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ABSTRACT

Conditional (directed) equations provide a para-
digm of computation that combines the clean syntax
and semantics of both PROLOG-like logie program-
ming and LISP-like functional pregramming in 2 uni-
form manner. For funetional programming, equations
are used as rules for left-to-right ‘“‘rewriting'’; for
logle programming, the same rules are used for “con-
ditional narrowing”. Increased expressive power is
obtained by combining both rewriting and narrowing.

In this paper, we discuss the theory behind condi-
tional rewriting. We provide criteria for the two most
important correctness properties for conditional
rewrite programs: termination and (ground and gen-
eral) confluence. We present reascnable conditions for
ensuring the completeness of the conditional rewriting
and narrowing mechanisms. In particular, we address
the situation where conditions contain existentially
quantified variables,

1. INTRODUCTION

Various proposals have been set forth for combin-
ing festures of functional programming and logic
{relational) programming. [See the collection in
(DeGroot and Lindstrom 1986).] The simplest provide
a convenient interface between resolution-based goal
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reduction and rewrite-based term evaluation, without
fully integrating the two. Such languages normalize
terms (i.e. rewrite them to terms than canmot be
rewritten further) before attempting unification, but
do not use function definitions to instantiate free vari-
ables during goal reduction. Censequently, they are
incomplete, in the sense that a selution to 2 goal will
not necessarily be found whenever one provably exists.
An early example of such a language is QLOG
{Komorowski 1982).

An alternstive approach is fo treat function
definitions of the form

flz) = if plz] then rz] else six]

(where = is a list of variables and the sgquare brackets
indicate that the variables may appear anywhere in
the indicated term) as a pair of implications

plzl = [z} = rlg]
wlE = 1@ = e

and use paramodulation (unifying one side of an equa-
tion with a nom—variable subterm of a clause and
replacing with the other side) as an. inference rule
within & resolutien-based {nterpreter. Uniform (Kahn
1981) is an early combination of LISF and PROLOG,
ineerporating such an equality rule. For example, the
append funetion could be defined by the following set
of elauses:

null(nit)
=null{cons(z,y)) : (e.0)
ear{cons(z,y =
edricens{z,y)) = ¥
null{z) = append(z,y) = ¥

-null{z) = append(z,y) =
cons(car(z),append{edr{z),u)).
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Though completeness is achievable in such a manaer,
the resultant language requires non-linear Forward
reasoning and lacks the sense of direction that distin-
guishes computing from theorem proving.

Another alternative is to use function definitions
{z) & if p(z] then r|z] else 5|3
as one-way rewriting rules
flz) — if p|z] then r|z] else s[z].

Rewrlte rules are used to replace "equals-by—equals",
but only in the left-to-right direction. That is, 2 rule
! — r may be applied to a term ¢ if a subterm s of ¢
matches (by "one-sided” unification} the left-hand
side | with some substitution ¢ of terms for the vari-
ables in {. The rule is applied by replacing the sub-
term se=le in ¢ with the right-hand side re. Two
additional rules for simplification are nceded:

if frug thenm relse s — r
if false then r else 8 — &,

Terms are rewritten until no rule applies; when (and
if} that situation oeccurs, the resultant irreducible
term, called & normal form, is considered the “value”
of the initial term. Often, the two cases defined by a
condition p[z] can be betber expressed as mutually-
exclusive left-hand—side patterns. For example, the
following set of rules is all that is needed to define
append:

append(nil,y) — g
oppend(cons(zy)z) —  cons(z,append(y,c)).

[For & survey of the theory of rewriting, see {Huet and
Oppen 1980) or (Dershowitz and Jouannaud 1989).)

To use rewrite rules for logic programming, i.e. to
find values for variables that satisfy an equational goal
like append(z,y)=z, a “linear™ restriction on paramo-
dulation analogous to the SLD- or SPU-strategy in
Horo—clause logic, can be used. Narrowing (Slagle
1974) is like rewriting, except that unification is used
in place of pattern matching: a rule ! — r may be
applied to & term ¢ if a nonvariable subterm s of ¢
unifies with the left-hand side | with some substitu-
tion of terms for the variables in 1. (Variables in |
and t are treated as disjoint.) The result iz io with
so replaced by ro, where ¢ is the mest general unifier
of | and s. A programming language with
narrowing-like operational semantics was first sug-
gested by Dershowitz (1883). Other, independent
suggestions of narrowing (or variants) as a way of
incorporating functions and goal reduction are:
“claunsal superposition™ for Horn clauses with equality

in SEC (Fribourg 1984); the interleaving in EQLOG
{Goguen and Meseguer 1984) of narrowing for solving
equations with linear resolutien for Horn clauses; the
“equality rule” within TABLOG (Malachi et al. 1984);
unification with conditional expressions in QUTE
{Bato and Sakurai 1984); the use of decomposed equa-
tions within PROLOG by Tamaki (1984); the use of
“logical wariables” in the deterministic functional
language FGL+LV (Lindstrom 1985); and ‘“‘object
refinement” in EQL (Jayaraman and Silbermann
1986). Related proposals imelude (Darlington et al.
1983; Kanamori 1985; MeCabe 1985; Reddy 1985;
Smolka 1985; Barbuti et al. 1986; You and Subpah-
manyarn 1986; Robinson 1988). Narrowing, like
paramodulation, can be simulated [in PROLOG) by
decomposing terms (Deransart 1983).

For completeness of narrowing, ‘“ground
confluence” of the system of oriented equations is
required. Ground eonBluence implies that a variable—
free term can have at most one normal form. With
ground confluence, any irreducible solution to a goal
can be found by narrowing. Regular systems, i.e.
rewritlng systems in which {a) ne variable appears
more than once on any left-hand side, {b) only vari-
ables that appear on the left appear on the right, (¢}
no left-hand side is unifiable with a nonvariable (not
necessarily proper) subterm of apother left—hand side,
and {d] no left-hand side unifies with (a2 renamed)
nonvariable proper subterm of itself, are confluent
(Huet 1980). The above system for append, for
instance, meets aill these requirements. Semantic
methods for establishing ground confluence are given
in (Plaisted 1985; Zhang and Remy 1985).

The main problem with using conditional {if—
then—else) terms is that the resultant rules are usually
not terminating, In other words, uninhibited rewrit-
ing need not halt (with an irreducible term). Thus, to
guarantee that normal forms of terms and irreducible
solutions to goals will be found (whenever they exist)
requires a lazy, outermost evaluation strategy. [See,
for example, (Reddy 1985).] Furthermore, rather
striet syntactic conditions {(as above) are necessary for
complefeness. And, without termination, full advanp-
tage cannot be taken of the evaluation mechanism
available to functional languages.

These considerations suggest the use of rondi-
tional rewrite rules as a means of expressing function
definitions. Each definition

flz) &= if plz] then r|z] else 5|3]



translates into two econditional rules:

1@ —
1@ — sl

Using condilional equations, alflows ome to program
with rules that can never lead to infinite sequences of
rewrites, Proposed languages along these lines include
RITE (Dershowitz and Plaisted 1885), SLOG (Fri-
bourg 1985}, and EQLOG (CGoguen and Meseguer
1986).

In this paper, we concéntrate on narrowing—based
programming languages znd terminating conditional
asystems. Section 2 deals with the completeness of con-
ditional rewriting and Section 3 with establishing ter-
mination and confluence. Section 4 addresses the
completeness of conditional narrowing and Section 5
considers what happens when conditions contain new
{existentially gquantified) variables. The results we
report on are summarized in two tables; they have
implications for program verification in many of the
above-menfioned languages.

plzi=true:
plz]=false:

2. CONDITIONAL REWRITING

We use standard notations from equalional
theory and rewrite theory: 5 = ¢ stands for the usual
sense of equalily in systems; s — ¢ stands for one
rewrite step in a given rewriting system; s —" ¢ is the
reflexive-transitive closure of the rewrite relation —; =
—+* t ig the traositive closure of —+ 5 | ¢ stands for s
—+" y ‘4= for some u; 8 +—+" t means that there exist
e, #y, such that s Jwg] - e ]t We wil
assume some familiarity with the main notions in
rewriting, viz. ‘“‘termination’, “confluence”, and
“gritical pair',

By a condittonal equational system, we mean a set
of Horn clauses of the form

E|5h|ﬁ"'ﬁﬁn=ln = [ = r

A standard conditional rewriting system iz a sel of
rules of the form

sle A s Asyli !

— r"

mezaning that an instance {e of | rewrites Lo re only if
each s;¢ can be reduced (by zero or more rewrites) to
the same term as the corresponding 0. A natdral
conditional rewriting system has rules of the form

gld—r'tth*,ﬁ,sn!—r*Eﬂ: I = r

Here a rule applies if there exista a proof s;+—"t; for
each { [using any number of rewrites in edther
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direction).
For example, if ® is the standard system

null(nil)  —  true
null{cons(z,y}}) —  false
car{eonsiz,y)) — =
edr{cons(z,y)) — v
null{z)]true: append{z,y) — g
null{z)] false: append(z,y} —

conslcar({z),append(cdr{z),v)).

then  append|cons(a,cons(b,nil)),cons{c,nil)) —
cons(a,cons(b,cons{e,nil)}).

Note that a natural rewriting system is nof very
different from the underlying equational systemn
(replacing — with =, | with =, and : with =). That
is,

Theorem 1. For any nafural rewriitng sys-
tem B and underlying equational system E,

RFp+—'qy & Elp=¢
for all lerms p and g.

If p = q is provable in E, there is & proof in SPU
{S:Iected Positive Unil) form, Le, a proof in which
each condition 5,060 — Lo 15 proved before a subatitu-
tion instanece
o=t p ¢+ Asgao=te = lo — ro

of a conditional rule iz used to replace equals. (In this
gsection, we only comsider universal theorems, not
existential omes. Hence, we need not consider
unification.) Thus, B can prove p ~—' ¢ by imitating
the proof in E. In fact, the rewriting prool has
exaetly the same proof strueture as the SPU eone,
where a right—to—left use of a rule in the proof of p
+—" g in B corrcsponds to use of the symmetric
axiom in the proof of p = g in E. The SPU-proof
strategy is complete with respect to Brst-order equa-
tional validity and provability and so is conditional
replacement of equals for matural rewriting systems.
Conversely, any proof in B ean readily be interpreted
as a proof in E. For this reason we can identify
(8PU-) proofs in an equational systemn with the
corresponding proofs in the corresponding natural sys-
tem. A proof p +—" ¢ in a natueral rewriting system
is therefore called an equational proof.

For a standard system R, we will let 2™ denote
the underlying equational system and R' denote the
corresponding natural system (replacing | with «=—="),
The following implications are obviows:



Theorem 2. For any standord conditional
rewriling system B,

Rplg = R''pls = Rp=yq

For a comparison of these formulations of conditional
rewriting with several others, see {Dershowitz et al.
1988). The question is, under what conditions can the
implications be turned inte equivalences, allowing
equational proofs to be replaced by rewrite proofs.

From classical [unconditional) rewriting theory,
we know that the confluence property (s—"v "+t for
some v whenever s +—u—"t for some u), is equivalent
to the Church-Rosser property, namely that any equa-
tional proof p +—' g can be replaced by a rewrite
proof p | ¢. It follows that:

Theorem 3. For any confluent natural con-
dll_il'onnf r:w:rfl‘.:'r:l.g system R ',

R'=plg & R7Hp=¢

Furthermore, an inductive argument shows that:

Theorem 4. For any eonfluent standard
eonditional rewriting system R,

Rl-ply = RHp=q.

It is not hard Lo see that if B is confluent, then so
is the natural system B°, but the converse dees not
hold, in general, sinee the enabling conditions in a
natural proof need not have proofs that are transform-
able into “downarrow” ones. What we need is some-
thing stronger than confluence, Let & |' § mean that
there exists a normal proof s | ¢ such that every sub-
proof s;0 +—' t;c used in establishing the conditions
needed for s | t is also of the “fully normal" form s
sigma ' fo. If for every proof of s «—' t in a
natural system R° there exista a fully normal proof s
1" ¢ in R', then we say that R® has the strong
Chureh—Rosser properiy. With this notion, we have

Theorem 6. If a nalural condifional rewrit-
ing system B° has the strong Church-Rosser
property, then

Ri-ple & R'fplg

3. CONDITIONAL CONVERGENCE

A convergent (econditional or unconditional)
rewriting system is one with both the confluence and
termination properties. (A system is terminating il all
reduction sequences are finite.) Convergent systems
give unique irreducible forms for any given ferm.
Thus, for a convergent system R, B™ |~ s=t if, and
only if, the normal forms of 5 and ¢ are identical. A
ground convergenl system s one that is both terminat-
ing and ground confluent. (Ground confluence means
that s—'v*+—t for some v whenever s “+—u—"t for a
variable-free term u.} Ground convergent rewriling
may be used as the evaluation mechanism for Hrst—
order functional programs and lends itsell easily to
parallel evaluation schemes.

For terminating unconditional systems, the Criti-
cal Pair Lemma {Knuth and Bendix, 1970) provides an
effective test for confluence. Also, for such systems
(assuming a finite number of rules), the joinability (])
relation ‘is decidable. Thus, validity is decidable for
convergent undecidable systems. Unfortunately, with
conditional systems, we are faced with two . new
phenomens: (2] Decidability of joinability s not
necessarily decidable, even for (finile) terminating con-
ditional systems (Kaplan, 1987). (b) Contrary to what
had been surmised (Kaplan, 1987}, the critical pair
test does nol guarantee confluence for standard sys-
tems (Dershowitz et al. 1987). To overcome Lthese
diffieulties, additional constraings om conditional sys-
tems are required.

Clearly, o rewrite system is terminating if, and
only if, the reduction ordering —' defined by the ays-
tem is well-founded. In practice, one usually provides
an embedding o such that s —% ¢ implies o(s] > o(2)
for a suitable well-founded partial ordering > We
have shown elsewhers (Dershowitz and Okada 1988)
that the wsual well-founded partial-order structures
used in rewriting termination arguments are simple
substructures of the system of Ackermann's ordinal
numbers, & system of proof theoretic ordinals in logie.
[See {Okada 1988) for some examples of the use of
even stronger proof theoretic ordinals.] For condi-
tional systems, termination arguments are complicated
by the need to take conditions into account, since
o(le) = o{ro) does not usually hold for o that do not
salisfy the conditions of the rule.

As mentioned above, For decidability of jeinabil
ity, well-foundedness of the reduction ordering is
insufficient. A conditional system s called decreasing
if there exists a well-founded extension > of the
reduction ordering — which satisfies two additional
propertles: (a) = the proper subterm relation > (l.e.
if 5 is a proper subterm of ¢ then £ > s) and (b) for
each rule s J8 A - - - As ity | — 1, lo > 5,0, Yo lor
all substitutions o and indices ¢ {1L=<{<n).



Lemma. Far deereasing sysfems, all ihe
baste notions are decidable, 1.e., the rewrite
relation {—), derivability relation (="}, the
Joinability reletion (L}, and normal form at-
tribute are all recursive,

Thiz can be proved by transfinite induction with
respect fo .

One can readily confirm that decreasing systems
are strictly more general than “'simplifying systems"
(Kaplan 1987) or “reducing systems" {Jouannaud and
Waldmann 1986), but enjoy the same nice properties.
(See Dershowitz et al. 1988.) In fact, decreasing sys-
tems exactly capture the finiteness of recursive evalua-
tion of terms, in the following technical semse: For
given conditional system R, let :— be the relation
defined by s :— p il there is a rule s [E,) A - - - Asglt,:
{ — r in B such that lo i3 a subterm of 5 and p is
one of the s;o or §0.

Lemma. For any decreasing nalural condi-
tional rewriting system R, [—i=)" is
well-founded if, and only if, R is decreasing.

The “if" direction follows directly from the definition -

of “decreasing’; the “only if" direction follows from
the fact that [—U:—Ur=)" is well-founded if
{—i=)* 1s.

It fallows from results in the previous section,
that in order for a standard rewriting system to be
complete with respect to provability in the underlying
equational system (or, equivalently, with respect to
validity in the sense of first—order logic with identity),
we need either to directly establish its confivence or to
establish the strong Church-Rosser property lor the
corresponding natural system. We consider now con-
ditiens under which a terminating conditional system
is confluent whenever its eritical pairs are joinable.

Ifexd = r and p: 5§ = ¢ are rules in a condi-
tional system R and ! unifies via most general unifier
u with a nonvariable subterm of s, then the condi-
Lional equation epApp = spfrp] = tp is a eriticel
pair of B, where sp:[ry:] im sp with its subterm [p
replaced by ru. [t ean be verified that the eritical pair
test does hold for terminating natural spstems, i.e. if
s | to for every critical pair e Ap = 5 = ¢ and sub-
stitution o such that cue and ppo hold, then Lhe sys-
tem is confluent. But standard systems require an
additional constraint: no [feft hand side may unify
with & proper nonvariable sublerm of any left-hand
side. Such systems will be called overlay systems.

Theorem 8. A terminating overlay slan-
dard  conditional rewrsling  system s
confluent if every eritical pair is joinable.
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See (Dershowitz et al. 1987) for a proof.

We should remark that interpreting Horn clauses
as conditional rewrite rules (with right-hand side
true) leads to an overlay system, because predicate
symbols are never pesied in the “head" of a clause.
Furthermore, all eritizal pairs are joinable, sinee all
right-hand sides are the same. This theorem also
applies to pattern-directed functionzl languages in

which defined functions may not be nested on left—
hand sides.

When one side of each condition in a standard
system is an irreducible ground term (like frue), we
call the system :mormal. Bergstra and Klop (1986)
extended Huet's (1980) confluence result for regular
unconditionzl systems to normal condilional systems.
They showed that any lefi-linear (possibly nonter-
minating) normal system with no eritical pairs is
confluent. Since our interest here is solely in ter-
minating systems, we can relax the “‘no eritical pair”
part. A critical pair epApp = s#[r#: = tu,
obtained from rules e: { — r and p: 5 — I, is said to
be shallow joinable if there exist a term v, a derivation
tp —' v with depth less than or equal to the depth of
the rewrite fg — ru, and a derivation su[ru] —' v
with depth less than or equal to that of spu — fx. By
“depth™ we mean the maximum depth of recursion in
the evaluation of conditions.

Theorem 7. A left-lineor terminating nor-
mal  condittonal  rewrifing
confluent, 1f every eritical pair s shallow
Jotnable.

aystem s

See [Dershowitz et al, 1987) for proofs of this theorem
and of the necessity for each of the requirements.

Far the last result of this section, we have:

Theorem 8. A decreasing noelural condi-
tional system rewriffng has the  sirong
Church-Rosser property if every eritical pair
t5 jornable,

The proof proceeds by replacing each proof level with
a rewrite (1) prool. More precisely, first we normalize
the surface proof s +—" ¢ to a normal form 5 | £ in
the given natural system. Then we consider the
immediate conditions ¢, «~—" d;, . .., ¢, +—" d, used
for the proof 5 | ¢, and normalize the surface proof of
each of those to ¢ | 4, exactly az in proof
simplification for unconditional systems (Bachmair et
al. 1985). This normalization process is repeated until
all proofs and subproofs are rewrite proofs. The sue-
cessive subproof normalizations stop after a finite
number of steps on account of the decreasingness pro-
perty. See (Okada 1987).
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By wvirtue of this theorem, one can establish
coufluence of a standard system R by showing that
the corresponding natural aystem R' is decreasing and
all ifs eritical pairs are joinable.

4. CONDITIONAL NARROWING

The previous two sections concerned the use aof
conditional rewrite systems to reduce terms to their
value and to answer universal queries of the form Yz
s[z] = t[z]. In this and the following section, we dis-
cuss the application of rewriting techniques to solving
existentizl queries of the form 37 s[Z] = ¢[z]. This
corresponds to the logle-—pregramming capability of
resolution—based languages like PROLOG.

Marrowing has been proposed as an extension for
solving goals in rewriting—based languages. Condi-
tional narrowing may be defined s follows: Tet s | ¢
be a goal. If 5 and { are unifiable, then the goal is
said to "‘narrow to true' via their most general unifier.
Alternatively, if there is a2 conditional rule ¢: | — r
such that ! unilfles with a nonvariable subterm of s [or
t) via most general unifier u (the variables in the rule
are renamed so that they are disjoint from those in g,
then all the conditions in ¢u are narrowed in tandem
until they zre solved, say via substitution p. Then we
say that the top-level goal narrows to sup | tup via
the composed substitution pp. Thus, narrowing is a
“linear'” process: rules are overlapped only on goals,
not on other rules.

For example, given the standard conditional sys-
tem for append in Section 2, the goal append(z.y) | =
narrows using the last rule if aull{z) | false narrows
to true. By using (the renamed rule) null{cons(u,v))
—+ false, we can solve the condition, narrowing the
original goal to cons|car|cons{u,v]),
append(cdr{cens(u,v]),p)) | cons(u,v). Rewriting is a
specizl case of narrowing; it reduces the above goal to
cons(u,append(v,y)) | cons(u,v). This, in turn, is
narrowable by the first rule for append if nuil{e} |
true narrows to true. Solving, by letting v be nil, we
narrow to a new goal cons(u,y) | coms(u,v). Since
the two terms are now unifiable (letting ¥ = v), nar-
rowing has produced the solution = = cons(u,v) =
consju,mil] and y = v = nil.

In the unconditional ease, it has been shown that
narrowing is complete for any (greund) convergent
system (Hullot 1980). By “complete”, we mean that if
there exists a substitution ¢ such that se +—" ig,
then s | ¢ narrows to true. Similarly, the variant of
narrowing in which only irreducible terms are nar-
rowed is complete (Dershowitz 1983). For conditional
systems the analogous result is that {under the same
assumptions) any equationally satisfiable goal can be
solved by conditional narrowing,

Theorem 9 (Dershowitz and Plaisted 1988).
Narrowing is complete for ground convergent
standard conditional rewriling systems [with
no exira varigbles in conditions).

The restriction that all variables eceurring in condi-
tions also appear on the left will be lifted in the next
section.

For ground convergenl syslems, all goals may be
reduced to normal foerm before any narrowing step.
Simplification, that is reduction via terminating rules,
is a very powerful feature, particularly when defined
function symbols are allowed to be arbitrarily nested
in left-hand sides. Assuming ground confluence and
termination, any strategy can be used for
simplification. Furthermore, negation can be handled
by incorporating negative information in the form of
rewrite rules, which are then used to simplify subgoals
to false. Combined with eager simplification, this
approach has the advantage of allowing unsatisfiable
goals to be pruned, thereby avoiding some potentially
infinite narrowing paths. See Dershowitz and Plaisted
1985. Normalizing before narrowing is nol necessary,
however, and other language proposals employ
different strategies. Some superfluous paths (that can-
not lead to solutions) can be avoided by making a dis-
tinetion between constructor symbols and defined ones
[assuming that terms built entirely from constructors
are irreducible}. Two terms headed by different con-
structors can never be equal; when headed by the
same constructor, they are equal if, and only if, their
respective arguments are equal. See, for example,
{Dershowits and Plaisted 1985; Fribourg 1985;
Kanamori 1985; Reddy 1985). Other restrictions and
variations of narrowing which preserve completeness
include [Hullot 1980; Martelli et al. 1986; Dershowits
and Sivakumar 1988).

Even if a program is ground convergent, alterna-
tive narrowing derivations must be explored if com-
pleteness is to be assured. Thus, narrowing-based
languages that deterministically choose one possible
narrowing over others cannob guarantee that solutions
will be found. Preprocessing and structure—sharing
techniques for rewriting and narrowing are explored in
{Josephson and Dershowitz 1988),

b. EXTRA VARIABLES

Traditional rewriting theory (e.g. Huet 1980) vsu-
ally has a constraint on occurrences of variables,
namely that every variable occurring on a right-hand
side of a rule alse’ occur on the corresponding left-
hand side. A natural extension of this censtraint for a
conditional rules is this that every variahle ooeurring
either in a condition or on the right-hand side alse
occur on the left. But if conditional rules are to



generalize Horn-elause programming, such a con-
streint is uwnacceptable, sinee even very simple rela-
tions, such as transitivity, require extra varizbles in
conditions.

Accordingly, we can redefine rewriting in the
extra-variable case as follows: ullo] — ulror| for a
rule e: [ — r if there exists a substitution r for the
new variables suck that cer holds. As an example,
let's replace the rules for append with:

append{nil,y) — g
zleons(u,v) A append(v,y)]z:

append(z,y4) —  come(u,z),

where u, v, and z are extra variables, The last rule is
applicable if there ezisf substitutions for the exira
variables that make the conditions hold. Now we
have append(cons(a,nil),nil) — cons(a,nil), since u
= a, ¢ = nil, and z = nil is a solution to the condi-
tions. Operationally, narrowing may be used to solve
conditions -with extra variables; the definition of nar-
rowing is unchanged.

Even with extra varizbles, Theorems 8 and 7 hold
as stated. Allowing extra variables, however, does
introduce a problem: ground confluence no longer
guarantees the completeness of the narrowing mechan-
lsm (Giovennetti and Moiso 1988). The following
theorem allows for extra variables, at the expense of a
stronger confluence condition, called level-confluence.
A standard system R is (ground) level-confluent if
there exists a term v such that whenever 5 "+ ¢ —'
t with a maximum depth of n, there is a rewrite proof
5 | ¢ of depth no greater than n.

Theorem 10 (Giovannetti and Moiso 1988).
Narrowing {5 complete for lerminating
ground level-confluent standard condifional
rewriting systems.

The proof of this theorem (as well as the previous
theorem) is based on the following:

Lemma. Let B be a standard conditional
rewrite system [(possibly having eztra wvari-
ables). If so —" ¢, o iz an drredueible substi-
tution, and all the instances of rewrite rules
use in the proof (not only the surfoce progf
but also subproofs for conditions] are irredu-
cible, then there exist o ferm u and substitu-
ttons 1 and 7 such that s narrows fo u wve 7,
ur =1, andnr=o.

By “irreducible substitution"”, we mean that the sub-
stitution maps all variablez to irreducible terms; by
“irreducible instance', we mean that the rule is
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applied to a subterm having irreducible terms mateh-
ing left-hand side variables and any extra variables
appearing in conditions.

The lemma is proved by double induction on the
depth and length of the derivation s —" t. If the
derivation Is empty [has gero steps), then so — ¢, and
the result Iz obvious. Suppose then thal seo is first
reduced vaing some rule p: { — r in K. Sinee o is
irreducible, it must be that 5 has a nonvarizble sub-
term u such that ue is an instanee [0 of [, Le. sofug|
= soflf] — so[rl] —' ¢t and p# narrows to true
where # is a substitution for variables in { and/or p.
Let u be the most genersl unifier of u and [. Then,

“for some irreducible substitution 7, we have ¢ = pr

when g is restricted to the variabies in 5, and § = pr
when g is restricted to variables in [. Since pf =
ppr, by indoetion pu narrows to true via some p such
that r = pn for some irreducible . By the definition
of a single narrowing step, #[#| narrows to sup[rup|
via pp. Sioce so[rl] = supn|rupn] —" ¢, by induc-
tion -Ej.ipl:r'ppl narrows Lo u via some &, n = ¢, and ¢
= ut for some . Hence, we have s[u] narrows to u
via pog, & = ppddd, and f = wid, as desired.

Unfortunately, level-confluence of critical pairs
does not ensure level-confluence of the syslem, as can
be seen from the following counterexample:

Mf(a)) — ¢
d1d: hz) — =)
dld: e —  jlflah
dld: a — b
¢ = d
_j{g[ﬁ}} —_ g
dlAa(f(z)): flz) — glz)

This pormal system is terminating and every critical
pair is level-joinable, but despite the fact that f{&) +~—
fla) — g(a) — a(b), narrowing cannot solve the goal
Fib) | gl{z). However, since shallow—joinable critical
pairs are level-joinable, we can apply Theorem 7,
thereby ensuring completeness of narrowing for ter-
minating left-lincar shallow—icinable normal systems.
The following, similar counterexample demonstrates
the need for left-linearity:

kaa)le: h(f(a)) — p(a)
k{e,a)le: R{iz) — jiz)
o6) — Jr(e)
kfa,a}le: a — b
k{z,a)le: plz) —  qiz)
a(b) —  jlg(a))
h(f{z))be: flz) = glz)
ile(d)) — e
Kzy2) — ¢



An aiternative approach to new variables can be
based on the notion of decreasing systems. There is of
eourse no way one can insist that lefi—hand sides be
greater than all instances of a condition containing a
new variable. Instead, we revise ouwr definition of
rewriiing in the extra—variable case, and define u|la|
= ulro7] for a rule e: | — r only if there exists an
irreducible substitution r for the new variables such
that cor holds. Then we can say that a system B is
decreasing i there exists a well-founded ordering con-
taining the (new) rewrite relation — and the proper
subterm relation [>, and for which lo is greater than
both terms of each condition in eor, for any irreduci-
ble substitution .

For example, the above append system is decreas-
ing in this sense. MNote that the joinability of the con-
ditions must take the form z —* cons{u,v) A
append{v,y) —" =, il the new variables are irreduci-
ble.

Employing the above lemma again, it ecan be
shown that

Theorem 11. Narrowing is complete for
decreasing ground-canonical standard condi-
tional rewrifing systems.

8. CONCLUSION

The confluence results of Section 3 are summar-
ized in the following table:

System type Confluence conditions
unconditional left-linear

no cfitical pairs

{Huet 1950)

unconditional
terminating

joinable critical pairs
{Knuth and Bendix, 1970)

conditional left-linear

normal no critical pairs
{Bergstra and Klop 1086}

conditional left—linear

normal shallow-jeinable

terminating critieal pairs

conditional overlay

normal joinable eritical pairs

terminating

conditional
decreasing

joinabie eritical pairs

{ef. Kaplan, 1987)

For an atom (in our case, an equation) F, let /'
be any substitution instance of it. A closed formula
(sentence) P' is ssid to be in IIf (ground) form; a
closed formula ¥z P! iz said to be in (universal) T1{-
formm; a closed formula d% P, is said to be in {existen-
tial) ©f-form; a closed formula ¥z 3y P! is said to be
in (universal-existential) IIj—form. Using this nota-
tion, and bearing in mind that that solved goals hold
for all instances of variables not instantiated by nar-
rowing, the main completeness results of this paper
appear in the following table:

Mechanism Clamplete for...
First-order esgentially
Funetional programming Hg—theur&ms

Ground-confluent rewriting

Hg—theurema

Horn-clause programming

£{-theorems

Confluent rewriting

[1{-theorems

narrowing

Ground—convergent narrowing L{-theorems
{no extra variables)
CGround-level-convergent El-theorems

Decreasing ground-convergent
NATTOWILE

Ef—thaurems

Convergent narrowing
(oo extra variables)

[1{-theorems

Level-convergent narrawing

[15-theorems

Decreasing convergent

H-_E'-thmrama

narrowing
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