PROCEEDINGS OF THE INTERNATIONAL COMFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1983,
edited by ICOT. @ TCOT, 1088

327

THE SEMANTICS OF A FUNCTIONAL LOGIC LANGUAGE
WITH INPUT MODE

D.W. Shin, J.H. Nang, S.R. Maeng, and J.W. Cho

Department of Computer Science
Korea Advanced Institute of Science and Technology
P.0). Box 150 Cheongryang Seoul 131-650 Korea
dwshin@casun. kaist,ac.kr(Internet) ...mevax!sorakicasunldwshin (UUCP)

ABSTRACT

There have been several functiomal logic
languages which distinguish the variables appearing
in [unction terms from logical variables, Aflog,
Funlog and LEAF are such languages that restriet
the variables in function terms to be used only in
the input mode. Although this restriction makes
the languages effective, it prevents them from hav-
ing semantics in the conventional logical frame-
work.

In this paper, a new framework is presented to
give logical semantics to Aflog. This framework is
essentially based on Levi and Palamidessi’s
approach, hewever, it is modified and extended to
meet equational theories. In addition, an extension
of SLD-resolution based on E-unification is intro-
duced to provide the operational semantics of
Aflog programs, and the soundness results are
shown. Finally, the cases are discussed in which
completeness results are not obtained.

1 INTRODUCTION

During the last several years, there have been
many approaches to combine funclional languages
and logic languages (see (Bellia 1986) for a more
detailed survey of these approaches). These com-
binations are considered promising as they provide
two different programming styles in one system
which would be useful in many applications.

In functional programming, one of the central
concepts is the evaluation of an expression when it
ig ready to be computed. This characteristic makes
the formal parameters of functional languages seen
one way and the evaluation deterministic. In con-
trast, logic programming is well known by its non-
determinism caused by the non-deterministic proof
procedure and /O non-determinism (see (Reddy
1985) for a detailed comparison of these two pro-
gramming styles).

In the amalgamation of functional program-
ming and logic programming, four different
approaches are usually attempted as follows:

(1) combination of logic language and LISP,
{2) use of (conditional) rewrite rules with
unification,

(3) transformation of equations into clausal

forms,
(4} use of extended unification

The first approach includes the ones which try
to integrate logic language and LISP. LOGLISP
{Robinson 1982) is a typical example. In
LOGLISP, a user can invoke logic from LISF and
vice versa. The latter three approaches differ from
(1) in that they try to unify in a single coherent
framework, providing uniform semantics.

As an attempt in the second class, Darlington
et -al. (Darlington et al. 1986) proposed an
extended functional language which uses unification
instead of pattern matching and set abstraction to
obtain the effect of logical variables. This language
provides all of the expressive power of logic pro-
grams whilst retaining underlying functional sin;g]i-
city. Dershowitz and Plaisted (Dershowitz: 1985)
also proposed a programming language that unifies
logic programming and functional programming by
using conditional rewrite rules.

The languages which belong to the third class
are based on the transformation of equations to
clausal forms and on onc inference rule - SLD-
resolution. LEATF (Barbuti et al. 1986) and K-
LEAF (Levi et al. 1987) belong to this class. In
these languages, equations are first transformed to
flat forms, where function compositions are elim-
imated and replaced by the logical operator and,
and SLD-resolution is applied to these flat forms.

The main idea of the languages in the fourth
class is extending unification into E-unification so
that equality theory comes in to support functional
notations. Eglog (Goguen 1984), Jaffar et al’s
approach (Jaffar et al. 1986), Yamamoto’s
aﬁmmh {Yamamoto 1987}, Funlog (Subrahmayam
1986) and Aflog (Shin et al. 1987) belong to this
class. Eqlog is based on Horn clauses and canoni-
cal equational theories, and completeness is
obtained when narrowing (Hullot 1980) is used as
an B-unification algorithm. Jaffar et al. defined a
logic program which consists of the usual set of
definite clauses and Horn equality clauses, They
proved that Horn equality theory has a finest
congruence relation, and Least E-model and least
fixpoint can be given to a program. Yamamoto
introduced a narrowing procedure. into logic pro-

328

gramming in ordet to treat equational theories. He
proposed a system in which both SLD-resolution
and narrowing are considered equally and proved
the completeness results. In these languages,
functions are evaluated in two ways: if all argu-
ments of a function are instantiated to ground
terms, the function is evaluated as usual, and oth-
erwise, the ground instances of the n.rguments are
tried to be found,

The latter two languages - Funlog and Aflog
are also based on Horn clavses and equational
theories, however, these languages are basically
different from the former languages in that they
restrict the variables in function terms to be used
only in one way. Although this restriction makes
the languages effective, it hinders them from having
semantics in conventional logical framework,
because there developed no way to give the seman-
tics to variables used only in input mode.

This paper concerns mainly on the framework
giving the formal semantics to Aflog - a functional
logic language with input mode. Based on this
framework, Aflog is given model-theoretic and
fixpoint semantics. This framework is essentially
based on Levi and Palamidessi’s approach (Levi
1985) however, it is modified and extended to meet
equational theories, Furthermore, a refinement of
Canonical unification presented in (Shin et al
1987) will be made in this paper and the opera-
tional semantics will be introduced by the resolu-
tion with Canonical unification. Finally the sound-
ness results will be shown and the cases will be
also discussed in which completeness results are
not obtained,

2 THE LANGUAGE

2.1 The Syntax

'In this section, the syntax of Aflog is
presented rigorously. The syntax defined below is
slightly different from that presented in (Shin et al,
1967). The new language is constructor-based, and
does not include guard construct for simplicity.

The language alphabet A is ‘an 8-tuple
< FPV,==C F>, where

i}y Cis a set of data constructor symbols,

ii} Fis a set of function symbols,

iii} Pis a set of predicate symbols,

iv) Vis a set of variable symbols,

¥) = is a special equality symbol,

vi) =is a special evaluable equality symbol,
vii} €' is a set of annotated data constructor
symbols defined as " = {c"| ¢ EC},

viii) F* is a set of annotated function symbols
defined as F* = {f"| f € F}.

Evaluable equality is slightly different from
equality in that equalily represents that two terms
are equal, while evaluable equality informs which
terms are produced via unification as well as tests

equality. Syntactically speaking, equality only
serves to define a function and, evaluable equality
is used for evaluating a functon in an argument
and binding its result to the other argument. In this
view, "is" relation in Prolog falls under evaluable
equality.

In the language alphabet, symbols in the set i)
through vi) are shown in user Aflog programs,
while symbols in vi) or viii) are not. In other
words, the annotated constructor {function) sym-
bols are not included in user Aflog programs, but
involved in evaluable equality axioms, which are
used to discover the mature of evaluable equality.
In the latter part of this section, evaluable equality
axioms are defined precisely.

A data term is:
i) & variable symbol, or

i) a data constructor application
cld,,....d), where ¢ is an n-adic data
constructor symbol and d preenadl, are data

terms, Ifm =0, t'hen ¢ 13 -::unsrdm‘sd as a
constant.

A term is:

i} adataterm, or

ii) a data constructor application c(t,,....t,),
where ¢ is an n-adic data censtructor
symbol and fy,...,t, are terms, or

iii} a function application f(fy,...,t,), where
f iz an n-adic function symbol and
£yse0058, Are terms.

A function definition is:
fidy,....d) =t, where f is an n-adic function
symbol, aj.'t,.,.,dn are dala terms, ! is a lerm
and the following conditions are satisfied:
i) left-finearity: multiple occurrences of the
same variable in (d,,....d,) are not
allowed;)

ii) all the variables occurring in ¢ must also
occur in {ﬂ'l,...,dn};

i) all function terms are reduced to their
nprmal forms in finite steps.

These conditions are necessary for function
definitions to be canonical. In other words, if
function definitions satisfy condition i), ii) and
non-ambiguity rule {i.e., thére is no superposition
between equations.), they are confluent. And with
condition i), they are said to be canonical.
Canonical property guarantees that any function
term has its unique normal form, and Canonical
unification presented in Section 4 terminates, Now,
atoms are defined into two classes, according to
the-positions in which they are used.

head atom is:

a relational atom p(f,,....t,), where p is an n-
adic predicate symbol and r,....f are data
ferms.

Body atom is:

i} an evaluable equality ¢ =t,, where r, and
rz are terms, or

ii) a relational atom p(f,,...,f,), where p is
an n-adic predicate symbol and 7.1,

are terms.

A definite clause is:
A «B,... B, (n=10), where A is a head
atom and B,...,B, arc body atoms.

A definite clauvse has two important charac-
teristics. First, function terms should not appear in
a head atom. It reflects that a head atom is used
for procedure call through pattern matching, and
procedure execution or function evaluation is car-
tied out in body atoms. Second, evaluable equality
is used instead of equality in definite clauses. In
Aflog, equality is used for defining functions, while
evaluable equality is employed for evaluating func-
tioms.

A goal staterent is a formula of the goal:
—B,....B, (n=0) -
where B,,....B, are body atoms. If n = 0,
then the goal is called empty goal, and is writ-
ten +—.

An Aflog program Pr is:

a set of clauses consisting of three parts: E, P
and {X = X}, where P is a set of definite
clauses C,,...,C, and E is a set of funetion
definitions such that for each pair of function
definitions f(d,,....d,)=t and f(e,....e,)=u,
f(dy...,d,) and f(ey,....e,) arc not unifiable
(non-ambiguity). E(Pr) and P(Pr) denote E
and P [| {X =X} respectively. '

We now present an Aflog program. This is the
program computing the list of factorials for a given
input list.

Example 2.1

_ﬁ'-

[(fact(0) = 1.
fact(s(H)} = s{H} * fact(H).

compute([1.[1).
compute([H|T], [NH|NT]} <-

fact (H)=HH, compute{T,HT).
X=X, }.

329

Then,
E(Fr} -
{fact{0} = 1.
fact(s(N)) = s(N} * fact(¥W).}
P(Pr) =
{computel[J.,[1).
compute([H|T], [8H|WT]) <~
fact{H)=¥H, compute(T,HT).
I=Xx. 1.

2.2 Evaluable Equality and Annotated

Programs

equaliry axioms prescribe the characteristics of
equality in first-order logic with equality, which is
defined as follows:
EQ = {E; : X = X (the identity axiom clause)}
{Eg : Y=X — X=Y}
{E; : X=Z < X=Y, Y=Z}
{E, : FfXy X)= (Y. Y) -

=Y,...X,=Y,; [€{C,F,C"F}}

{E, : p(X,,....X,) ~ X]J-}:'l,..., X, =Y,.
p(Yy..., Y,)ip €P, p #=}
In contrast to equality =, evaluable equality =
is intended to inform which terms are produced via
unification as well as test equality between two
arguments. Modifying equelity avioms slightly
differently, we can define evaluable equality.

C CCC

EV = {V, X=¥V+~—X=Y}
{Vg:¥=X — X=¥}
{Vp: X=F «— X=Y, Y=7}

{V . _f[.Xlr-“ rXﬂ_} = f{yl"”’yn} s
=Y, X, =V, 5 f €{C.F.C .F}}

{Vﬂ,f (X X)) = (YY)
X|=Y,,..X,=Y,; f €{C.F}}

Axiom V. is added to model that all terms
can be computed through evaluable equality =. In
X", ” implies that X can be produced. V . means
that if a term f(X,.....X) is provided in an argu-
ment of evaluable equality, a term which has the
same value as f(X,,...,X,) can be produced in the
other argument. In the next section, some useful
results from evaluable eguelity axioms arc
presented on the domain specially designed for
Aflog.

As noted before, Aflog distinguishes the vari-
ables in function terms from logical variables. Vari-
ables in function terms are used only one way, i.e.,
variables should be instantiated to ground terms
when their functions are to be evaloated, while log-
ical variables are used two way as usual in logic
programming. For this purpose, variables in func-
tion terms in clauses are annotated by "7, which
represents the variables are used only one way and
the functions only consume the values of the vari-

C CCcCc

330

ables. Hence, employing the following simple
translation. rule, it is easy to model such behavior
in Aflog.

Translation role:

WVariables in a function term in a cluase are
annotated by "7,

From now on, the new program obtained by apply-
ing the translation rule to a program P is called the
annotated program of P and denoted as PL
Employing the above rule, we obtain the following
annotated program from BExample 2.1.

Example 2.2

EPr?) =
{fact(d) - 1,
fact(s(N?)} = s(N) * fact(N?).]
F(Pr?) =
{compute([1, [1).
ccmpute{[HTT],[uHENT]} <=
Fact(H?)=NH, compute(T,NT).
E=X.}.

3 DENOTATIONAL SEMANTICS

3.1 Models of Functional Logic Programs

In this section, we present interpretations and
models on the universe especially introduced for
modeling terms which can be produced, or con-
gumed.

A poset (partial orered set) is a structure (D,

<) where D is a set and < is a partial order rela- .

tion on 0. D, denmotes the set of maximal ele-
ments and Dm enotes the set of minimal elements
of D,

Let (D,<) be a poset. An n-adic leficlosed
relation on D is any subset R of D" such that for
BVETY fyaueeslyy Wyseansll, belonging to 0, if R con-
tains (7,....5,) and w,<r,,....,4, <f,, then R con-
tains also (u;,...,u,). In other words, D is said to
be Ieft-c]osedl with respect to R.

Definition 3.1 Let Pr? be an annotated pro-
gram, The ferm universe of Pr? is a poset (T, <)
such that:

i) for each variable x, x belongs to T,

ii) for each n-ary constructor ¢ of Pr?, c(ty,....1,)
and ¢°(¢),...,1,) belong to T, if t,...,7, belong
to T. (-ary constructor denotes constant,

iif) for each n-ary function f of Pr?, f(z,,...,1,)
and f°(ty,...,4,) belong to T, if ¢,,...,1, belong
to T and are not annotated by ° G‘unctdan
term),

"

The aim of the terms annotated by ™" is to
represent data structures which can be produced
(computed). Rule ii} reflects that a constructor can
not only be consumed, but produced. Rule iii)

reflects that arguments of a function are only con-
sumed and can not be produced. It also shows that
if all arguments of a function are instantiated to
ground terms, the result of the function can be
produced, which is represented by f°(f,,....1,).

The relation < is the relation satisfying the fol-
lowing rules:

i) for each constant ¢, ¢ <¢,¢ <¢” and ¢” <
c,

i1} for each variable x, x <x,

iii} for each n-ary functor(function or constructor)
c, and £.....0 .0y, 0, belonging to T, if ¢, <
Uypeensl, U, then,

a) cfty..t,) <clug,...u,),
b) elt.....t) <eup.....u)
e) €t aty) Seuy, .,)

Now we define some notions necessary for
introducing interpretation.

Definition 3.2 The Universe (U, <) of an anno-
tated program FPr? iz the substrocture of the term
universe (T, <} of Pr? containing only the ground
elements of T, that is, the terms containing no
onccurrences of variables.

Definition 3.3 The Base By, of an annofated
program Pr? 1s the set of all the expressions of the
form p(t,,...,,) such that p is an n-ary predicate,
= or =of Pr{ and 1,,....7, belong to (U,<). For a
subset of I of By, 1'h?.t E'i’fj denote the set of the
atoms p(f,...,¢,) in I, where I is =", and P(I}
denote I - E(I), respectively. Then [is said to be
an interpretation of Pr?, if P(T) is left-closed.

An interpretation models that if a term can be
produced, it 15 also be able to be consumed. As a
term denoting produced is always greater than the
term denoting consumed, an interpretation must be
left-closed with respect to any relation other than
=. = (equality) does not represent whether a term
can be produced or consumed, bul only represents
that a term is equal to others in equational
theories.

The truth values of ground clauses and atom
conjunctions, in a given interpretation I, are
defined as follows:

- A ground atem p{f,,...,¢,) is true if it belongs

to I
- A ground conjunction of atoms A,,....4, is

true in I if every A; is true in I.

- A ground clause 4 «— B,,....B_ is true il A is

true whenever Bl,._.,fs‘Il s true.

Let (D, <) be a poset. A compatible vector on
D is any finite vector [t,,....f,] of elements of D

such that there exists in D} a least upper bound o
for a set of its elements. The set of compartible vec-
tors on [is denoted by Cp,. For example, [f(a, b7},
f(a", b), f(a", b)] is a compatible vector on U and
the least upper bound is f{a",b”). But, [f(a, b,
g(a",b)] is not a compatible vector since there exists
no ordering between f and g, and we can not find
the least upper bound of them. Now we are in a
position to introduce valid instances of a clause
involving read-only variables.

Definition 3.4 Let A +— B,...,B be an anno-
tated clause. An gssigmment is a mapping o from
the set of variables to C,, such that

i) The length of ofx) is equal to the number of
occurrences of x in the clause,

ii) Let [ofx)], denote the n-th component of
afx). If there exist k occurrences of x in the
clause head, and h occurrences in the clause
body then;

a) if k=0, [afx)], =..-= [o{x)], = lub{[alx}],
| k+1<i<k+h},
b) if k=0, [afx)], =...= [alx)], belong to
. mi

iii} If the i-th occurrence of x (in the clause body)
is marked by "?" then [ofx)]; is not-annotated,
and moreover;

a) x occurs also in the clause head, or

b) there exists j such that the main funclor
of [afx)]; is annotated by

iv} If an occurrence of x (in the clause head) is
marked by ", then [a{x)]; belongs to U for
every i-th pccurrence of x in the clause.

An assignment provides a way of obtaining a
valid instance of a clavse and it is similarly defined
as in (Levi 1985). In first-order logic, we can assign
any term to a variable, making an instance of a
clanse. In contrast, as read-only varable is intro-
duced in the language, some instantiations mislead
the meaning of this variable, For instance, in
Example 2,2, an assignment 1° to the rcad-only
variable H? is not allowed, because H? means that
H can only consume values and never produce 1.

Condition ii) represents that a variable in the
head part of a clause can produce a term, when it
is the least upper bound of the terms which are
produced by another occurrences of the variable in
the body part. Condition ii)-b) informs that if a
variable does not have an occurrence in the body
part, it only consumes terms, because it has no
way of producing them. For example, if three
occurrences of x in the body part produce [a",b,c],
[a,b",c] and [a,b,c”] respectively, the occurrences
of ¥ in the head part produce [a",b",c"] - the least
upper bound of [a",b,c], [a,b",¢] and [a,b,e"]. Con-
dition iii} represents that a read-only variable
should receive a value from an occurrence of the
same variable in the head part, or another

331

occurrence in the body part.

Condition iv) represents that if an occurrence
of a variable in the head part is annotated by "7",
all occurrences of this variable should only con-
sume a value. Thiz condition does not apply to
definite clauses in an Afiog program becuase there
is no function term in the head part of a definite
clavze and thus no read-only variable in the head
part in the corresponding annotated clause.

If Cis a clause and o is an assignment, then
Co denotes the expression obtained from C by

_substituting, for each variable x, its i-th occurrence

with [a].. For instance, if C is p(X.Y) «
q(X,Z),r(Z,Y), and a = {{[X], = a, [X], = a},
{[¥], =0, [¥h =0} {[Z]; =c", [Z}; =c}} isan
aE'.sign}ment of C, then Cer is p(a,b”) + qla.c™),
r{c,b™).

Definition 3.5 Let A +— B,,...,B, be an anno-
tated clanse. Let A° denole the atom obtained
from 4 by annotating by " all the constants and the
constructors which do not contain variables whose
another occurrences are involved in function
terms. A +— B,,....B is true in J iff for every
assignment o, (A° +— B,....B)a is true in I If
there is no assignment, A 4—%1,,._,3“ is delined
false.

. In the second clause of Example 2.2, A" =
compute([H|T], [NH|NT]} since the first argument
contains a variable H whose another occurrence is
involved in fact(HT). It reflects that the first argu-
ment can not produce values, since H must be
instantiated to a ground term and consumed only.

Definition 3.6 Let Pr? be an annotated pro-
gram. An interpretation I of Pr? is a model iff for
every definite clause and equation of Pr? is true in
I, and denoted as Mod{Pr?). And we say a goal &
is a logicel consequence of Pr? if, for every
interpretation [of Pr?, I is a model for Pr? implies
that [is also a model for G.

Now let § be a term where all ~ are deleted in
5. Then we obtain an important property of EV
and EQ defined in Section 2 by the following

lemma.

Lemma 3.1 For any term s € (I/,<), s =sisa
logical consequence of EV? | | EQ?7. Moreover,
5 =1 is a logical consequence of EV? | | EQ? iff 5
=1 is a logical consequence of EV? | | EQ?.

Definition 3.7 Let 4,,...,4 be a conjunction
of atoms (goal). An annotated substitution ¢ is a
mapping from variables to Cy such that
i) the length of #(x) is equal to the number of
occurrences of xin A,,....4,,

ii) if x is annotated by the symbol "?" in the posi-

REYS

tion i, then [f(x}], is not annotated and there
exists j such that [6(x)]; has the main functor
annotated.

3.2 Minimal Model and Least Fixpoint

This section beging with introducing the
Minimal model of an Aflog program. We show
that an Aflog program always has the Minimal
model. Next, we present the fixpoint semantics of
a program and show that this semantics is identical
with Mp, - model theoretic semantics.

Theorem 3.2 Let My, = () Mod (Pr? L EQ?
| J EV?) where Pr is an Aflog program. Then, Mp,
is also a model (Shin et al. 1988),

By the above theorem, the intersection of all
models is again a model called, the Minimal
model, for Pr. We denote this model by M, .

MNow let us introduce three transformations
defined on the set of interpretations which are the
bases for presenting fixpoint semantics.

Drefinition 3.8 Let us associate to an annotated
program Pr? = {P? | J E?} a mapping T, on the
set of interpretations where E is a set of equations
and Pis other clauses. T is defined as follows:

Tp(I) = {t| t < (A")a, where A +— B,.....B, is
a clause of P?, o is an assignment and

B@,...,B o belong to I}

Theorem 3.3 T, is monotonic and continuous
(Shin et al. 1988),

Second, we define a mapping concerning on
equality as foliows.

Definition 3.2 Let £ be a set of equations.
Then we define a mapping T _

Te(D) = { pltyseat,) | pltgsat,) € f or

L—piy and plf,... ... 1) € [for some

argument ¢ and u;}.

In this mapping, f;—gu; means that r, is
reduced to u; in an equational theory E, The
reflexive transtive closure of relation —. s

L
denoted by S+,

Theorem 3.4 T is continuous (Yamamoto
1987).

Now we define inductively the set Ttk for every
positive integer k as like in (Yamamoto 1987):
Tetl = Id, where Id ={s =5; 5 € (U,<)},
Tpt(k+1) = T 1T (k).
Id is the least model for {X=X} Morcover we
define

Tetw = Upe T TR)-

Then we obtain the following properties for Tz uw.

Lemma 3.5 Tefw = { 5 = ¢ 5,7 € (U,<) there
exists u such that s=;uw and 3w}
(Yamamoto 1987)

Lemma 3.6 (Mod(E? | j EQ?) = T, 1w iff E
is confluent with respect to ground terms
(Yamamoto 1987).

Finally, we present a mapping concerning on
evaluable equality. Before defining the mapping, a
notation denoted as ={¢,.t.} is introduced to
represent f; =f, or, {, =1,.

Definition 3.10 Let E be a set of equations.
Then we define a mapping T,
Tyl)={tlt <t =t ,suchthatt, =¢t, €I, or

=1, and ﬁ:j, uj € I for some argument

t; and u;, where 1 # j}.

- Theorem 3.7 T, is continuous (Shin et al.
1988).

Now we define inductively the set Ttk for every
positive integers k as follows: '

Tyfl={r=5|1=5¢€T.10},
Tyt(k+1) = T, 1T, 1(k).

And we deline

TVTL"'I = U&Ehl(TVTk}'
From these definitions, we obtain the following
important lemma and theorem.

Lemma 3.8 T tw = { s = t| there exists u
such that 5 %+, u and ¢ *+ .} (Shin et al. 1988).

Let
Tgy(l) = Te(D) | T, (1),

Tyt =,
Teyt(kt1) = Ty Ty tk).

And we define
Tevlw = Uil Tev TK)-

atud

Theorem 3.2 MMod(E? | EQ? UEP’?} =
Tpyfw it E is confluent with respect to ground
terms (Shin et al. 1988).

To denote the refuiation cedure, we can
define a mapping § :2&]:;3 QBPJ’? by:

Spld }=%r£vm]m U Tpen)
Then we easily know that §, is continuous.

Now we define the set Sptk for non-negative
integers inductively.

Sp 0=,

Sp, Mk+1) = S5, 1(Sp,).

Theorem 3.10 Let Pr? be an annotated pro-
gram. If E(Pr) is confluent with respect lo ground
terms, then od{Pr? | JEQ?|_EV?) Sp, Tw
{Shin et al. 1 :

By the above theorem, it is shown that the
Minimal model Mp_and Sp fw are equal and they
are the declarative semantics of an Aflog program
Pr, which is represented by the following expres-
slon:

Another comment on the declative semantics
is that Tplw - a subset of Sp 1w can never be
obtained operationally because an equation is not
allowed in a query (Refer the previous section
which specifies the forms of programs and
queries). In othér words, as evaluable equality pro-
vides the way of mrnluatmg a function term or test-
ing equality, it is used instead of equality in a

query.

4 OPERATIONAL SEMANTICS

This section is concerned with the operational
semantics of Aflog programs.

4.1 SLDC-resolution

In this: subsection, Canonical unification is
presented formally. Canonical unification is a res-
tricted version of E-unification in that it imposes a
restriction that function terms should be instan-
tiated to ground terms.

Canonical unification

Input : Two Terms T and §
Output : The E-unifier # of T and § if unifiable,
otherwise Fail message,

1) Replace each term by its normal form.
- T, = complete_rewriting(T)
- §, = complete_rewriting(s)

2) Unify T, and §,.

3 I umﬁable. return # which is the mgu of T,
and §_ . Otherwise, return Fail mcssage

Function complete_rewriting(T)

Input : a term T
Output: T,, - the normal form of T

333

case
begin
If Tis a variable, then return(Th.
If Tis a constant, then return(T).
If Tis a constructor ¢(fy,....t,_), then for each t;,
5, = complete_rewriting(,).
return(c(s,,...,5, })-

If T'is a function term f(t,,....t,), then
& = one_step_reduction(T).
case
begin
IF T =S, then for each ¢,
5= mmplete_rewntmg{t]
rcturu(mmplete_rewntmg((55 25,))
If T+ 5, then
case
begin
If § is a constant, then

return(S).
I S is ¢(up,..,u,) and ¢ is a construc-
tor, then for eal:h (T
v, = cumpleta_rewrltmgfu]
return[r'[v)
IfSisa t’unmion tarm, then
retarn{ complete_rewriting(5)).
end .
end
end

Function one-step-reduction(S}

Input : aterm §
Output : one step reduced form of 5 -5

Find an equation f =¢ whose left-hand side
can be unified with §.
If f¢ =5, then
S, =18
else
§,=5 e

Theorem 4.1 (Canonical unification theerem)
Let E be a set of equations which provides a
canpnical equational theory. And let S be a pair of
Orst-order terms, say (P,Q), whose function terms
are ground. Then § is E-unifiable in the equational
theory given by E, iff Canonical unification algo-
rithm terminates and gives an E-unifier of 8. If § is
not E-unifiable, then the unification algorithm ter-
minates and reports fail (Shin et al. 1988).

To introduée SLDC-refutation, safe computa-
tion rule is defined first. A computation rule R is
safe if B always selects a literal in which all argu-
ments of functions are instantiated to ground
terms. Definitions described below are much simi-
lar to those in (Lloyd 1984),

334

Definition 4.1 Let G, and G, be
A4, A, and A«<=B, .. B_, respectively,
and R be a .ra,r'e -::nmputatmn “rule. Then G, 4 18
derived from G; and C, 41 using the E-unifier é. .
via R if all of the following conditions hold:

i}y A, is selected by R,
iy A, 6., =A8 (6, is the E-unifier of A
and A},
it} G + «—{Al,...,Am_l,[Bl,,...,Bq},
m'-ll’ ’Aﬁ:} (E3N

Definition 4.2 An SLDC-derivation of Pr |)
{G} via a safe computation rule R consists of a
sequence Gg=0.G,, of goals, a sequence
C,,C,, -+ + of program clauses and a sequence

. of F-unifiers such that each G, is

dlerwe.d from G; and €, using &, ; via R, '

Definition 4.3 An SLDC-refutation of Pr | |
{G} wvia a safe computation rule R is a finite
SLDC-derivation of Pr | | {G} via R which has the
emply clause [] as the last goal in the derivation.

Definition 4.4 Let Pr - { P | E{_J X=X } be

a program, & a goal and R a safe computation
rule. An R-computed answer substitution 8 for Pr
{G} is the substitution obtained by the composi-
tion & - - @, where 0,,...,0, is the sequence of

]:'.—um[il:.r’s uscd in an SLDC relutation of Pr L
{G} via R.

Mow we come to the point to define the suc-
cess sef which is the procedural counterpart of the
Minimal model and show the soundness resulis.
For a substitution 4, let & be a new substitution
siech that the substituted term ¢ of a variable is
replaced by ¢". For example, if & = {e{x,a)lz,
bfu}, then & = {c"(x.a")/z, b™u}.

Definition 4.5 Let Pr be a program and A° be
a new atom from A € B, by replacing all subterms
annotated " in A by new variables. The Success set
of Pr is the set of all A € By such that Pr |)
{+—A®} has an SLDC-rcfutation with an R-
computed answer su'b stitution # via a safe computa-
tion rule R and A°8 = A.

Theorem 4.2 (Soundness of R-computed
answer substitution) Let Pr = {P | | E|) X =X}
be an Aflog program and let A,,...,A, be a goal. If
the computation of A,,....A, terminates success-
fully computing a substitution #, then there exists
an annotated substitution 1 such that for each
successfully computing a substitution &, then there
exists an annotated substitution t such that for
each variable x occwrring in A,....A4,, &) =
lub{y{x)) and “fA,.....A M is a logical conse-

quence of {Fr | | EQ? |) EV?} (Shin et al. 1988).

Corollary 4.3 The success set of a program FPr
is contained in Mp_.

We explain what does the soundness mean,
taking Example 2.2,

Example 4.1 Consider the program presented
in Example 2.2 and a goal + compute([2,3], X).
This goal terminates successfully with the substitu-
tion = {X « [2,6]}. Let ¢ = {X +~ [2°.6}.
Then X&' = Xy and compute([2,3], X = (com-
pute([2,3], [2.6"7)) is a logical consequence of
{Pr? |) EQ? | j EV?}.

4,2 Discussion on Incompleteness

In this subsection, the cases of programs
where declarative semantics and operational
semantics are not equal are discussed. Such pro-
grams can be classified into two categories. One is
the programs deriving dead-lock and the other
including a meaningless evaluable equality.

case I} Programs deriving dead-lock

dead-lock means the situation where no
SLDC-derivation is produced because we can not
find a sgfe computation rule. That is, if there is no
literal in a goal whose function terms are all instan-
tiated to ground terms, this goal is said to be fallen
into dead-lock. In general, dead-lock occurs when
two or more literals require read-only variables to
be produced in each other literal simultancously.
For example, in the clause
p(X) « (X, Y,1(Z2), r(e(Y?),2),
literal q and r fall inte dead-lock because g
requires that a read-only variable £ is instantiated
in r and r requires that Y iz instantiated in q.
Hence, if a goal contains these two literals, a safe
computation rule can not be found. However, as
an assignment does not exclude a dead-lock situa-
tion, results which can not be inferred operation-
ally may logically follow from a program. In the
above clause, from an assig;nmem
-2, [¥;] =2},

{{[X 1]{5]1 [Xa] = 1 {
p(l's bmlnngszm the I'ﬁ'[tmma] model, while p never
produces a value operationally.

ease 2) Programs involving a meaningless
evaluable equality. -

Evaluable equality is used for evaluating funec-
tion ferms or unifying two terms in equational
theories. Furthermore, it prescribes which terms
are produced or consumed. In Example 2.2, the
literal factfH?) = NH represents that NH is bound
to the results of fact(H?). For instance, if H is
instantiated to 3, NH is bound to 6 - the result of
fact(3). In fact, the literal fact(3) = 6" logically fol-
lows from evaluable equality axioms (EV?) with

equality axioms (EQ?) and the definition of func-
tion fact. Hence, EV models the behavior of evalu-
able equality exactly in this case, making all logical
consequences of EV inferred operationally. How-
ever EV is too slrong thal every logical conse-
quence of EV is not derived operationally. For
example, consider the annotated clanse:
compute([H{T], [NH|NT]) +

fact(H?) = MH, compute(T,NT}

If we modify this clause as following:
compute([H|T], [NH|NT]) +— H = Temp,
fact(Temp?) = NH, compute(T,NT)
then, the first argument of compufe can produce
values declaratively, while it can not produce any
value operationally. It is because that terms can be
produced through the literal H = Temp declara-
tively. However, literals like H = Temp are mean-
ingless and can be removed without changing the
semantics, which consequenily makes that all
results in the declarative semantics are deduced

operationaily.

5 CONCLUSIONS

We provide a logical framework in which
Aflog programs have declarative semantics. This is
essentially based on Levi and Palamidessi’s
approach (Levi 1985), however it is modified and
extended to meet equational theories. In this
framework, in order to model the evaluation of
function terms through equality, another type of
equality called evaluable equality {s suggested and it
is shown to be able to inform which terms are
produced via unification as well as equality. Two
kinds of semantics are presented based on this
framework. One is the Minimal model and the
other is the least fixpoint, and these two semantics
are shown to be identical,

To deal with equational theories, a refinement
of Canonical unification presented in (Shin et al.
1987} and SLDC-resolution are introduced. Con-
sequently, soundness results are shown. However,
it is not possible to obtain the completeness results
because the declarative semantics does not always
have dead-lock informations and every logical
consequence of evaluable equality is not deduced
operationally, Finally, the cases in which complete-
ness results are not obtained are discussed.

ACKNOWLEDGEMENTS

This work has been supported in part by the
Ministry of Science and Technology in Korea as a
national project for the next generation computer
system. We wish to thank S.B. Kim and S.K. Han
for their many fruitful discussions,

REFERENCES
Barbuti, R., Bellia M., Levy, G., and Martelli, M.,
LEAF: A Language which integrates Logic,
Equations and Functions, in: D. Degroot and
(. Lindstrom (eds.), LOGIC PROGRAM-
MING Functions, Relations, and Egquations,

335

Prentice-Hall, 1986 pp, 201-238.

Bellia, M. and Levy, G., The Relation between
Logic and Functional Languéﬁs: A Survey, J.
Logic Programming 3(3):217-236 (Oct. 1986).

Darlington, J., Field A.J., and Pull H., The
Unification of Functional and Logiec Language,
in: D. DeCGroot and G, Lindstromieds.),
LOGIC PROGRAMMING Functions, Rela-
gfo:% and Equations, Prentice-Hall, 1986, pp.

T-T2.

Dershowitz, M. and Plaisted, D.A., Logic Pro-
gramming cum Applicative Programming, in:
FProceedings of 1955 Symposium on Logic Pro-
gramming, Boston, 1983, pp. 34-66.

Goguen, I.A. and Meseguer, 1., Equality, Types,
Modules, and(Why not?) Generics for Logic
Programming, J. Logic Programming 1(2}:179-
210 (1984).

Hullot, J.M., Canonical Forms and Unification, in:
Proceedings of 3th Conference on Automated
Deduction, 1980, pp. 3158-334,

Jaffar, J., Lassez, J.L. and Maher, J., A Logic
Programming Language Scheme, in: D,
Degroot and G. Lindstrom (eds.), LOGIC
PROGRAMMING Functions, Relations, and
Eguations, Prentice-Hall, 1986 pp. 441468,

Levi, G. and Palamidessi, C., The Declarative
Semantics of Logical Read-Only Variables, in:
Proceedings of 1985 Symposium on Logic Pro-
gramming, Boston, 1983, pp. 128-137.

Levi, G., Palamidessi, C., Bosco, P.G., Giovan-
netti E., and Moiso, C., A Completeness
Semantic Characterization of K-leaf: A Logic
Language with Partial Functions, in: Proceed-
ings af 1987 Symposium on Logic Program-
ming, San Francisco, 1987, pp. 318-327.

Lloyd, J.W., Foundation of Logic Programming,
Springer-Verlag, 1984,

Reddy, U.S., On the Relationship between Logic
and Functional Language, in: D. DeGroot and
G. Lindstrom (eds.), LOGIC PROGRAM-
MING Functions, Relations, and Equations,
Prentice-Hall, 1986, pp. 3-26.

Robinson, J.A. and Sibert, E.E., LOGLISP:
Motivation, Desi and Implementation, in:
K.L. Clark and S.-A, Tarnlund {eds.), Logic
Programming, Academic, London, 1982, pp.
209-313.

Shin, D.W., Nang, J.H., Han, S., and Maeng,
S.R., A Functional Logic Language Based on
Canonical Unification, in: Proceedings of 1987
Symposium on Logic Programming, San Fran-
cisco, 1987, pp. 328334

Shin, D.W., MNang, 1.H., Maeng, 5.R., and Cho,
I.W., Modeling The Semantics of a Functional
Logic Language with Input Mode, submitted
for publication to J. Logic Programming, 1988,

Subrahmanyam, P.A. and You, I.LH,, FUNLOG:
A Computational Model Integrating Logic Pro-
gramming and Functional Programming, in: D,
‘Degroot and G. Lindstrom{eds,) LOGIC PRO-
GRAMMING: Functions, Relations, and Equa-
tions, Prentice-Hall, 1986, pp. 157-200,

336

Yamamoto, A., A Theoretic Combination of
SLD-Resolution and Narrowing, im: J.L.
Lassez(ed.), Proceedings of the Fourth Interna-
tional Conference on Logic Programming, Mel-
bourne, 1987, pp. 470487,

