PROCEEDINGS OF THE INTERNATIONAL CONFERENCE

OMN FIFTH GENERATION COMPUTER 3YSTEMS 1988,
edited by ICOT. @ ICOT, 1988

719

Efficient Query Answering on Stratified Databases

Jean-Mare KERISIT, Jean-Mare PUGIN

Bull CEDIAG (A.L Corporate Center), Bull Research Center
68, route de Versailles, 78430 Louveciennes FRANCE

ABSTRACT

We propose an extension to two deduction
methods (Alexander Method and Magic Sets) w treat
queries on stratified databases (Apt et al. 1986). As
shown in (Balbin et al. 1987), incorporating NAF-like
rules to the original algorithms may produce unstradfied
programs. Instead of modifying the algorithms in order
i obtain only stratified programs, we show that the
transformed programs belong to a new class (the so-
called weakly stratified programs) for which we define
a fixed-point semantics by means of a particular model
(W-mopdel). We first prove that, in the case of stratified
programs, the W-model is exactly the "natural model’
(Apt et al. 1986). Then we show soundness and
completeness of our method: for a given query to a
stratified program, the W-model of the transformed
program computes exactly the set of answers to this
guery. Our work is more efficient than the ezrlier work
dealing with the same topic (Balbin et al. 1987),
essentially becapse it avoids data duplication.

INTRODUCTION

Deductive Databases viewed as logic programs
have two components: the Bxtensional Database (EDB),
a set of ground functon-free unit clauses which
represent wples in relations, and the Intensional
Database (IDB), a set of funchion-free clauses with
predefined variables which represent definitions for
relational views (Gallaire and Minker 1978). Qur aim is
to define a query evaluation system able to compuote
cfficiently answers to queries on views by using their
(eventually recursive) definition in IDVB.

The case when IDB is a set of Homn clanses has
been the subject of numerous works (see (Bancilhon
and Ramakrishnan 1986) and (Demolombe and Royer
1984) for a survey) which have led 1o different
solutions: the Alexander Method (Rohmer et al. 1986),

APEX (Kifer and Lozinskii 1986a), Countng (Sacca
and Zaniolo 1986), Magic functions (Gardarin and de
Maindreville 1987), Magic Sets (Bancilhon et al. 1986),
Q50 (Vieille 1986),...

When negation is allowed within the body of
clauses, two problems arise: define the “natural”
semantics of logic programs and propose an efficient
query evaluation system compatible with this semantics.

Concerning the first point, we refer here to an
interesting framework which has been introduced
simultaneonsly by Apt et al. (1986) and van Gelder
(1986): Srraification. The principle of Stratification
consists in disallowing recursion "through" Negation.
For a given DDB, this property is guarantced by a pure
syntactic condition based on the decomposition of the
DDB into ordered srrara. Then, its meaning is properly
defined by its Natural Model which can be computed by
iterations of fixed-point operators on the strata,

As for the second issue, our approach is to extend
a classical query evaluation system to trear Stratified
Databases. With this end in wview, we propose an
extension both 1o the Alexander Method (Rohmer ef al.
1986; Kerisit 1987; Kerisit et al. 1987) and o Magic
Sers (Bancilhon et al. 1986; Beeri and Ramakrishnan
1987b). In both methods, programs resulting from the
corresponding algorithm may be unstratified. Thus, we
inmoduce a new concept more general than stratification
to capture the form of the transformed programs {Weak
Stratification), for which we define a particular model:
the W-Model.

A melated work to our has been recently proposed
concerning the extension of Magic Sets to Stratified
Databases (Balbin et al. 1987); but it does not gnaranies
that the query processing avoids redundancy in every
casc.

The organization of the paper is as follows.
Section 1 provides notations and necessary background
information concerning Logic Programs and Negation.

720

In section 2, we adapt the Alexander Method and Magic
Sets to the reatment of Stratified Databases and point
out that programs transformed by the revised methods
may be unstratified. It leads, in section 3, 1o the
characterization of a new class of logic programs so-
called Weakly Stratified, for which we give a fixed-
point semantics by means of their W-Model. Section 4
containg theoretical results conceming soundness and
completeness of the method,

1. PRELIMINARIES

1.1 Notations

In the sequel, X.¥,ZX;,... denote variables, a,aj,...
denote constants, [l ke denote literals, Greek letters
denote substitutions. Given a substinnion & and an
expression £ (term,literal or clause), we denote by Eo
the application of & on E. We denote by €,Cp SigN-
operators: idenity or noe. If ¢ is a sign-operator and [a
literal, ¢ © { stands for [if ¢ is identity, for net [if ¢ is
not,

We consider in the following a DDB (or a logic
program) as a finite set of first order function-free
clauses. A clause is a formula of the form: Jr = Iody
where Iy, Iy are literals, 7 = 0, and e is a positve
literal, In definite clauses, each J; must be positive;
definite programs are logic programs made of definite
clanses. More precisely, we only congider clanses with
predefined variables: each variable which occurs in a
negative J; or in Ic also appears in a positive Jj.

To distinguish transformed programs from
original ones, we denote a clause o {p..dn in &
transformed program by: 7,0, = lc because these
clauses are intended to be processed bottom-up
{saturation).

Finally, we may write lj,.. 0, = lc ;42 instead of:

i;.,.,fﬂ = fl:'j-

-!J_. ..Jﬂ = Iﬂ:.

for practical convenience,
1.2. Semantics of Logic Programs
The semantics of a logic program can be

characterized by its Herbrand models (Lloyd 1984). A
logic program can actually have a lot of models(1), bur

(1) Asthe logic programs we consider don’t contain
function symbols, they only have a finite number of
models and all of thern are finite,

we are most interested in its minimal models. A model
is the least model of a logic program P if it is the only
minimal medel of P. For a definite logic program, there
exists such a least Herbrand model, and this model is
generally intended to characterize its semantics (Lloyd
1984). Indeed, this model contains exactly all the facts
which are true in every model of P,

Since only positive information can be inferred
from a definite program, deducing negative information
requires an additional inference mechanism. To state
that a fact is supposed to be false if it ean not be proved
to be tue is the most natural way to achieve it this rule
called Closed World Assumption (CWA) (Reiter 1978)
is equivalent to say that a fact which is not in the least
model is supposed to be false. Transposing it to the
framework of SLD-Resolution led to the concept of
Negation as Failure: 2 negative ground atomic goal
not B) is said to be tree if there is no SLD-derivation of
the empty clause from (¢« BL In fact, as SLD-
derivations may be infinite, only finite failure can be
checked. Thus, in the sequel, we denote by SLD-NFF
{Negation as Finite Failure) the resoludon method
usually denoted by SLD-MF. Assuming that programs
are function-free, deduction methods can check in finie
time without loss of efficiency whether a fact belongs to
the least model or not, (Bancilhon et al. 1986; Rohmer
et al 1986, Vieille 1986). One can say that these
methods implement CWA over function-free definite
programs,

On the other hand, a program with negation may
have several minimal Herbrand models, Thus the choice
between the models needs supplementary knowledge.
Then, if a particelar model has been chosen, negative
information can be derived (as for definite programs) by
completion of the model towards the Herbrand base.

1.3. Stratification

As snid before, if a logic program contains
negation, it may have no least model,

Recently, two independent works (Apt et al. 1986;
van Celder 1986) led to the inmoduction of a new
concept to gvercome this difficlty: Stratification. The
principle of this approach consists in disallowing
recursion through negation.

A logic program is said to be seratified if it can be
divided into ordered stwata S; for i=1,....n such that:

- If a relation symbol occurs positively in a clause in §;,
then its definition(2) is contained in US; for j<i

- If a relation symbol occurs negatively in a clause in §;,
then its definition is contained in WS; for j<i

For a stratified program P =wS; (i=1,....n), its semantics
is well-defined by a model M which can be computed as
follows:

M; =TsTo(@) ... My=TsaToM,.): M =My
This model is called the natural model of P (Apt and
Pugin 1987).

The motivation for this framework is the
following: if the negation of an atom (say not £) is to be
supposed (say for a rule in stratum §j), one has o be
sure that B cannot be proved in the sequel; it is the case
here, since only rules in lower strata than S; can produce
positive information about B, For more details about
stratification, see (Apt et al. 1986; van Gelder 1986; Apt
and Pugin 1987).

2. DEDUCTION METHODS

We first recall how deduction methods apply for
definite programs and transpose them intuitively for
programs with negation; finally, we give a formal
presentation of the Extended Alexander Algorithim.

2.1. Programs without Negation

Given a query to a DDB, a deduction method uses
definitions from IDE to transform it into a combination
of queries to EDB. Depending on the dynamic or static
nature of the combination, classical methods are said o
be interpreted (SLD-Resolution, APEX, Q5Q, ..} or
compiled (Alexander Method, Magic Sets, Counting,
Magic Counting, ...).

Within an interpreted method, the evaluation
strategy 15 described by a general algorithm specifying
exactly the necessary computation seps to answer any
guery to the DDB (Demolombe and Royer 1986).

On the other hand, a compiled method transforms
statically the DDB with respect to query modes inip a
new DDB. Then, the new DDE is to be processed using
any bottom-up evaluation strategy. One interest of the
compiled methods is that no control mechanism
obscures the semantics of the evaluation and this makes

(2} The definition of & predicaie is the set of all
clauses concluding on this predicate.

721

proofs more easy and readable. Furthermore these
methods can be easily coupled with any relational
DEMS: bottom-up evalpation can be efficiently
implemented wsing a mapping towards relational
algebra (Rohmer et al. 1986; Ellul 1987). Finally, note
that bottom-up evaluation allows a high level of
parallelism: each rule can be executed on a distinet
processor, each processor communicating with the
others by sending toples (Gonzalez et al. 1987,

Thus we will focus in the sequel on two compiled
methods: Alexander Method and Magic Seis. The
principle of both methods is quite the same: it consists
in simulating a top-down strategy using the definitions
of IDB by producing & new program to be processed
bottom-up over EDB,

Indeed, creating a new goal (e.g. on predicate p)
will be simulated by the assertion of a new fact (pb_p in
Alexander, magic_p in Magic Sets), and generating a
new solution by the asscriion of a comesponding new
fact (sol_p in Alexander, p in Magic Sets).

Complete information about these methods can be
found respectively in (Rohmer et al. 1986; Kerisit et al.
1987; Kerisit 1988) for Alexander and (Bancilhon et al.
1986; Beeri and Ramakrishnan 1987b) for Magic Sets.

Let us illustrate both methods on the same
example (ransitive closure).

Ex1:

gY) & pX,Y) (1)
q(X.Z) + p(X,¥),q(Y.2) (2
Query: « gla,X)

We denote by O the signature {instantiation mode) of
the query (ef definition 2.3.1): in this example, O
stands for g _{_0.

Ex1.1: Alexander program

pb_Q(a). (1)
pb_Q(X).p(X,Y) = sol_QUX.Y). (2)
ph_QUX)Lp(X,Y) = pb_Q{Y),cont; (X, Y). {3)
conty (3,Y),50l_QUY.Z) = sol_QX.Z). (4)

Ex1.2: Magic program with our notations

magic_(}a). (1)
magic_Q(X),p(X,Y) = Q(X.Y). (2
magic_Q(X),pY)= supmagic_2_2(X,Y). (3
supmagic_2_2(X,¥) = magic_Q(Y). (4)
supmagic_2_2(X,Y),Q(Y,2) = Q(X,2). (5)

722

2.2, Programs with Negation

Now, we consider DDBs where negation literals
are allowed within the body of clauses. For such DDBs,
the peint is to propose a query answering system as
powerlul as previously.

Our approach is therefore to adapt the Alexander
algorithm (Kerisit et al. 1987) and the Magic Sets
algorithm (Beeri and Ramakrishnan 1987a) to the
treatment of Stratified Databases. A negative goal (e.g
not p(X,¥})) is mansformed, as wsing the Megation as
Failure principle, into a positive call (pb_p or magic_p)
and a negative return (nor sol p oor mor p)
Unfortunately, the programs produced by this method
arc not always stratified.

Example: a person who is not a Very Important
Ferson but knows a Very Important Person must be
jealous. A Very Important Person is rich or has rich
ancestors,

Exi:

DR

jealous(X) « person(X), not vip(X), knows(3, Y],
vip(Y). (1

vip(X) « rich(30). 2)

vip(Y) «— parent{X,¥),vip(X). (3

(1) belongs to stratum 52, (2),(3) belong to stratum 5.
EDRB: contains the 'ptﬁm'.baraut'.'knnws' and "rich’
relations in stratum Sg.

Ex2.1: Alexander transformed database for query
“jealous(alex)

InDg"
pb_j(X),person(X) = pb_v(X),cont, (X). (1)
contj (X)not sol_v(X)knows(X,Y) =
ph_v(Y),contz(X,Y). (2
contp(X,Y},s0l_v{¥) = sol_j{X). (3
ph_v(X),rich(X) = sol_v({X). (4
ph_v(X),parent(Y X} = pb_v(Y},contz(X,Y). (5)
contz(X,Y),s0l_v(Y) = sol_vw({X). (&)

where jand v stand for signatres of fealows and vip.

Rules (1), (2) & (3) belong to 5%, the others 13 87y,
EDB’: contalns EDB and the fact pb_jfalex) in §'p.

Ex2.2: Magic Transformed Database for query
"jealous{alex) 7"

IDB':

magic_j(X),person(X) = supmagic_1_2(X). (1)
supmagic_1_2(X) =» magic_v(X) ()
supmagic_1_2(3),not v knows(Y) =
supmagic_1_5(X,Y). (3
supmagic_1_5(X,Y) = magic_v(Y). ()
supmagic_1_SCLY v (Y) = i(XD. (5)
magic_v{X),rich(X) = v(X). (6)
magic_v{X),parent(¥Y,X) = supmagic_3_20{Y). (T)
supmagic_3_2030Y) = magic_v(Y). (8)
supmagic_3_203,Y),w(Y) = w(X). (@)

Rules (1),(2),(3),(4) & (5) are in §"2, the others in §°).
EDB: contains EDE and the fact magic ffalex)in §'g.

Let os present below a formal definition of the
cxtension of the Alexander Method to Swatified
Databases.

2.3. The Extended Alexander Algorithm

Before presenting the Extended Alexander
Algorithm (EAA), we give a formal definition of
signatures.

2.3.1. The Notion of Signature

Each signature 5 of a given predicate p (with arity n)
has to capture one instantiation mode for p. A signature
has four components:

- a nagme S = p_a_..._a, where each aj describes the
instantiation mode of the ith argument: aj is 1 if the ith
argument is bound, 0 else;

- a profection operator 18 which associates 1o any
ni_tuple t a taple containing only those arguments of t
which are said 1o be bound in §;

- & problem predicate pb_S with arity equal to the
number of bound arguments in S;

- a solution predicate sol_S with arity equal to n.

MNow, a Sideways Information Passing (SIP)
siraregy (Beerl and Ramakrishnan 1987h) determines
for & given clanse and a given signature of its head the
derived signatures of the tail's predicates. In the sequel,
we don't define particular SIP-smategies. However, in
order to avoid unsafe computation, we do not allow
SIP-strategies where the induced signatures of negative
literals contain a @ symbol: ie. & negative literal can be
a goal iff it is fully instantiated.

2.3.2. The detailed Algorithm (EAA)

Given an atomic query ¢ to a stratified DDEB B, EAA
produces a new DDB B’ =(EDE' JDE').

CAND denotes in the following the set of couples (C.5),
 being a candidate clanse with associated signature 5,

(LD denotes the set of couples in CAND already
reated.

EAA: input B = EDB w IDB
input q
output B’ = EDB' w IDB*
BEGIN

INITIALIZATION :

We associate with ¢ a signature 5 in which constans are

represented as input arguments and variables as output

argumens.

EDB’ = { pb_S(constants) } « EDB

CAND = { (C,S) | head of clause C has the same
relation name as q |

QLD =&

While (CAND = 0OLD)

{ Choose a pair (C,5) from (CAND - OLDY),
let s be the stratum number of C;
Add (C,5) o OLD

If Cisaunit clanse { C:left) &)
Add pb_S(rS.t) = sol_S(1) w IDBE’ in stratum 8’y

Ele - {C = lefe) & Wepltg), oo o Dhnlta).)
{ Add the following rules to IDB’ in stratum §'y:

ph_S(mS.t) = pb_5;(mS,.t1),conty{t"1).

conty(t’)), €1 9 sol_S8;{t1) =
pb_S,(mS,. 1) contalt'a).

conty(t"n}, ¢ ¥ sol_S,(ta) = sol_S(1).
Each clanse coneluding on a predicate Th;
becomes a candidate with signature ;.
} END Else
} ENID While
END

Notations:

* 5 are signatures associated with Ihy as explained
ahove.

* cont; are new predicates.

723

* for each i, r'; is the wple containing those variables
which occur in both of the expressions:

pb_S(nS.s),... thy j(t} and thift),.. . dhyfta) = sol_S{1).

® ¢y I8 the sign-operator corresponding to M (not if Thy is
negative, identity else); for any positive literal 1, "nor ¢
" stands for “not I and "identicy ¢ I for "I,

2.4. Unstratification

One can easily notice that neither the Alexander
transformed program in the former example (Ex2.1) nor
the Magic transformed program (Ex2.2) are stratified
since there exists a cycle containing a negation: (ph_v
—» sol_v — pb_v) and (magic_v — v — supmagic_1_5
—s magic_v). Indeed, unsiratification in this example is
doe to the presence of both negative and positive
oceurtences of the same predicate (vip) in the same
clause (clause (1) in Ex2).

When dealing with a stratified transformed
program, the semantics of the natral model seems to
guarantee soundness and compleleness of the guery
answering. Anyway, Wwe prove in section 4 a more
peneral result,

The original feature of our work consists in
showing that even unstratified transformed programs
can be given a semantics which guarantees soundness
and complelencss. To do so, we prove that the
rransformed programs belong to a new class of
programs we call "Weakly Swatified”.

3. WEAK STRATIFICATION

3.1. Definition

A program P is said to be weakly strarified iff
there is & partition P = w5; (i=1,...,n) such that:

for each i, if a relation symbol occurs negatively in a
clause in sratum 5;, then its definition is contained in
LJEI,! (j<i).

It means that only the first syntactical condition of
stratification is retained. As a matter of fact, a stratified
program is weakly smatificd.

Ex3: Example of a wealkly stratified program which is
not stratified,

piX) = q(X)
r(X),not q(X) = p(X)

724

Ex4: Example of a program which is not weakly
stratified.

T(3LY), not p() = plY)

In the general case, it is difficolt to characterize a
natiral semantics for such a program. The semantics we
adopt here consist in wsing a rule which contains a
negation on a given predicate (say p) only when no rule
of a lower stratum can produce any more positive
information for this predicate p. We shall define below
a fixed-point operator which determines the choice of a
maodel, called the W-meadel, It will be shown that, in the
case of 2 stratified program, the W-model coincides
with the natural model defined by Apt et al. {1986).

3.2, Definition of Tw

Let P be a weakly smatified program, divided into
strata S (i=1,....n5). For each 1, let Nj be the set of
clapses in 5; having a negative literal in their body. Let
Neg = W N (i=l....ng) and Pos the set of clauses
without negation. Let U be the Herbrand Base
associated with P. '

We define Twp the fixed-point operator associated with
P a5 a mapping from P(UT) to P{U) such that:

Twp(l)= if Tpos() — I @

Ty~ 1= @

L Tl

else I Tl
else

else T Togel

where T is the immediate consequence operator
extended to general programs (Apt et al. 1986):
a e I'pfl)iff there is a ground instance of a clavse in P
concleding on a with each positive atom of its body ind
and no negated atom of its body in [,

We first give the following result concerning Tw:
Proposition I:

M is a Herbrand model of a weakly

stratified program P iff it is a fixed-point

of Twe

Proof is immediate.

The point is now to choose a particular model,
which corresponds to the intuitive semantics.

3.3 Characterization of the W-Model
Definition:

We define M' the W-model of P as the
minimal set of “"safe" information
obtained by iteration of Twe on the
empty set. It follows that M ﬁaa to be
the limit, if one exists, of TwpTe(d).

We prove the following properties for this model:
Proposition 2:

There axists an integar « such that :
Vhza TwpTh@) = TwpTa(@) = M’
Proof: -
TwpTo(D) is an increasing sequence bounded by the
finite Herbrand Base.

Proposition 3;

If P is a stratified program, the W-made!
of P is also the natural model of P

Sketch of proof:

If P is stratified, the constuction of the W-model of P
corresponds quite exactly to the construction of its
nateral model. The only difference is that positive rules
may be used in a different order. Since using positive
Tules guarantees monortony, one can easily prove that
the W-model of P and its natural model coincide. The
complete proof can be found in (Kerisit 1988),

4. THEORETICAL RESULTS

The choice of a pamiton for transformed
programs is as follows: we associate to 2 rule the same
stratum number as the one of the original clause from
which it was produced.

This partitioning policy leads to the following
result:
Theorem I;

Transformed
stratified.

programs are weakly

Proof is immediate using the swatification condition of
the original program.

The major result of our work is the proof of
completeness and soundness of EAA. Acwually,
soundness and completeness” are o be proved
simultaneously: suppose for instance that a ground atom
cannot be proved because of incompleteness, then any

clavse osing the negation of this atom may produce
incorrect deduction.
Theorem 2:
Given B a stratified DDB, q(t) a query to
B (with signature S), let B’ be the DDB
obtained by Alexander transformation of
B with qit). The answers g{u} to the
querls,r correspond exactly with the
S?IE {u) which belong to the W_model
of B,

Sketch of proof:

Intuitively, proof is same as for Horn clanses programs
excepted for negative information (only solution-
predicates may be negated in the transformed
programs). Any transformed rule (say R) containing a
negated soluton predicate (say sol §) has been
produced together with 2 rule defining its commesponding
problem predicatz (pb 8). Thus, according to Tw's
strategy, only the ground instances of nor sel §
corresponding to already proved pb_S instances may be
used when rule R is invoked. On the other hand, the
fixed-point operator ensores that all rules able o prove
these sol S instances (directly or not) have besn used
before rule & is used with these instances. The complete
proof, made by indoetion on the smata, can be found in
(Kerisit 1988).

CONCLUSION

Our work proposes a way 1o design efficient query
evaluation systems for stratified databases. To achieve
it, we extend the Alexander algorithm and present a new
bottom-up execution sirategy dedicated to the new class
of so-called "weakly stratified” programs. This method
can be seen as an efficient implementation of Negation
as Failure (not finite failure) for stratified programs.

Moreover, comparison with related work (Balbin
et al. 1987) sesms to favour owr method for its
simplicity and efficiency. In this paper, the authors
solve the problem of unstratification of the ransformed
programs by adding a preliminary technique o the
extended Magic Algorithm called BPR labelling.
However, this technigue involves a lot of duplications
which in mrn leads to some inefficiency. Our approach
preserve the simplicity of the original methods and
improve efficiency with a new bottom-up evaluation
strategy.

725

ACKNOWLEDGEMENTS

We would like to thank all members of the AL
Dept. and especially Jean Rohmer & Rémi Lescosur for
their sopport and their encouragements.

REFERENCES

(Aptet al 1986)
I{.R.::sgr. H.Blair, AWalker: "Towards a Theory
of Declarative Knowledge®, Tech. Report §5-10,
IBM Research Center of Yorktown,

{Apt and Pugin 1987)
ER.Apt, LM.Pugin: "Maintenance of Stratified
Databases viewed as a Belief Revision System”,
Proc. of 6th ACM symp. on Prine. of Database
Systems , San Diego March 1987,

(Bancilhon and Ramakrishnan 1986)
F.Bancilhon, R.Ramakrishnan: "An amateur's
introduction to recursive query processin
strategies”, Proc. of the ACM-SIGMOD conf,
Washington DC, May 1936,

(Beeri and Ramakrishnan 1987a)
C.Beeri, R.Ramaknshnan: "On the Power of
Magie", The Hebrew University Draft Jan, 1987,

(Beeri and Ramakrishnan 19870)
C.Beeri, E.Ramabrishnan: "On the Power of
Magic", Proc. of 6th ACM symp. on Princ. of
Database Systems , San Diego March 1987,

(Bancilhon et al. 1986)
F.Bancilhon, DMaier, Y.Sagiv and J.D.Ullman;
"Magic Sets and other strange ways to implement
Logic Programs", Proc. of the ACM SIGACT-
ﬂggdﬂb Symp. on Princ. of Database Systems

{Balbin et al. 1987) .
LBalbin, G.5.Port, K.Ramamohanarao: "Magic
Set Computation for Swatified Databases”, Tech.
Report of Univ, of Melbourne, 1987,

{Clark 1978)
KL.Clark: "Negation as Failure” in "Logic and
Databases", Plenum Press, New York 1978,

(Demolombe and Royer 1986)
E.Demolombe, V.Ro (ONERA-CERT):
"Evaluation Strategies for Recursive Axioms: a
Uniform Representation”, prel. draft, October
1986.

(Ellul 1987)
A Eliul: "Couplage entre mécanisme de Déduction
et Base de Données”, proc. of "Des Bases de
Données aux Bases de Connaissances" AFCET
conference, Sophia Antipolis, France, Sept. 1987,

T26

(Gardarin and de Maindreville 1986)
G.Gardarin, CDe Maindreville: "Evalsation of
Database Recursive Programs as Recursive
Function Series”, Proc. ACM-SIGMOD Int. Conf.
?gsl'é-'[anagcmm of Data, Washington DC, May

{Gallaire and Minker 1978}
H.Gallaire, JMinker (eds) : "Logic and
Databases”, Plenum, Mew York 1978,

(Gonzalez et al. 1987)
R.Gonzalez-Eubin, J.Rohmer, A Bradier: "An
Overview of DDC: Delta Driven Computer”,
BULL Research Center, Technical Report DMIA
87007 March 87.

(Kerisit 1987)
JM.Kerisit: "A Relational Apprbach o Logic
Fro ming: the Extended Alexander Method",
BU'EEm Research Center, Technical Report
DLASSLIA 87004 Febr. 1987,

(Kerisit 1988)
JMLEerisit "La méthode d'Alexandre: uns
technique de Dédoction”, Thise de Doctorat,
Université Paris VIL June 1988,

(Kifer and Lozinskii 1986a)
M.Kifer, EL.Lozinskii: "Filtering Data Flow in
Deductive Databases”, Proc. of the IntConf. on
. Database Theory, Rome, Iialy, Sept. 1986,

{Kifer and Lozinskii 1936b)
MKifer, ELLozinskii: "Can We Implement
{igfi‘: as a Database System 7", Techn. Report
6 of the State University of New-York at Stony
Erook, March 1986.

(Kerisit et al, 1987)

JTM . Eersit, R.Lescoeur, J.Rohmer, G.Roucairol:

"The Alexander Method: an efficient way for

handling Deduction on Data Bases", BULL

Research Uenter, Technical Report DLA/SSLIA

87015 June 1987.

Also in "Programming Future Generation
uters”, pp 283-304, K Fuchi & M.Nivat ed,,

Morth Holland, 1988,

(Lloyd 1984)
1W Lioyd: "Foundations of Logic Programming”,
Springer Verlag 1984,

{Pugin 1988)
JM.Pugin: “"Contibotion & ["Emde des
Raisonnements MNon Monotones: le Tableur
Logigue”, These de Doctorat, Université Paris
VIL, June 1988,

(Rohmer et al, 1986)
I.Rohmer, RLescoewr, JMKersit: "The
Alexander method, A technique for the processing
of recursive Axioms in Deductive Databases”,
Mew Genperation Computing 1986-4(3);
.273..285.

(Sacca and Zaniolo 19846)
D.Sacca, C Zaniolo : "On the implementation of a
Simple Class of Logic. Queries for Databases”,
Proc. of the 5th ACM SIGACT-SIGMOD Symp.
on Prine. of Database Systems, Cambridge MA,
March 1986.

(Ullman 1985)
I.D.Uliman: "Implementation of Logical Query
Langnages for bases”, ACM Trans. on
Database System 10(3) p 289..321 Sepr. 1985.

{van Gelder 1986)
A Van Gelder: "Megation as failure usi.ng Tight
Derivations for General Logic Programs”, Proc.
third IEEE Sympos. on Logic Programming, Salt
Lake City 1986,

(Vicille 1986)
L.Vieille: "Recursive Axioms in Deductive
Databases: the Query/SubQuery Approach”, proc.
of the first Int. Conf. on Expert Database Systems.
Charleston April 1986.

