PROCEEDINGS OF THE INTERMNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1988,
edited by ICOT. © 1COT, 1988

ANSWERING LINEAR RECURSIVE QUERIES IN CYCLIC DATABASES

Ching-Shyan Wu

: Manager
Div. of Application Developing
Information Service Center

Veterans General Hospital, VACRS
Shib-pai, Taipei, Taiwan, R.0.C.

ABSTRACT

In this paper we propose a method to uniformly handle
cyclic and acyclic data relations in the linear recursive
queries, The idea to compute the level informations called
the recurrence sequences (RSs) is based on our
developed theorems for managing cycles. The
computations are limited in a connected component of a
relation, The final representation of RSs is the union of
finite namber of sets, each of which is a set driven by a
vaiue, namely the wirtual cycle, Then, the answer
determination is reduced to check the emptiness of
intersection of pairs of RSs by choosing a bridge point in
the lefi-hand side relation and another vertex (reachable
from the bridge point) in the right-hand side relation. In
virtue of such kind of answer determination, we call it the
intersection approach 1o distinguish from the enumeration
approach which will be published later. Shifting some
computation 1o the compiling phase, we can improve the
performance 1o O{ne), where e is the total number of
accessed edges and n is the total number of vertices in the

corresponding connected graphs.

1 INTRODUCTION

Queries on predicates defined by linear recursive rules
in an IDB is a field in the deductive databases (Gallaire et
al. 1984), Several methods have been proposed to deal
with such problem, however, processing in an efficient
manner is stifl a challenge for researchers (Henschen and
Naqvi 1984, Bancilhon and Rammakrishnan 1986, Han
and Henschen 1986a, 1936b and 1937), An elegant method
like the counting method may perform efficiently on those
EDB relations in an asynchronous structure, but may not
perform well in a rather complicated structure such as a
cyclic data base or a combination of asynchronous and
cyclic data structures. The main shoricoming of the
counting method is that in order to compute the all answers
many intermediate tuples, that although directly related to
the query constant are not answers to the query, are
generated as a by-product during the processing of a query.
This not only increases the space of the intermediate
relation but also causes delay for the user, Here is an
example that depicts such a problem. Suppose the data
related to the query R(a, 7) in the extensional relations are
ghown as the content of Table 1 and the virmeal relation R is
defined by the following rules:

127
Lawrence J. Henschen
Professor
Dept. of Electrical E i
and Computer e
The Technological Institute
Northwestern University
Rix, y) - Alx, ¥) B4)

R(x, ¥) = B(x, 0), R(U, V), C0¥, ¥)-eerrrrvese (2)

.bd) (b b ﬁ d,b
R

Tablel Related data of the Query Constant a.

It is well-known that the answers are the unlon of
values derived by the formulas BIACL An important
concept is that of level; for example a value b such that
Bi(a,b) has level § in relation B w.r.1. the query constant a.
In the coenting method, to invalve level information the
rules are rewritten as follow:

i) count(a,0)

ii) count(x,i) :- count(y,j),B(y.x),i=j+1

fii) R'(x:y,1) i- count(x,i)A{x,y)

iv) R'(x,,i) - count(x,i),B(x,u),R'(u,vj},C{v,y)i=j-1

The data related to a can be drawn as a graph, called the
query-graph, as shown in Figure 1,

hl

kl

Crelation
Figore 1 Query Graph Related to the Query Constant a.

To answer the query, the counting method has to
compute the following data tuples in the count relation.
MNotice that values answering in cycles occur at infinitely
many levels w.r.t. &; for example b ocours at level 1, 4,7,
| — 5

128

©@5) ®8)

731 @4) L4015 1
(4) (b6,5)

(&) Je1, 2l (o3 [a) [(e5) [e1.6) (e [a5)

(.6 | (1)
€2) 153 N2 A) ...
Table 2 Some Tuples of Relation count,

These tuples are just a minor portion of all the tples
generated in the relation count, The first tuple generated for
the modified relation R’ is (d,h,4), from which the first two
deduced answers are h3 and k2, which are of level 4,
However, the answers to this case are all the data values
appearing in the right-hand side of Figure 1, Therefore, one
might imagine that a huge number of tuples must be put
into the count relation as well as the modified relation R,
This case illustrates how ineffective the counting method is
on treating the data in a complicated structure, To overcome
such a problem, some authors proposed two algorithms to
handle the different structures; one for the acyclic and the
other for the cyclic, for examples, the magic set method and
counting methods (Bancilhon et al, 1986) and the LM and
LCM methods (Han and Henschen 1987). Such kind of
processing meeds users to decide which one to apply.
Besides, they also suffer efficiency problem. The method
proposed by Haddad and Maughton (1988) improves
efficiency but makes some restriction on the structures of
the two base relations. Because they involve some extra
levels into the so-called distance sets, compared to the
recuffence sequences introduced in this paper, the two
relations B and C must be cyclic. Our approach is an
algorithmic tation that directly explores the relevant
data values in the base relations starting from the query
constant. The cycle information is first obtained by a graph
traversal algorithm (Johnson 1975, Mateti and Deo 1976,
Tarjan 1973). The cycle tree associated with some vertex
is then constructed to express the relationship between the
data values and the corresponding cycle information and is
used to generate a set of integer values, called the
recurrence sequence, related to a vertex in a graph, The
recomrence sequence represents all possible occurrences of
levels of the vertex w.r.t. the query constant (or origin).
Finally, the answers to the query can be determined by
using the recurrence sequences of bridge vertices (see
section 3), This is somewhat different from previous well-
known methods, Our method can be implemented as a
subprogram, When the compiler has detected a defined
predicate to be linearly recursive, no compilation output
forms are needed. Instead a calling statement is attached to
that predicate. At the time of a query, the inquired predicate
and the query constant will be passed as parameters to this
subprogram for evaluating the answers. Moreover, our
method can be implemented to execute in parallel,

We will organize sections of this paper in the following
manner. In section 2, we give a sequence of lemmas and
theorems to figure out the idea how to manage the cycle
information into a simple form. The scheme to compute the
level information will be described in section 3. The
algorithm and complexity analysis is given in section 4. In
section 5, we make a brief concluding remarks. In the

following description, unless otherwise specified we
follow the notational conventions, Upper case letters A, B,
and C denote the extensional relations; the lower case letter
a is the query constant; and the lower case letters x, v, z, 1,
v, and w, represent variables. We assume that the query is
of the form R(a, 7) in the canonical type as defined by
above equations 1 and 2 (Han and Henschen 1986a).

2 MANAGING CYCLES

The levels of a data value (or vertex) driven by a single
cycle can be enumerated by adding multiples of the length
of the cycle. However, for a vertex driven by several
%[es. it becomes harder to list them without duplication.

example, if there are n cycles of lengths ¢, ¢, ..., Cy,
respectively, then all of the possible levels can be denoted
as;

fkpo+kprep+...+kycgl kj20,i=1, ..., 0}

It appears that there may be different ways to generate
some given fevel, The larger the value of a level, the more
combinations can be expressed. Thus, it is important to
avoid duplicate ennmeration. Let us first observe some
examples.

L{ki*5+ky*3}=1{0,3,5,6,8,9,10,11, ... }
={0,3,5,6} U {8+k*1},

2.{k1* 6 + ko * 8} = {0, 6, §, 12, 14, 16, ... }
= {0,6,8} V{12 +k* 2},

3k *S5+ka*3+k3% 7} =10,3,5,6,7, ... }
={0,3}U5+k*1},

4.{ky*4+ka* 5+ ks * 6+ ks * 26}
={0,4,5,6,8,9, 10, 11, ... }
={0,4,56} U {8+k*1}.

From these examples, we find that there is a common
simation. A regular pattern (in an arithmetic sequence)
always appears after some initial irregular values no matter
what the number of cycles. They have been reduced almost
to a single cycle enumeration. This motivates us to
approach the general case with n cycles, Before discussing,
we need some terminology and definitions. We use the
following notational convention only for this entire section.
Lower case letters stand for nonnegative integers and upper
case letters for sets of nonnegative integers. The
multiplication operator is omitted in an arithmetic
expression. .

tion: F+G={f+g|fe F,ge G}.

Definition: IfC,y, ..., G, are cycles with lengths ¢y, ...,
¢, respectively, Then Define F(ey, ¢, ... , ¢,) to be
the set {f + kj¢; + ... + ke, |[FE F, l?-ﬂ. L ...
= 1, ..., n}, For the special case, F = {f}, we write
fley, €3y .o 5 ©p) in place of {f}{cy, ¢ ... , €y) and
call f the start point (or value) of the n cycles.

Definition: a* F = {af|f € F}. ‘a * F' is denoted as ‘a
F' if there is no ambiguity.

Lefinition: F*a={fa|fe F}

2.1 Properties

We give the following properties without proofs. (They
can be proved easily by set theory.)

(M F+G=G+F

(2) a® F=Fwa,

() F+G+H=F+ (G+H).

4) (ab) %k F=a#*(bx*F),

5 a*F+@=a*F+(a»q.
(6) Fle) = {f(c) | f € F}.

(M FIUG)+H=F+H) (G +H).
(B) a*»(FUG)=(a*F)ia*G)
(9) F(c) = F + 0(c).

SRR T
Cly suny = clﬂ'lt +
(12) & % LF(e)] = [a % F] ¢ ' O
{(13)a=[F(cy, .. ,r;.}]-anE(acl, veep 25).

2.2 Cycle Merging Theorem

In number theory (Niven and Zuckerman 1966), it is
well-known that for any integers a and b, with b > 0, there
uniquely exists integers g and rsuch thata=gb+r,05r<
b. If d is the greatest common divisor (ged) of a and b, then
there exist infinitely many pairs (x,¥) such that ax + by =d.
If both 2 and b are nonnegative, then exactly one of x and y
must be negative. We prefer to those with the value of x
negative, and in the following presentation we denote the
pair {x,y) to be (-u,v), both v and v are nonnegative
integers. We state the lemmas and theorems needed to
develop our method, but refer the reader to (Wu 1988) for
most of the proofs.

Lemma 1. Let p, g > 1. If ged(p.g) = 1 then there
exisiy a nonnegative pair {uy V) such that u, less than g and
vg greater than 0 and -ugp + vy g = 1.

From now oa, assume that p is relatively prime to g,
i.e. ged(p,g) = 1,
Lemma 2, Forany t 20 there exist .t;,k; 20 such
that (p-1)g-I)+t=kyp+kyq.
Lemma 3. There are no k;, ky 2 O such that
(p-IMg-1)-l =kjp+ K&y q.

Lemma 2 shows that any integer greater than or equal to
{p-1)q - 1) can be generated by the two values p and g,
and lemnma 3 guarantees the value (p- 1)(g- 1)-l=pg-p
= g not in 0{p, q). Thus combining the result of the two
lemmas, we see that (p - 1){q - 1) is the beginning value
with cycle length of 1 and there are only finite values in
0(p, q) less than (p - 1)(q - 1). For any two integers m, o>
0, the property also holds. Thus, we have the following
two theorems.

Theorem 1. O(p.g) = F U e(l), where e = (p-1}q -
1) and F is a finite set of integers less than (e-1). Moreover,
F and e are uniguely determined.

Theorem 2. Let m, n > 0 and ged{m, n) = r. Then, for
anyt20,r[{p-1)g-1)+t] = kym + ky n, where
p = mir and g = nir, for some integers ky, ky 2 0. That is,
mn) = F' (efr)=rF Ure(r), where F'= rF and &' =
re, and F and e are defined as in the theorem 1, ie. " =
lem{mn) + gedimn) - m - n, where lem and ged stand for
the least common multiplier and the greatest common
divisor, respectively,

729

Lemma 4. If ged{p;, pa, ..., Pp) = 1 then there exisis a
unigue finite set F and an integer d such that
(1) 0(py, Pae ..o Pn) = F 12 d(1).
(2) VfEF, fed-1
Theorem 3. (Cycle Merging Theorem) Letb20 & ¢
=0,i=1, .., n Then there exist a finite set F and an
integer d such that d 20 and
(1) bey, ..., cp) = F Ud(r) and
i2) 'l?’fEFf{d r, where r = ged (€4, ..., €y).
And, furthermovre, F and d are uniguely determined.

Proaf. Without loss of generality, assume ail ¢'s are
distinct values,

By properties 10, 11, and 12,
bey, ... c,,}=h+ﬂ{c1;....c.}
-h"'[u{le“':pn} "

where ¢;=pyr, i=1,...,0. Then
ged(py, ..o D) = 1.

By lemma 5, thm‘: are nniqua F and d' satisfying the
conditions, SCI

b{cit :Cn}“bq'[[FUd{l:l []

=b+ [TF rd'(ry], by properties 2, 5.and 12,

= [b+rF']\ {b+rd'}1), by properties. 1 and 7.
LetF=b+rFand d=0b+rd". Then Fand d are also
uniquely determined.
This proves the theorem. QE.D,

We will call the firal merged cycle with length r the
virtual cycle, the smallest value d the start recurring
point (stp) of the virtual cycle, and call the first finite
values less than the srp in ble, ¢, ..., ¢p) the F-set ,

2.3 Formula for Merging n Cycles

In theorem 2, the srp of O(m,n) can be computed by the
expression ¥{p-1)(g-1) which is really the value lem{m,n) +
ged(m,n) - m - n, where lem is the abridgement of the least
common multiplier. We want to extend this formula to
compute general cases. Suppose we want to compute the
srp of O(18, 12, 21, 27), from properties of the defined
operators, we may first compute the sp of 018, 12},
which can be ex as {0} ' 12(6), then compute
12(6, 21) to be {12, 18, 24} v 30(3) and finally compute
30(3,27), which is the same as 30(3). Since 27, 24, 21 and
18 are in O(18, 12, 21, 27), the srp of this example must be
18. Therefore, 018, 12, 21, 27) = {0, 12} 18(3).
Below are the step-by-5tep computations.

0(18, 12, 21, 27) = 0{18, 12) + O(21) + O(27)
=[{0} U 12(6)] + 0(21) + 0@27)

= [0(21) U 12(6, 21)] + 0(27)

=[21)w {12, 18, 243w 30(3)] + 02T
=0(21,27) W {12, 18, 24}(2T) U 303, 27)
=0(21, 27) L {12, 18, 24}27) U 30(3)

= {0, 12, 18, 21, 24, 27} L 30(3)

= {0, 12} U 18(3).

Mote that in each step of the above computations, we
focus only on merging the virtnal cycle with next cycle.
Thus, to compute the srp, we may take advantage from
'Lempctraril:.r ignoring the intermediate F-sets of the previous

T30

steps. This idea is generalized for the derivation of n cycles
as shown below,

Oley, e .. o 8g) = 0y, £g, ...\ o) + 0fcy)

= 0(cqs Cay .- 5 B} + 0{Cpp) + Ofcy)

= 0(c1, €) + 0Cs) + ... + O(eyy) + 0(cy)

ﬁl'FI(\.:}db{g&]%: + n:g-ﬂ +Eif'+mtﬂ} ' El{c,_i o

= < ' + + o+ Dlegg) +

=[F:fl‘-ﬂUF;dd J*gfﬂd +...+U{¢i_1}+g{.}cp}

= I:Fl.[bj Tc.} qu{c" uﬂﬂ{gﬁ* c{]}} +ﬂ{¢j} LT
0(eq.1) + O(cy)

=|:Fl_(¢’l.r+lr :H-]}UFQ{EQ LLE] ll::|:|.,-l.:I UFj,(cj. T
Cp) W .. U ale) WE U d.,%{gnﬂ] + ey

= Fyi(Cs, ... , 6) U FalCy, ... &) U Fa(Cs, ... e} U
e Py () U dpo(Bn 2 &)

=P1{Bs' ve -rl:n:] uFl{c«ih wan .f-l} UFEI.":S! aas :cn} [
o W F,qlcy) UF,‘_-[id (e)

The last expression can be simplified to F U d(g, ,), for
some value d = dy 4. The g's and d's can be expressed as
following:

£1 = ged(ey, &)

dy =lem(e;, e) + g3 -¢; - 22

!‘Z“E‘:‘d{gllc!}

dy =dy + lem(gy, €q) + 23 - g1 - ¢
-lcm{cl,czjaa-lcm{gl,n;hgz-cl-cg-cg

& =848y C))
4, = d;q + lem(gy, Cput) + 8; - Bia = Cix :
=lem(ey, cg) + lem(g,, o) + lemigy, ¢4 + ... +
lem(g;.q, Cip) + 8- ©1 = oo = Gy

I

£a.1 = ged .
gy = dn-icfpﬁ;?gnﬂ- Co) + Zp.1 = Boa-Co
= lemicy, ¢o) + lem(gy, cq) + lem(gy, cq) + ... +

m(ﬁn—bcn}"'gn-l'ci I

From these formulas, we conclude that for some i, d; =
di, if and oaly if g; = g;,,, i.€. ¢j;3 has no contribution to
reduce the virtual eycle during the computation, If neither
can it span any value to decrease the da.q value then it can
be eliminated from the n cycles. Such a cycle is useless.
Thus, for any set of n cycles, eliminating all those useless
cycles from the n cycles can be handled by this manner, To
further reduce computing, we found some result (Wu
1988) that can help eliminating some computation to get the
srp value faster, In the lemma 3, we already have that pg -
p - q is not in O{p,q). But, if this value can be generated by
larter cycles in the cyele set (p, q, ...), we discover that the
values from pg -p=-2q + 1 to pg - p- q are all in O{p,q),
provided that p > q, and & similar result for O(m,n) also
follows in murn. The readers who want to know more detail
of this result are encouraged to read the reference. The
problem to decide the emptiness of the intersection of any
two cycles b and d with their start points a and c,

respectively, is pretty easy.
Theorem 4. (Cycle Intersection Theorem) Given a, ¢
20and b, d = 0. Then, 1) afb) m cfd) # ¢ if and only if

fa(b) r e(d)] = e= and 2) a(b) A ofd) # ¢ if and only if
ged(bd) is a divisor of the absolute difference of a and ¢,

3 ALGORITHMIC COMPUTATION

. For the sake of easily describing the alporithms, we
need some additional terminology and definitions. We also
restrict & graph to be a coonected graph, because only those
nodes related to the query constant that forms a connected
component, as shown in Figure 1, are peedad to answer a
query. A graph is denoted as G=(V, E}, where V is the set
of vertices (or nodes) each of which is a value appearing in
some edges and E is the set of edges that correspond to
tuples in a relation, :

3.1 Definitions

Definition: A path from u to v is a sequence of
vertices denoted as (vg, Vi, voos Vgo1s Voo 56 1)
vo=uand vy=vand 2 (v; vi,}e E,i=0,1, ..,
n-1, The length of a path from u to v will be called a
level of v wor.t. u. A simple path is a path that does
not revisit any vertex in the path. A path that has v, =
vy and does not re-visit any other vertex in the path is

called a simple cycle. Note that in the remainder of
this paper all references to cycles are to be understood
as references to simple cycles,

ion: In a graph, the start vertex with respect to
which the levels of other vertices (including itself) are
defined is called the origin of the connected graph.
Thus, origing are the only vertices that have level 0
and can be used to idemtify connected graphs in a
rélation. :

Example of the origin is the query constant; and so is
each of the bridge vertices in the C relation Figure 1 has the
origing a and h. Note again that in the processing to be
described below, we split the query-graph into several
connected graphs: one in relation B and some in relation C,
Thus, in Figure 1 a is the origin in the B relation and h is
the origin in the C relation. We may also refer to the

a-graph and the h-graph, respectively,

Definition: For any vertex v, the set of all possible
levels of v wer.r. itself, ie. the levels from v to v, Is
called the self- recurrence sequence of v,
denoted as SRS(v). Actually, SRS(v) contains either
a singleton or infinite many elements. When SRS(v)
is a infinite set, v must be in some cycles.

Definition: The recurrence sequence of v with
respect to & vertex p is defined as the szet of all
possible levels from p to v, denoted as RSp(v). We
use RS(v) to stand for the recurrence sequence of v
w.r.l. the origin of the graph containing v, if no
ambiguity arises.

Definition: Define relation : V — Vas (v, vs) e ©
iff either vy = vy or there is a cycle (not necessarily
simple cycle) that passes through vy and va.

Clearly, © is an eguivalence relation on V, and each
equivalence class is a strongly connected component
(SCC). In the left-hand side of Figure 1 has three SCCs,

namely, {a}, {b,b1,b2,b3,d,b4,b5,b6,b7} and {c,cl.e.g,
¢2,f}, while the entire of right-hand side is an SCC,

Definition: A wvertex v is called a pivot iff v is
contained in at least one simple cycle and either v is
the query constant or there is an edge (v',v) such that
v' and v are in different SCCs.

Definition: A vertex v in an SCC is sald to be a joint
iff it is contained in more than one simple cycle. A
vertex may be a pivot as well as a joint at the same
time. For example, vertices b and ¢ In Figure 1 are the
cases,

The recurrence sequence is an important appliance in
deciding the answers to a query. This can be seen that a
vertex v in relation C is an answer if and only if there is a
bridge (p,q) in A satisfying that the iatersection of RS,(p)
and RSq(v) is not empty. The following procedurs
describes a general procedure to compute the RSs,

PROCEDURE (RSEVALY): For a given vin V, to evaluate
RS(v).
1. Por each simple path from the arigin to v do
1.1 for each u in the path, computs SRS{u),
1.2 merge the path length with each of the SRSs
computed in 1.1, call it PRS(v),
2. Union the set of the PRSs to obtain RS(v).

Such 8 way of computation is, of course, time-
consuming, for there is a lot of duplication. This can be
reduced by having step 1.1 compute SRSz only on those
pivots and joints in the paths, Before describing the
algorithm to compute these SR.Sg from the cycles that exist
in the class (or SCC), we neaqd to introduce the concept of a
cycle tree,

3.2 SRS Computation and Cycle Trees

The SRS computation is somewhat relevant to the
structure of cycles in an SCC. To analyze the cycle
structure, we transform the original graph to a new one by
regarding each cycle in the graph as a vertex. An edge links
two vertices in the transformed graph if the original
represented two cycles have some vertices in common,
According to thig transformation, then, there are two kinds
of structure in graphs, We will show examples in section
3.3 and compute their SESs.

Definition: A cycle tree associated with a vertex v
in 2 graph is a wee satisfying 1) v is the root of the
ree, 2) each of the second level nodes of the tres is a
cycle containing v, 3) each of the other nodes is also a
cycle attaching to the cycle of its parent node, 4) in
any path a cycle appears at most once, and 5) each
link (C1,C2) in the cycle tree is labeled by a value to
stand for the length of the cycle Cp,

FROCEDURE (CTCONST): To coastruct the cycle tree of
vertex v in an SCC.
1 Generate the root node for v,

2 For each cycle containing v do
2.1 setup anode for the cycle, say N

731

2.2 pickup all the cycles attaching to N except
those already appearing in the current path
leading from the root down to N,

2.3 if this is not empty then for each cycle picked
up, do the same as the step 2.1 and 2.2,

This systematical construction of the cycle tree,
although, excluding a cycle appearing twice in a single path
of the cycle tree does have some cycles appearing in several
paths of the cycle tree. Since computing the SRS for a
vertex 15 the intention, it seems not necessary. (o count oa
every cycle becaose the various ways to generate a level
value are not important, what the matters is whether or not
a level can be generated at all. Thus, it is important to have
heuristics to cut off a path during construction of a cycle
tree, The purpose is to keep it small but encugh to generate
the desired SRS. We will introduce an example to explicate
our swategy.

3.3 Examples of SRS Computation

1) Simple Structare of Cycles

This kind of structure {5 characterized by that the
transformed graph contains no loops, {.e. it is a DAG or
tres. The structure in the left-hand side of Figure 1 is such
an example, Assume the cycle information has been found
and named to be 1 to 5. Cycle 1 is b-b&-b7, cycle 2 b-bl-
b2-b3-d-b4-bs, cycle 3 c-f, cycle 4 c-f-g-c2, and cycle 5 -
cl-g-g-c2, Then, the three pivots, b, ¢, and d, have their
cycle trees shown in Figure 2, respectively,

7
A m
. 3
(1) (@)

(3)
Figure 2 Simple Structure of Cycles.

The SRStz of b and ¢ can be computed just by simple
merging of the related cycles, for the cycles appear on the
same level of the cycle ree;

SRS{b} . 0{31 1} L {0. 3. ﬁ: Tr gl lﬂ}' L 12(1).
SRS(c) = 0(2, 4, 5) = {0, 2} W 4(1). =

The SRS of d needs a little effort to compute, because
the two cycles are not on the same level, In order to include
cyele 1, it is necessary to go around cycle 2 at least once.
So the computation looks like:

SRS(d) = 0(7) (7, 3) = {0} W (7, 3)
= {0, 7, 10, 13, 14, 16, 17} W 19(1},

The start value 7 in the second set 7(7,3) is used to
express necessary one traversal of cycle 2, The b-tree and
c-tree are flat structures and d-tres is a path structure,

2} Loop Structure of Cycles

Thig is imteresting and complicated because the
transformed graph also has some cycles. Let us observe
Figure 3. This graph containg 9 cycles. The first 7 cycles
are connected together to form a ring. The numbers in the
center and northwest corner of each cycle denote,

732

respectively, the cycle number and its length, Two
additional cycles are formed by the Inner and outer paths,
Assume the inner and outer cycles are cycle § and 9 with
their lengths 16 and 26, respectively,

Figure 3 Ring Structure of Cycles.

Part of the cycle tree of vertex b is shown in Figure
3{2), whose size exceeds the need for computing the SRS
of vertex b, The strategy to reduce the size of cycle trees is
devised as follow, Let a vertex v be a pivot/joint in some
SCC H. Then, the clue is the ged of the lengths of all the
simple cycles in H, which will be named as the virmal cycle
length (vel) of H and denoted as vel(H)., After computing
vel(H), proceed below steps. First, at current constructed
node pick up all its child cycles and then ¢compute the
current ged of the lengths of the picked-up cycles and the
srp which includes the so-far path length. In the mean time,
mark the useless cycles from the set of picked-up cvcles,
Second, check if the current ged is equal to vel(H). If not,
then sort the recently picked cycles in an ascending
sequence of their lengths and visit the cne with the smallest
length and apply the above procedure, Third, if already
reach the vel(H), then include only the lower cycles in the
tree that can contribute some levels to the F-set which is
less than the carrent srp. Those cycles without contribution
are terminated the following branches, Last, try to involve
the other unexplored nodes (in the picked-up set of cycles.)
If any of them has some contribution, construct it a node
and expand the following paths otherwise terminate the
path. For those marked useless can be further deleted from
the tree, This means that the uitimate constructed tree
containg only those cycles really contributing some levels to
the SRS(v). We show the process step by step for SRS(h)
in the second example.

1. The virtual cycle is first computed by ped(5, 4, 8, 9,
7,3, 5,16,26) = 1.

2. At npodeb, pick eycles 1 and 9: 0{6,26) = {0, 6, ...,
44}) 48(2). The current virtual cycle is of length 2
with srp equal 1o 48 and no cycle is useless. Then,
select the smaller cycle 1 (nods 1) to expand.

3. Atnode 1, pick cycles 2, 7, and &: 6(4, 5, 6, 16, 26)
= {4, 5, ..., 12} ' 141}, The current virtual cycle
is found at this step and cycles 8 and 9 are marked as
useless, and 14 is so far the current srp. Therefore,

4, at node 2, pick cycle 3 and discard it because
traversing this cycle even once gives a length greater
than 14 and terminate this path expansion,

3. atnode 7, we discard cycle 6 for the same reason
and terminate this path,

6. at node 8, we terminate this path and can even delete
the node because the cycle B is useless. Then, return
to node 1,

7. at node 9, discard it (because useless) and terminate
the path.

The final cyele tree is shown in Figure 3(3) and
SRS(b) = {0, 6, 10, 11, 12} U 14(1).

34 Example of RS computation

To compute the RS, we contioue to use the second
example to show how it can be done. Assume there is a
vertex v in cycle & which is a bridge point for the query, so
that its recurrence sequence is needed. Let x and y be the
lengths of outer and inner simple paths from a to v,
respectively (these paths are shown in bold in Figure 3,)
Let v1, w2, ..., ¥7T be the joints of ¢l and ¢2, ¢2 and 3,
.o €T and c1, respectively, The SRS of these 7 joints are
computed as below,

SE3(v1) = 14(1) v {0, 4, 6, 8, 10, 11, 12}
SRS(v2) = 141} {0, 4, 8, 10, 12}
SRS(v3) = 16{1) '\ {0, 8,9, 12}
SRS(vd) = 13(1) W {0, 7, %, 10}
SRS5(v5) = 6(1) W {0, 3}
SR5(vT) = 10(1) v {0, 5, 6, 8}
SRS(v) = 6(1) W {0, 3}
Then,

RS(v) = {x + SRS(b) + SRS(v1) + SRS(v2) +
SES(v3) + SRS({vd) + SRS(v3)} U {y + SRS(b) +
SRS(v1) + SRS(vT) + SRE(va) + SRS(v3)}

This reduces to

RS(v) = x + (6(1) W {034} v y+ (6(1) v {0,3,5])

= min{x,y}+ 6(1) W {x,y,x+3,y4+3 x+4,y+5}.

The PRSs are obtained by merging the SRSs, and RS
is then computed by unioning the PRSs, The union
operation is rather simpler to manage than the merging
operation. Here, two methods are proposed to merge the
SRSs. From the Cycle Merging Theorem, the final result of
SRS(u) and SRS(v) can be expressed by Fy U a(b) and Fa
L ¢(d), respectively, where F; and Fa are two finite sets
and a, b, ¢, and d are positive integers. Then,

SRS{u) + SRS(v)
={F wa®)}}+ {Fauc{d)}

= {[F1 v a®)] + Fa} v {[F1 v a(b)] + c{d)}

= (F1 + Fp) wa+ Fa(b) w e + Fi(d) w {a+c}Hb,d)

= Fue(f),

where f = ged(bd), e = (a+c)+lem(b,d)+ged(b,d)-b-d,
and F is the set containing the values less than 2 and is
obtained from (Fi+Fz2) W a+Fa(b) W c+Fi(d) W
{a+c}{b,d). The program to perform this calculation is
simple but the space for the F-set may become huge if there
is a large mumber of SRSs to merge, Another way is
directly adepting the cycle trees. Assume that the final cycle
trees of SRS{u) and SRS(v) are CT; and CTs,

respectively. Then, the merging is done in the following
manner:

PROCEDURE (CTMERGE): 10 merge two cycle wees CT)
and CTa,

1. Letfbe the ged of all the cycles in CT and CTa.

2. Construct a virtual node x as a rool.

3. Link each of subirees of CT} and CTz 0 %,

4, Traverse and reduce the merged tree in the same
manner a8 noted above,

The second approach can be easily extended to deal
with the merge of any finite number of SRSs, because the
final representation is also a tree. Thus, it is generally better
than the first one, The main idea is to pick all of the cycles
in the first level of each cycle wree as the first level cycles of
the virtual node, then, fraverse down the second level in the
same manner as before to construct a cycle tree.

Figure 4 Example of Cycle Tree Merging.

Considering the previous example again, the result of
cycle trees merging on the two paths, x and y is shown in
Figure 4. The trees headed by v1, v2, ..., and v7 in the
lefi-hand side of Figure 4 are thecyulems. mpmﬁvelt
to denote their SRSs. The cycle tree for the node b
depicted in the Figure 3(3). Recall that nodes b, v1, v2, v3,
v4 and v5 are merged for the x path and b, v1, ¥7, v6 and
v5 for the y path. The two merged trees, rooted by x and y,
respectively, are the PRSs of paths x and y. The x-tree can
be further reduced to contain only cycles 6 and 2, and the
y-lree 1o contain cycles &, 7 and 5. This is because in the
x-tree cycles 1, 5, 3 and 4 can be detected useless, and the
same reason for the y-iree.

From the gbove discussion, we summarize that if any
path from the origin to a vertex passes by some SCCs then
the path can be associated with a virtual cycle with the
length equal to the ged of virtual cycle lengths of the visited
SCCs, Thus, we have the following two lemmas.

Lemma 5 For each veriex v in an a-graph, a path from
a to v visiting some SCCs has its PRS 1o be F U'e(r),
where F is a finite set, € ix an integer and r is the god of the
virtual cycle lengths of the visited SCCs. If the path does
not pass by any SCC then its FRS contains only the length
of the path.

Lemma 6 For each vertex v in an a-graph, if
[RSalv)f = oo then it can be expressed as follow:

733

REalvi=F Uepry) ... Uegr),
for some k 2 1, where F iz a finile set, e; is the start
recurring point of the virtual cycle with length ri.

4 ALGORITHMS

The general steps of the method are:

1. Construct the Adjacency Structure for the graph by
navigating the relation B starting at the query
constant a 1o get a connected companent of the
relation B (CCB), i.e. to get the a-praph.

2. Compute the linking points of the bridges in the
B-relation (LPB) and linking points of
the bridge in the C-relation (LPC). (Here, we use
projection and joln operators.)

LPB := CCB A IT; A ; (or LPB :=T1;(CCB B4l A))
If LPB = ¢ then do print ("no answer for this query”)
3 lerminate ; end

elsedo LPC:=[L LPBBA A)N]T; C

If LPC = @ then do print ("no answer for this query™)
; terminate ; end ;

3. Apply DFS to find the SCCs in the a-graph and
decide the pivots,; For each SCC, enumeraie all the
qrcle.s {I'Jnsswp could be precomputed in a compile

4, Flnd&llpwmnswa:llaxjumtsmthngmphm
compuie their corresponding self-recurrence
sequences. (This step could also be precomputedina
compile phase.)

5. Foreach b in LPB, compute RS,(b) and for each
bridge (b,q) in relation A, apply steps I, 3, and 4 1o
figure out the g-graph.

6. Foreach v & q-graph, compute RSg(v), and

7. Find the intersection of BSg(b) My i) to decide if
v is an answer,

4,1 Complexity of the Algorithm

We give here only a rough description. For a full
reatment, see (Wu 1988). Let n and e be the numbers of
vertices and edges in 2 graph, respectively, Clearly, the
computation time needed in steps 1 and 2 is in O(n+e)
(Heorowitz and Sahni 1978), In step 3, finding the SCCs
requires O(n+e) (Tarjan 1973). Within an i-th SCC, to
emumerate all the simple cyele needs time in O((nj+ec;)
{Johnson 1975), where nj and & are numbers of vertices

and edges, velya.ndciwzﬂwnmubu'ofcyclesmﬂn
i-th SCC (80, &n; < n and Le; = e) Although such
enumeration is proceeded within an SCC, there might be

cases suffering the combinatorial explosion. Fortunately,
this step can be preprocessed. In step 4, the major purpose
is to decide what vertices are pivots and/or joinis as well as
to compute their SRSs. In an §-th SCC the construction of
cycle trees takes O(n;), provided that the computation of
gc&nndlcm (Aho et al. 1974) is in O(1). So, the step is in
Om?).

In step 5, Computing RSu(b) through the enumeration
of simple paths as stated before, may encounter the
combinatorial explosion. Alternately, we can compute the
R8s of all vertices starting from the.origin (it is done by
deleting the backward edges after an DFS traversal.) Since
the space of a cycle tree can be regarded as a constant
relatively to the total mumber of vertices in the graphs, so

734

the merging can be done in a constant time. Thus,
computing the RSs requires Ofne). For each g-graph, the
computation steps are the same. So, step 6 is also in O(ne),
Note that we never distinguish the parameters in the
a-graph with the g-graph. The main purpose in the step 7 is
to decide whether or not each vertex w in one of the
g-graphs is an answer. Since according to the Cycle
Intersection Theorem deciding the emptiness of the

intersection of two cycles needs only constant time, so the

time 10 decide if the intersection of RS,(b) and RS {w) is
empty (in the worst case) can also be regarded as constant,
Thus, in step 7 deciding the aniwers in a g-graph is in
O(n), where n is the number of vertices in a g-graph.
Therefore, the total iime to process a linear recursive query
is dominated by the RS commutation and hence, it is in
O(ne), where e is the total number of accessed ruples in the
base relations and n is the total number of vertices in the

corresponding connected graphs.

5 CONCLUSION

We have described a method in which preprocessing
the data with a relatively low cost for maintenance, Since all
pivots except the query consiant and joints are invariant 1o
any query constant, their SRSs can be calculated and stored
during a data preprocessing phase. At query evaluation
time, the RS is computed from the information of SRSs.
To reduce maintenance effort, the cycles can be partitioned
into two classes: one is called useful cycles thal can really
contribute some occwrences to some of the SRSs and the
other is called useless eycles that can not, Mainzaining only
these useful cycles in a data base does really save a great
amount of effort. Recomputing the SRSs is required only
when an inserted data produces a new cycle with its length
relatively prime to the length of the virtual eyele or when a
deleted data canses some useful cycle is broken. Since the
virtual cycles of pivots andfor joints in the strongly
connected component are of the same length, the difference
among them is only the starting recurring value and some
{inite distinct valnes. Thus, the final data structure should
be reducible 1o a small amount of space and the dme for

path merging also reduced.

REFERENCES

(Aho et al. 1974) A.V. Aho, J.E. Hoperoft and J.D.
Ullman, The Design and Analysis of Computer
?ﬂ orithms, Addison-Wesley Pub, Co., June,

4.

{(Bancilhon et al, 1986) F, Bancilhon, D. Maier, Y. Sagiv
and J, Ullman, “Magic Sets and Other S e
Ways to Implement Logic Pro " Proc. Sth
ACM SIGMOD-SIGACT Symposium on
Principles of Database Systems, 1986,

(Bancilhon and Ramakrishnan 1986) F, Bancilhon and R.
Ramakrishn

an, “An Amateur's Introduction to
Recursive Query Processing Strategies,"Preprints
of Workshop on Foundations of Deductive
Databases and Logic Programming, Washington,
D.C., August 1986,
{(Gallaire et al, 1984) H. Gallaire, J. Minker and J.M,
Nicolas, “Evaleation of Data Bases: A Deductive
Appr " Computing Survey, Val. 16, No. 2,
June 1984,

(Haddad and Maughton 1988) R.W. Haddad and JF,
Naughton, “Counting Method for Cyclic
Relations,” wnpablished mmuscrisn. March 1983,

(Han and Henschen 1987) J. Han and L.J. Henschen,
“Processing Linear Recursive Database Queries by
Level and Cycle Merging," Northwestern
University EECE Technical Report 87-05-DBM-01,

(Han and Henschen 1986a) J. Han and L.J, Henschen,
“Handling Redundancy in the Processing of
Recursive Database Queries," Northwestern
University EECS Technical Repors 86-09-DBEM-03,

(Han and Henschen 1986b) J. Han and L.J, Henschen,
“Compiling and P‘mmssin}g Transitive Closure
Queries in Relational Database Systems,”
Northwestern University EECS Technical Report
86-06-DBM-02. .

(Henschen and Naqvi 1984) L.J, Henschen and 5. Magvi,
“On compiling Queries in Recursive First-Order
Da??ggacs," JACM, Vol .31, January 1984,
PP .

(Horowiiz and Sahni 1978) E. Horowitz and 5. Sahni,
Fundamenials ?r Computer Algorithms, Computer
Science Press, 1978,

(Johnson 1975) D.B. Johnson, “Finding All the
Elenmla?' Circaits of a Directed Graph,” SIAM J.
C‘an%w,, ol4, No.l, March 1975, pp.77-584.

(Niven and Zuckerman 1966) 1. Niven and H, Zuckerman,
An Introduction o the Theory of Numbers, Second
Edition, John Wiley & Sons, Inc. New York,
March 1966, pp. 3-7, .

(Mateti, and Deo 1976) P. Mateti, and N. Deo, “On
Algorithms for Enume:ratinff all Circuits for a
Graph," SIAM J. Comput., Vol. 5, nod, March
1976, pp.90-99,

(Tarjan 1973) R.E. Tarjan, “Depth-First Search and Linear

Algorithms,” SIAM J. Comput., Vol. 2,
Na. 3, .S‘eﬁu.'mbsr 1973, pp.221-216,

(Wu 1988) C.5. Wu, “An Algorithmic Approach for
Handling Cyelic and Non-cyclic Linear Recursive
CQueeries in Databases,™ PRD. Dissertation,
EECS, Northwestern University, March 1988,

