function T, and date function f. The demand ob-
ject is first converted by f? into a proper demand
which requestz the appropriate data object at the
object function. According to the demand, the
object function produces a data object for data
function f to produce the resuit. When f is an
arithmetic or logic function, f¢ can be replaced by
¢d, and id iz removable in the function compaosi.
tion. Therefore, the input demand object can be
directly forwarded to the object function.

2. distr and distl: The transformation for the broad-
cast functions can be observed in Fig. 2d. An ex-
ample will explain the reason why a mask function
is needed:

Since distl 1= 1,< 2,3 >>=<< 1,2 >
o= 1,3 5>, p(distl :< 1,< 2,3 >3] :<
§,£ = should produce a << 1,2 >,2 =.
However, p(distl 1< 1,< 2,3 >>) :<
e

= dist] o T distl® 1< be>

=distloz i< d, < be=>>

=dist] 1< 1,< 2,8 >>
Which s incorgaes ke e th d v

@ SECO
ids ml:rs rglﬁsm gﬁ?‘lﬂd not be pro-
nCced.

The mask function in Fig. 2d is used to remove
the extra elements which are not requested. The
triangle denotes the combining of the data object
from foZo f* and the input demand, which is
implicitly defined by the construction form. The
result of the above example is corrected by the
mask function: mask :(<<< 1,2 >, < 1, >>,<
fexr=<21,2>,6>

8. Composition form, f = f; o fa: From the defini-
tion of the transformation operator p,
plhefi:z)=plfs =Ef= : z))
= (fron(fs: 2))
= (fie(faed)) .
In Fig. 3, objects =, fy : =, and fyo f3 : = are
transformed into corresponding object functions.
Object function % is activated by a demand from
block fu. Similarly, object function (fy0%)" is acti-
vated by a demand from block f;. Object function
(fie(f: o %)) is activated by an input demand
to this form.

4. Construction form, f = [fi, o} In Fig. 4a, in-
put data object = is copied for both functions fi
and f; and the two computed function values are
combined to form a single output object. In Fig.
dhb, the input demand to the form will request a
two-element data object. Select functions 1 and 2
are used to obtain the component demands of the

input demand. The component demands to the
object functions of f; : = and fa : = will result in
the production of required function values.

5. Conditional form, f = fi — fu; fa: In Fig. bz, the
baolean value of predicate function f; determines
either branch function fi or fs to execute. This
branch function value will then become the out-
put of the conditional form. Accordingly, in Fig.
5b, the input demand should first requests the
boolean value of the object function of f; : . The
boolean value then determines to which branch
ohject function the input demand should be zent.

6. Apply-to-all form, f = af': The apply-to-all form
can be recursively redefined as: af' = apndlo|f o
1,af otl]. The transformation simply make use
of the transformation rules for primitive functions,
composition form, and construction form.

(hofal, [fre3)al

fiesE] fyo "
\ |
H

L_I_J
fhadd ez 3
[a} (&)

Figure 3: Transformation for the composition form.

thelhof)):d

Lhiz
1
i
{0 (fy 0 B
hafiiz]
¥ od
[a) ()

Figure 4: Transformation for the construction form.
e o £)° — (fa 0 2)*3 (fa = E)7)

x

fi Lo s foslinag] |
H I

Iﬁl = hilsh:z |

0 (B

Figure 5: Transformation for the conditional form.

7. Insert form, f = [f': Similarly, the insert form
can also be recursively redefined as: [f = f'o
[1,/f o tl]. The transformation makes use of the
other transformation rules.

8. Constant form, f = 7: The demand object re-
places the data object = as a trigger to §. The
data object which is not £ will cause the produe-
tion of the constant object .

According to the transformation rules, the data-driven
execution of any DFP function application will always
evaluates to a data object with a necessary and suffi-
cient information in respond to the input demand. In
other words, not only all information requested is pro-
duced but also no information which iz not requested
will be produced. ‘This evaluation is said to be least
evaluation and the result produced is a least solution.
This lest evaluation property holds at every point of
computation of DFP programs [Wei and Gaudiot 1988),
If the does not hold at every point of computation, extra
computation may be performed somewhere in the pro-
gram and the execution may not be terminated when
the extra computation is unbound.

3.4 DEMAND REDUCTION

DFP programs contain demand functions for runtime
demand propagations. The purpose of demand propa-
gations is to determine the execution paths and the ap-
propriate execution order that lead to a least solution.
Since it does not directly contribute to the production
of the results, demand propagation is considered as an
execution overhead. The demand propagations in many
cases, for example in a network of arithmetic and logic
functions, are irrelevant to the program dynamic behav-
iors and therefore will always result in a same request
pattern. A demand reduction process is to remove these
demand propagations at compile time to reduce the ex-
ecution overhead.

A few useful rewrite rules for removing ‘obvious® un-
necessary demand functions from DPF programs are
listed below.

(R1). For f* € Py—{ndtI%}, fiocl —cl

R2). For f* € Py, ele f4 = el
.noel — el
R4). f is an arithmetic, logic, or predicate

function. 4 — id

}, eloel — el

R6). #oid — %, ido & — 3,
(fez) cid— (foX),ido(foZ) — (fo i)
RT). flotd — fd
. ido fd — f4
9). (3)* — &
R10). f is an arithmetic/logic function.
folZol,Z202 = folid,id]o®

4 EXAMPLES OF TRANSFORMATION

The transformation of an infinite sequence generator
(ISG) written in FP into its corresponding DFP pro-

663

gram is presenled. The FP ISG is not terminated in
data-driven execution, The data-driven execution of the
DPF I8G program is shown.

4.1 Square

FP SQuare can be defined by: SQ = x o [id,id]. The
DFP 50Q will be:

P(SQ : z)= (SQ e E) (TR)
= ((x o [id,id]) o)" (5Q)
= (x o (|id, id] e £)*)* (TR)
= x o ([id,id] o E)* 0 x¢ (TR)
= X o ([¢d, id) o 7)* (TR)
=xof(idef)*=1,(ido£)"o2] (TR)
=Sxo|tol, 202 (R4,R6)
= xo|idid] o E (R10)
=85Qo% (SQ)

where (TR}, {8Q), and (R1) mean that the relations are
according to transformation rules, the definition of 5Q,
and the rewrite rule R1 respectively. DFP 8Q program
contains no demand function.

4.2 Infinite Sequence Generator (ISG)
The infinite sequence generator (ISG) of the 5Q of inte-

gers can be defined in FP by: ISG = apndlc[§Q, [5G0
addl], DFP ISG becomes:

AISG:z)a (ST 2] (TR}
= ({apndi = [SQ, ISG o add1]) o 5)" (156)
= (apndl o [[SQ, I8G o addl] o 2)°)* (TR)
= gpmdl o ([§Q, 156G o addl] » £)*) o apndi® (TR)
= apndl o [(§Q & £)* 0 1, ({I5G o addl] & E}* 2 2| o apndl? (TR)
imﬂﬂ[ﬂﬂﬂiﬁ'l,{{fsﬂﬂﬂiﬂ]ni]'u?]og.pmﬁ" [EQ]
E apndl ¢ [§Q 2 F 0 1, (I5C o (addl 0 £)*)" 0 2] o aprdl (THR)

Sapndl a [§Q o201, (185G a (add]l o 2o add1®])* 0 3| 0 apndl? (TR)
=apndl o [SQ o501, (ISGo (addl o 5)) a2 aapndl (R4.RE)

4.3 Execution of DFP ISG

The data-driven execution of DFP ISG is shown, If
x = § (therefore, % : § = 3), the sequence JSG : 3 will
be < 0,16,25,36,... >, Let d =< ¢,§,e* > to request
the second element {which is 16) of the sequence.

(ISG o) ice bet >
= apndl o [§Q o 20 1,(I5G o (oddl 0 £))* 0 2] 0 aprdl? 1< £, 5,2 >
=apridl 6 [§QoZo L, ([5G ¢ (addl o E})* 0 2] :< ¢, < §,6* >>
= apndl 1< 5Q o ® £, (I5C o [addl o £})° 1< §,e* =2
= apndl :< ¢,apndl o |§Q o (addl=E) 0 1,
(I5G a (addl o (add] = 3}))" = 2] ¢ aprdl? :< §,c* >>
= gpndl :< ¢,apndl o [FQ o addl 0 Fo 1,
(I5G o [addl o addl 0 2))" 0 2] :< §, < £* 55>
= gpndl :< g, opndl < SQoaddla E: 8,

(I8G 2 [addl caddl o 2))" : £ >> (matel)
= apedl i< g, apndl 1< Q0 addl : 3,8 >
= apndl :< £, apndl 1< S 14,6 >>
= agpndl :< g, apndl i< 18,5 >>
= apndl 1< £, < 16,6 >> (note2)

=< g 16,e% >

Notes: (1) € may represent < e+ >; (2) According to
the definition of function apndl, the second £ of the
argument object of apnd! is a sequence object. Since the

Gid

lepgt.h of this sequence is not known, the result sequence
will contain the first element followed by an uncertain
number of unevaluated elements.

The in-line expansions of ISG is implemented by a
higher order function call which will be explained in
the next section. According to f : & = &, without

erforming an actual invecation, function application

I8G o (addl o addl & Z))* : ¢ is directly replaced by
an £. In this example, only the second element of the
infinite sequence is computed and its value is returned.
The computation for the first element and the elements
following the second element are not performed.

&5 DFP DATA-FLOW GRAFPH

Data-flow graph schemas for DFP programs are pre-
sented here. The construction of the DFP ISG data-flow
graph i given.

5.1 Higher Order Function Application

A higher order function é.pplicaticn may either take a

function as its input argument or produce a function
as its output. From the composition form, every DFP

function p{f :] contains a function call to the par- -

ent object function I to request a data object as its
argument. The parent function would be dynamically
determined when FP function f involves recursive defi-
nition as shown in [SG example. In order to handle this
condition, the parent object function has to be param-
eterized.

The most general function application (the Apply
actor in Fig. 6) in DFP consists of applying a DFP
functional form € f (for f) to a parent object function
f' and a demand object d. Cf, C'f = (fodf?)*, is 2 DFP
function with an unspecified parent object function. d4f7?
is the parameter to be bound to parent object function
argument f . The data-flow graphs of DFP programs

- may contain:

1. Apply actor with all three input arcs: Functional
form (f o df?)* at Cf uses
function to create an object function (fof')*, This
objeet funetion then takes dermand sbject d and
produces a data object as its output.

2. Apply with only € f and d arcs: An ordinary func-
tion application is performed.

3. Apply with only C'f B.}lﬂ fr arcs: Functional form
(Fodf?)* at Cf uses f asa parent object function
to create an object funetion (fe f)* as its output.

When d = &£, there will be no actual function ap-
plication actually activated at the Apply. Instead, the
Apply actor simply produces an £ as output. With this
definition, the removal of unnecessary computation is
implemented.

5.2 Graph Schemas

According to the transformation rules, FP primitive
functions and functional forms correspond to certain
DFP program structures, For generality, df? instead
of # is used in the graphs to denote that the param-

as a parent object’

eter may be bounded to any DFFP object functions in
addition to object functions for FP objects.

S d

o] = (f e dpt)"

L AmEmm -

i

"

"

i
1
i
'
i
i
]
'
]
]
i
i
|
'
I
¥
1
"
1
"
B

T SRS g P PR

.
[}

i) e @
Figure 6: DFP graph schema for function applications.

[fu di "

{2

Figure 7: DFP graph schemas for:(a) Primitive func-
tions which are not dist! or distr; and (b) distl or distr.
an d

S —

Figure 8: DFP graph schema for the composition form.

1. [is a primitive FP function: ¥ [& {distl, distr},
the graph for (f o df?)* = feodf? o f? is shown
in Fig. Ta. If f € {distl, distr}, the graph for
1(; o df7)* = mask o [f o dft o f4,dd] is shown in

ig. Th. The list actor is to create an output
object < a,b > from two objects a and b.

2. [is a composition Form: [= fi o f;. The graph
for (fodf?)* = (fi o (fz odf?)")* is shown in Fig.
8. The first Apply actor creates object function
(f2 0 df?)* and sends it to the second Apply ac-
tor. The second Apply actor then creates object
function {fy o (fs o df7?)*)*. Ths object function
takes demand object d and produces an output
data ahject.

8. [1s a construction Form: f = [f,, fz]. The graph
for (fodf?)" = [(fiodft) o1, (faodf?) 02 is
shown in Fig. 9a. The first and second elements
of the demand object d are refrieved by selectors 1
and 2 to request respectively the function values of
frand fa. Two branch objects are then combined
into a single output object at the actor list,

4. f 18 a conditional Form: f = f; = fafs. The
graph for (fodf?)* = (f10df?)* — (facdf?)";(fac
df?)* is shown in Fig. 9b. The boolean ohject
evaluated by (f; o df?)* : d determines the branch
object function to which the demand object d should
be sent. Accordingly, the branch function will be
invoked to produce output,

5

f 45 a constant Form: A constant actor is used.
Any demand object token except VEFPS to this
actor will trigger the production of = predefined
constant token. If the i
be produced.

d is an g, an £ will

T 4 &1

P o e i e e i

S, SR T

S - N

T TS |

)
Figure 9: DFF graph schemas for: (a) The construction
form; and (b) The conditional form.

5.3 DFP ISG Graph

DFP 158G data-flow graph is obtained by applying the
above graph schemas to the DFP ISG program: p(ISG :
z)=apndle[§QeZ01,(I§G o (addl o))* o 2] o apndl®

Figure 10a is the graph for (ISG o (add1 o))" where
function form (add1 o df?) (detailed in Fig. 10b) takes
I to produce object function (addl o £). The object
function is taken by function form (ISG o df?)* to pro-
duce object function (ISG o Saddl o £)}*. This object
funciion replaces the (f: o)* of DFFP construction-
form graph construct in Fig. %a. The DFP ISG data-
flow graph is obtained by the compositions of apndi®,
[§QoZol,(ISG o (addl o))" 0 2], and apndl as shown
in Fig. 10c.

8 CONCLUSIONS

663

The lazy evaluation of complex data structure funec-
tional programs in data-driven environment is presented.
The basic FP system is used as a source language in
the study. A lazy version of FP, DFP (Demand-driven
FP) is first defined by including the concepts of par-
tfal data/demand objects. FP-DFP transformation is
used to convert FP eager programs irtoe DFP lazy pro-
grams with demand propagations. With DFP graph
schemas, DFP lazy data-flow graphs can be generated
from DFP lazy programs. The data-driven execution of
these DFF data-flow graphs has the same effects of lazy
evaluation. The methodelogies presented are applicable
to the development of lazy evaluation systems for other
functional languages.

d
(r5G e]

(I5G g 1d

[[55 o {ndd] o 2))"

0
B
"
[
¥
1

a4

[N IR S [, T ——

18] (O]
Figure 10: DFP ISG data-flow graph.

REFEREMNCE

[AHB4] M. Amamiya and R. Bassgawa, Datafiow somputing and
eager and [azy evaluations. Mew Gemerotion Computing,
pp. 105-120, 1984,

J. Backus, Caa programming be fiberated from the von
Neumann style? a functional style and its alpebea of pro-
grams. Communications of the ACM, pp. 613-641, August
1878,

[BacTe|

[CP88| O, Clask and 5.L. Peyton Jones. Strictoess analysis - a

ﬁlﬁ] approach. In Springer. Verlag:ENCS, pp. 35-49,

P, Friedman and D.5, Wise, Cons should not evaluats its
arguments. Aufomata, fonguoges and Progromming, pp.
257-284, 1076,

1.Y. Halpem, J.H. Williams, B.L. Wimmers, and T, C. Win-
kler. Denotational semantics and rewrite rules for FP. Proc.
i;;h.ﬁ%}? ACM Conf, on Principles of Prog. Lang, pp. 108-

T. Johnsson.. Effictent compilation of lazy evaluation. In
ACM SIGPLAN Notices, pp. 58-89, June 1984,

LR, Hennaway and M.R. Slesp. The "lunguage first’ ap-
proach. Distributed Compuitng, pp. 111-124, 1084,

K. Pingalf and Arvind. Efcient demand-driven evaluation,

part 1. ACM Transactions on Progremming Longuoge ard
Systerne, pp. 311-333, April 1985,

AH. Veen. Dataflow machine architecture. ACM Comput-
ing Surtrey, 18(4):pp. 385-396, December 1986.

5.R. Vegdahl. A survey of proposed architecturs for the
executhsn of functional langeages. JEEE Transactions on
Computers, c-33(12):pp. 1050-1071, December 1984,

Y.H. Wei and J.L. Geudiot. Demand driven interpeetation
of fp programs on & data-flow multiprocesser, [EEE Trans-
defiony on Computers, Agust 1988,

[FWwe|

[Ewas|

[JohB4]

[Es84)

[pAss|

{Vieest]

[Veas4]

[Wass

