PROCEEDINGS OF THE INTERMATIONAL CONFERENCE
OM FIFTH GENERATION COMPUTER SYSTEMS 1988,
edited by ICOT. € [COT, 1988

711

A QUERY INDEPENDENT METHOD
FOR MAGIC SET COMPUTATION ON
STRATIFIED DATABASES

Isaac Balbin

Department of Computer Science

Royal Melbourne Institute of Tachnalogy,
CPO Bex 2476 V, Melbourne, Ausiralia
isaacigoanna.czluunet wo.net

ABSTRACT

A semantics for stratified and allowed databases is
presented in (Apt et al., 1988). Based on this seman-
tics, a method to compute the answers to a query using
magic sets is given in (Balbin et al, 1987). The method
is based upon a labeling algorithm (the BPR algorithm)
which separates the context of predicates in a rule. La-
beling ensures that stratification is preserved when the
magic rules for positive literals are constructed. We
present a new efficient labeling algorithm that has the
virtues of generating a polynomial number of new predi-
cates (in the worst case), and of requiring no re-labeling
of the database because it is independent of subsequent
user queries.

1 INTRODUCTION

Based on a query, magic set algorithms (Bancilhon
et al., 1986; Beeri and Ramakrishnan, 198T; Rohmer
et al., 1986) perform a compile-time transformation of
a database into an equivalent form that enables a stan-
dard or enhanced (Bancilhen, 1985; Balbin and Rama-
mohanaras, 1987) bottom-up computation to focus on
relevant tuples. In this paper, we restrict ourselves to
magic sef transformations on function-free, stratified
(Chandra and Harel, 1985) and allowed (Clark, 1978)
databases. Magic set algorithms for these databases are
based on allowed sideways information passing strafe-
gies (sips) (Beeri et al,, 1987; Balbin et al., 1987).

The paper is organised as follows. Notation and pre-
liminary definitions are presented in the rest of this sec-
tion. In section 2 we motivate the reason for labeling. In
section 3 we identify two deficiencies with a previous la-
beling algorithm. Firstly, it may require the re-labeling
of the database when the user izsues a new query. Un-
like the case for a database without negative literals, the
program will often have to be re-compiled as a result of
new queries. Secondly, the number of new predicates
generated may be exponential in the number of predi-
cates in the original database. We present an efficient

Krishnamurthy Meenalshi
Kotagiti Ramamohanarao
Department of Computer Science,
University of Melbourne,
Parkville 3052, Australia.
racimonnari . sgfuunet . ue.net

labeling algorithm that overcomes these difficulties. Tt
has the virtues of generating & polynomial number of
new predicates (in the worst case), and of requiring no
re-labeling of the database because it is independent of
subsequent queries,

We denote variables by identifiers beginning with an
upper case letter and constants by identifiers starting
with a lower case letter. In the absence of function sym-
bols, a term is either a constant or a variable. Identifiers
starting with lower case letters are used for predicate or
relation names. An gtom is of the form plty, tg, ..., ta),
n = 0, where p is a predicate name and t3,t2,...,%n
are terms. A fiteral 15 either an atom, or an atom pre-
ceded by the negation sign, —. A rule is a statement
of the form pg = P1,Pr--- 2 Py ™ = 0, where pg is an
atom and py, pe, ... . Pa are distinct literals. The atom
po is called the head, the conjunction prapay... Pm i
called the body, and each p; is a body literal. Without
loss of generality, a query q where q is an atom, is a
statement of the form = g. An atom p{t;, ta,..., %)
ie ground when all its terms, €y, t3,..., s, are ground;
{t1,te, ., tn) is koown as a tuple of p. A facl is a

ground rule with no body (m = 0), A base predicate is

defined solely by facts. A derived predicate is not de-
fined by any facts. A derived {base) hiteral is one whese
predicate is derived (base). A rule whose head predicate
iz derived, iz known as a derived rule. The set of derived
rules is also known as the program. Without loss of gen-
erality, & deductive detabese (or simply database) is a
finite set of rules consisting of a program P and a set of
facts F.

For a database D, we construct a dependency graph
& (Apt et al., 1988) representing a refers fo relation-
ship between the predicates. There is a node for each
predicate and a directed arc from node a to node b if
a is & body literal in a rule whose head 15 b, When a
is & negalive lteral the arc is said to be a negative are;
otherwise it is & positive arc. A predicate a depends on
a predicate b if there is a path of length greater than or
egual to one from b to a (depends on is the transitive
closure of the refers fo relation). We denote the relation
a depends on b by arb. A predicate a is recursive if

.
Bf—a.



712

A database D is stratified if and only if there does net
exist a negative cycle in the dependency graph for D.
A negative eyele iz a cycle where af least cne are in the
cycle is negative, A partitioning of D's rules into the
sets Dy, ..., D, is a stratification of D if the following
conditions hold for i = 0,...,n: (1) if a predicate p
occurs in ID; as a positive body literal, then its definition
is contained in U;e; Dy; (2) if a predicate p occurs in D;
as a negative body literal, then its definition is contained
in Ujei Dy, The definition of a predicate p is the subset
of D consisting of all rules containing p in the head,
Each D; is called a stratum, and each { iz ealled a [evel,
D has a stratification if and only if it is stratified (Apt
et al., 1988).

A convenient way to analyse the transformation by
the magic set algorithm on D, is to abstract G. A
strongly connected component of § is a_subgraph G,
such that there is a path of length > 0 between each pair
of nodes in G,. The condensation G* is a directed graph
derived from the maximal strongly connected compo-
neats (MSCC’s) of §. Each node in G* corresponds to
a MSCC in §. .

A stratification Dy, ..., Dy, is mazimal if (1) for every
stratum Dy, 1 £ i < n, either D; contains exactly the
rules defining a derived predicate p if p is not recursive;
or I containg exactly the rules defining p and (any)
other predicates in the same MSCC as p if p is recursive;
and (2) Dy contains all the base predicates. When we
assume a maximal stratification, the derived predicates
defined in each stratum correspond to the predicates
comprising a MSCC |

2 LABELING

2.1 Review of Magic Sets

For the sake of completeness, we briefly outline the con-
cept of magic sets. The reader should refer to (Beeri
and Ramakrishnan, 1987; Beeri et al., 1987: Fohmer
et al., 1986; Balbin et al., 1987) for various details.

The virtue of the magic set approach to query eval-
uation is that it permits an efficient bottom-up compu-
tation for all types of queries. A pure bottom-up com-
putation is efficient provided that atoms, such as the
query atom, do not contain ground terms (Bancilhon
and Ramakrishnan, 1988; Han and Lu, 1986).

Consider & program for the predicate prone, which
identifies people who are prone to getting a certain dis-
ease. The base predicate parent(X,Y) is true if ¥ is
the parent of X, and the base predicate infected(X) is
true if X has been tested and found to be infected,

Example 1
prona(X) +— infected(X)
prone(X) « parent(X,Y), prons(¥)

When we query «— prone(randy), a bottom-up compu-
tation retrieves all the people who are prone, anly then
checking to ses whether randy is one of these,

Magic set algorithms (Beeri and Ramakrishnan, 1987)
transform this program into an equivalent one (with re-
spect to the query) based on sideways information pass-
ing strategies (sips) that are depicted by labeled bipar-
tite graphs. Briefly, sips state what bound values are
passed between one literal and another inside a rule,
An are in the graph corresponding to the second rule
might be

{prona(X), parent(X, ¥)} —y prone(Y).

This specifies that the body literal prone can expect
bound vilues for ¥ via the tail of the are, prona(X)
and parent(X,Y). We omit explicit sips for simplicity
of exposition, and assume a default sip, where the tail
of the sip arc for each body literal q includes all literals
to the left of q in the rule (including the head).

In the context of bottom-up computation, magic set
algorithms implement the desired information passing
by iransforming the program and adding a magic fact.

Example 1 (continued)
prone(X) « magic_prone(X), infected(X)
prone(X) — magic.prone(X), parent(X, Y), prone(Y)
magic prone(Y) + magic_prone(X), parent(X, Y}
magic_prene(randy)

The search is now directed according to relevant facts,
that is, the ancestors of randy. These relevant facts,
otherwise known as the magie set, are the tuples satis-
fying magic_prone. (Note that common sub-expression
climination is performed by employing supplementary
magic sets (Sacca and Zaniclo, 1987Y)

2.2 Magic Sets and Negation

When the generalised magic set algorithm is applied
to a stratified and allowed database the transformed
database is not necessarily stratified. A solution to this
problem (Balbin et al., 1987) uses the BPR labeling al-
gorithm to partition the magic sets according to the con-
text in which they are constructed. For databases that
do not include negative body literals, we construct a sin-
gle magic set for each positive derived predicate. (In the
~example above, prone was the only derived predicate
and so magic_prone was the only magic set created).
For databases with negative body literals, the context
in which the magic rule corresponding to a predicate is
consiructed, is distingnished by a label. We illustrate
this idea by an example. Consider example (1) with
two additional rules. The first rule states that it is (un-
fortunately) necessary to isolate persom X, if X is a
male who is prone to the disease and has had relations



with another male partner who is also prone. The sec-
ond rule states that an antidote for the latent germ is
available for X if X is a female who is not prone to the
disease even though she may have had relations with a
partner who was prone.

Example 2
‘prone{X) — infected{X)
prone(X) « parent(X,Y), prone(Y)
isolate(X) —male(X), prone(X), partner(X, ¥), male(Y),
prona(Y)
antidote(X) —female(X), ~prone(X), partner(X,Y),
prone(Y)

Consider the query + isclate(randy). The following
magic rules and modified rules are relevant. A rule is
relevant if the query predicate depends on the head of
the rule.

magic_isolate(randy)

magic.prone(Y) « magic prone(X), parent(X,Y)

magie prone(X) + magic.isolate(X),male(X)

magic.prone(Y) —magic_isclate(X), male(X), prone(X},

partner(X, Y}, male(Y)

isolate(X) «magic_isclate(X), male(X), prone(X),
partner(X,¥), male(Y}, prone(Y)

prone(X) +— magic_prone(X), infected(X)

prone(X) « magic_prone(X), parent(X, ¥}, prone(Y)

There are three magic rules corresponding to prone.
The first is due to the body literal prone in the def-
inition of prone itself. The second and third rules,
however, are derived from the body predicates prone
in the rule defining isclate. Although there ate three
magic rules for prone, there is only one magic set con-
structed for prone; the tuples satisfying magic_prone.
In this example, there is no reason to differentiate be-
tween the magic rules by constructing separate magic
sets for magic_prone.

Now consider the query +— antidete(petra) which
evaluates te true if it is beneficial to give petra the
antidote.

magic.antidote(petra)
magic.prone(Y) «— magic_prone(X), parent(X,¥)
nagic.prone(Y) —magic.antidote(X), female(X),
—prone(X}, Pmn“[“]
magic_prona(X) «— magic.antidote()), fenale(X)
antidete(X) +magic_antidote(X), female(X],
—prone(X), partner(X, Y}, prone(¥)
prone(X) +— magic_prone(X), infected(X)
prene(X) — magic.prone(X), parent(X, ¥), prone(Y)
The second rule defining magic_prons, which is de-
rived from the positive literal prona(Y) in the rule defin-
ing antidote, introduces the negative cycle

prones-magic_prone«——prone

713

until D has no unlabeled positive derived literals do
label derived positive body literals in D
for each such labeled literal do
based on the original unlabeled rule in D
construct the defining rules for the literal
od
add the new rules to D

od

Figure 1; BPR labeling algorithm

into the refers to graph. This source of unstratification
is a direct consequence of the fact that (1) the modified
rules of the transformed database contain & magic literal
as the first body literal; and (2) the magic rules for
positive body literals have been constructed in the usual
way.

The cssential difference between the two queries is
one of contert. With the query +« antidete(patra),
magic.prone depends on the negative literal =prona(Y).
In order to compute only (and all) ground instances of
the query that are in the intended model Mp (Apt et al,
1988), a specific contrel discipline based on the strata
must be exercised. For the query «— isclate(randy),
however, the predicate magic.prons is not dependent on
a negative literal and its evaluation does not, therefore,
require the evaluation of predicates on a strictly lower
stratum before it can proceed.

A solution to this problem, uzing the BPR algorithm
(Balbin et al., 1987), effectively separates the context
in which prone appears asa body literal in the rule by
labeling one of them as prone_i. The rules that define
prone_l are then simply duplicated from prone. Since
prone is recursive, in order to maintain the proper sep-
aration between labeled and unlabeled predicates every
body literal in rules defining prone that is in the same
MSCC as prone is labeled in the same way. (In this
case, prone is in a MSCC on its own).

An informal presentation of the BPR algorithm is
given in figure 1. After applying the algorithm, the
televant program for the antidete query is

Example 2 (continued)

prone(X) + infected(X)

prona(X) «— parent(X,Y), prona(Y)

prona_i(X) «— infected(X)

prone_1(X) «— parent(X,Y),prone_1(Y)

antidote(}) +—femala(X), -prone(X), partner(X,Y),
prona_1(Y)

The relevant modified rules and magic rules are

magic.antidote(petra)
magic_prone(Y) +— magic_prone(X), parent(X,¥)
magic_prone(X) — magic antidete(X), female(X)



714

magic.prone-1(Y) +~ magic.prone.i(X), parent(X,Y)
magic_prene.1(Y) —magic_antidote(X), femala(X),
~prone(X), partner(X, ¥)

prone(X) « magic_prena(X), infected(X)

prona(X) « magic_prone(X), parent(X, ¥}, prone(¥)

prene.i(X) « magic_prene_1(X), infected(X)

prone 1{X) «—magic_prone.i(X), parent(X, ¥},

prone_1(Y)

antidote(X) +magic.antidote(X), fomale(X),

—prone(X), partner(X, ), prone.1(¥Y).

and the database is stratified.

Labeling algorithms ensure that the stratification is
preserved when the magic rules for positive body literals
are constructed. In general, when the magic rules corre-
gponding to negative literals are included in the trans-
formed database, a slightly modified bottom-up com-
putation on the labeled database is required to preserve
the semantics, since the database may be unstratified,
For the sake of completeness we informally describe this
using an example.

Consider the prone database of example 1. It is now
found if a persen is injected with a natural antibody
that they do not risk contracting the disease. In ad-
dition, it is found that if saliva-based contact has oe-
curred between a person who has the antibody and an-
other person, that the latter person is also not in risk
{and doesn't require explicit vaccination). For the query
«— norisk{sandy) the program can be expressed by '

Example 2
. prone(X) «— infected(X)
prone(X) « parent(X,Y), prone(Y)
norisk(X) — antibady{X)

norisk(X) « —prone(X), contact(X, ¥), nerisk(¥).

The relevant transformed rules after labeling are listed
below.

magic norisk_i{sandy)
magic norisk 1(Y) «magic_norisk 1(X), ~prona(X),
contact(X, Y)

magic_prone_i(Y) + magic.prone_1(X), parent(X,¥)

magic_prona(X) +— magic norisk_1{X)

prone(X) « magic_prone(X), infected(X)

prone(X) +— magic_prene(X), parent(X, ¥), prone(Y)

prone_1(X) + magic.prone.1(X}, infected(X)

prone.i(X) «—magic prone_1(X), parent(X,¥),

prone_1(Y)

norisk 1(X) + magicnorisk i(X), antibody(X)

norisk 1(X) +~magic norisk_1(X), ~prone(X),
contact(X, ¥), norisk 1(¥).

Note that labeling alone is nol necessarily a total solu-
tion. As proved by proposition 2, the negative cycle

prones magic_pronesmagic.norisk_1+-prone

Figure 2: Structured Execution

is introduced by the magic rule constructed for the nega-
tive literal —prone(X). Rules constructed from negative
literals such as

magic_prone(X) — magic_norisk 1(¥) (1)

are not included in the program in the usual way. In-
stead they are treafed in a special way.

Examining the last rule defining norisk.1, for each
iteration evaluating tuples satisfying norisk 1, a poten-
tially new X is generated when solving —prone(X). Fol-
lowing the negation as failure rule {(Clark, 1978), each
such negative query is first asked as a positive query.
Ideally, in an analogous way to positive queries we pre--
fer that the query is asked with X effectively bound so
that an exislential query is asked. If this is not the
case, then the set of all people who are prone must be
retrieved. This is avoided in the positive case by using
the magic set. For the rules defining prone, & magic set,
magic_prone, is in place to capture this bound value and
direct the search. However, as indicated above, rule {1)
unstratifies the database. '

The solution partitions the rules of the program into
separate nodes as shown in figure 2. We associate with
each node a set of rules, and a set of tuples which are
evaluated iteratively using a structured bottom-up com-
putation. Using the rules associated with a node, sach
successive arc inside the node pictorially delinestes the
tuples derived at each successive iteration ¢, 1 < { < n.

With reference to our example, Node R contains all
the rules except those defining prone, since prone is
asked when inferring answers to the negative query
—prone(X). Node(s) P contain the rules defining prone
and magic_prone except for the usual magie_prone fact.

A bottom-up computation procesds in R until the an-
swers to —~prone(X), at each iteration, are needed. Con-



trol then pesses to the rules in P for a bottom-up com-
putation of prone(X) as required to infer =prone(X). In
addition to control passing to P, as illustrated by the
directed arcs between nodes, a set of tuples which is
determined using rule (1) and the tuples generated in
R for that iteration are sent to P. These constitule the
aforementioned missing magic_prone fact for this itera-
tion. The answers to prone(X) are evaluated and control
returns to K for the next iteration until saturation,

3 NEW LABELING
ALGORITHM

3.1 Motivation

There are a number of drawbacks of the BPR algorithm
that we address. Referring back to example 1, two types
of generic queries can be asked with respect to the pred-
icate antidote. The first is when the argument is not
bound. That is, “list the people for whom an antidote
is possible®. We can adorn (Ullman, 1985) the pred-
icate with an £ to indicate that the argument is free
as in antidete®. The other possibility is for the argn-
ment to be bound, as in *will 2o antidote be effective
for so-and-so”. This i indicated by 2 b adornment as in
antidote®. A compiled approach using magic sets can
generically transform a database according to a particu-
lar query type (adornment). All the transformed rules of
example 2, excepting the fact magic_antidote(petra)
ean be derived and pre-compiled an the actual query is
asked. The only step that must be performed at query
time is the initialisation of the magicset by a fact~ -

Unfortunately, although the BPR algorithm is use-
ful for computing a correct semantics, since it labels
all the positive body literals, a new guery may cause
the re-labeling of the database at run-time, This does
not allow & pre-compiled approach to magic sets, and
therefors warrants a solution. We illustrate thiz by an
example, where, for simplicity, we omil the arguments
of literals. (The reader should bear in mind that a goal
of the form = =p, p doesn't automatically fail, since it
may abbreviate a goal «— =p(X, ¥}, p(Y,Z))

Example 4

For the program below, assume the query is + h and
that ¢ is a base predicate. After the magic set transfor-
mation, the negative cycle pr-magic_p+——p is created,
rendering the transformed database unstratified and so
we apply labeling.

Original BPR Labeling
he=-p,p he-p,pd
prc pec

ple—c

715

For databases which do not contain negative literals,
a suhsequent user query and the addition of the query
rule do not imply that the rules for the predicates in
the body of the query rule have to be re-compiled. Con-
sider & database which does include negative literals. If
the uzer subsequently asks the query « -p,ph, this
is handled in the usual way by converting the query to
+~ answer and adding the query rule ansver «— -p,p,h.
However, with the BPR labeling algorithm we are forced
to re-cornpile the database even though all the predi-
cates for all combinations of adornments had been com-
piled beforehand. This is because the database is Te-
labeled as

answar +— —p, p-1, bl
hlée=-p,pl
p+c
ple==c
S plRecg

and will mow also require new magic rules. The new,
efficient labeling algorithm which we present does mot
suffer from thiz deawback, as we show.

A desirable property of any labeling algorithm is that
it does not label a database that does not contain neg-
ative body literals. The BPR labeling algorithm does
label positive literals even though they may have noth-
ing to do with a resultant negative cycle. In the worst
case, as shown later in example 5, the number of gen-
erated labels is exponential in the number of derived
predicates,

3.2 . The Algorithm

The key concept behind any labeling algorithm is to dis-
tingnish the contexi for constructing magic sets. The
BFR. algorithm performs this contextual separation by
labeling each occurrence of a positive literal p with a
unique label. Thus, for magie rules containing negative
literals =p in their bodies, —p is effectively distinguished
from positive occurrences of p because it is. not labeled.
QOur approach here is to explicitly label p when it ap-
pears as a negative body literal in a rule r. We do not
label the positive predicates in r. Instead, we only label
the predicates of those positive literals that appear in
the defining rules for the new negatively labeled predi-
cates. There are typically fewer occurrences of negative
body literale than pesitive literals and so, in general,

‘we expect a dramatic drop in the number of labeled

predicates,

The following illustrates the labeling employed by the
pew algorithm, Assume that the query is +— h and that
e is a base predicate. After the magic set transforma-
tion, the resultant unlabeled database s unstratified be-
cause of the negative eyele a=b—magic_bi~=a, and so
we apply labeling.



716

funetion label{ P*UF, 5%)
construct a maximal stratification Ly,...,L, for P®
let §; € 5* be the sips corresponding to the L
initialise the [; and s, i=1,nto @
call neglabel
call poslabel
Plom Ui st = UtsiUsd

return{ PLF |, 8T)

Figure 3: Labeling algorithm

Original Efficient Labeling
h+-a,b,c,d hé —nab,c,d
a+~—b na+ bl
ceb c+—T
b—d be—d
d = a b1l+—d1

d—a
dle=ga

There are two stages in the labeling algorithm of fig-
ure 3. In the ficst stage, we negatively label those pred-
icates which appear as negative body literals and are
part of a negative eycle in the dependency graph of the
{unlabeled) magic transformed database D™, We cre-
ate new rules defining the newly labeled predicates. In
the second stage we positively label these new rules and
create further new rules for the new positively labeled
predicates.

Definition. A predicate n_q in a labeled program PL js
negatively labeled if it was formed by replacing a negative
occurrence of g in the unlabeled adorned program P&,
Definition. A predicate p_k in a labeled program PL,
where k is an integer, is positively labeled if it was formed
by replacing an eccurrence of p in the unlabeled adorned
program P®,

The input to the labeling algorithm consists of the
get of the strata L, ¢ = 1,n, which [orm a marimal
stratification of P*, and their corresponding set of sips
=

When we assume a maximal stratification, the pred-
icates defined in each siratum correspond to the pred-
icates comprising a MSCC. The initial adorned pro-
gram is P® = |JIE7 L; and the associated sips are §* =
UiSE Si. Collectively, the rules and sips for a siratum
L; are denoted by L]. During execution of the label-
ing algorithm each stratum L; has an associated set of
newly constructed rules [; and their sips s;. Collectively,
the new rules and sips created during the algorithm are
denoted by I, : = 1, n. The output of the algorithm is
the labeled database DL and sips S¥.

The first stage of the algorithm calls neglabel in fig-

procedure neglabel
fori:=1tondo
for each q € negBedLits(i) do
if negeyele({q}) then
replace each q in negative body literals of L? by ng
od
if negeyele{ definedfn(i)) then
add a copy of Lf to If
replace each q € definedin(i) in f with nq
fi
od
end

Figure 4: Negative labeling procedure

ure 4 which performms the negative labeling. We make
use of the following sets and functions.

definedIn(i) is the set of predicates defined in the stra-
tum L.

negBodLits(i) is the set of predicates that appear as
negative body literals in the stratum L;.

negeyele (A) roturns true if a predicate p € A, where
A is a set of predicates, is part of a aepative cycle
in the dependency graph corresponding to the (un-
labeled) magic transformed program; otherwise it
returns false.

For the second stage, which nses the poslabel procedure
of figure 5, we associate a single counter C; with each
stratum, L;. The following extra functions are used by
poslabel.

append(p, k) returns the string formed by appending
the character string corresponding to the value of
the integer expression k to the string “p® where p
is a predicate name.

doLabel(#} Let p be a predicate defined in L,,. The
function doLabel replaces each unlabeled predi-
cate p that appears as a positive literal in ¢} by
append(p, Cm +1). Note that this may include p in
the head or body of rules in ¢}

depends{i, ) returns true if there exists a path in § from
a predicate defined in L; to a predicate defined in
L;; otherwize it returns false.

Proposition 1 Let DU be the resultant database after
applying the labeling algorvithm of figure 9 to D. For any
query q, where q iz defined in D, an instance of q is in
My if and enly if £ is in Mp1.

The proof is similar te that in (the technical report ver-
sion of) (Beeri ef al., 198T).



procedure posiabe!
set each counter O to 0
foriz=1ton—1do
if negeyele{ definedin(i)) then
doLabel(1?)
for j := i — 1 downto 1 such that depends(i, 7) do
make a copy of L] called #

“doLabel(t]}
add 1] to [
C:;i = 'E-I,' +1 [t:l
od
fi
od
end

Figure 5: Positive labeling procedure

Proposition 2 IfDV is the resultant database after ap-
pliying label of figure § to a stratified database D, and
D™ is the resultant detabase after applying the magi::
set algorithm [Baibin et al., 1987) {enmtmﬂfmg magic
rules anly for positive literals) to DY, then DM is strat-
iffed.

For the proof, see (Balbin et al., 1088).

The labeling algorithm creates new rules correspond-
ing lo the newly negatively and positively labeled pred-
icates. We now analyse the mayimum possible number
of these predicates in DL

Proposition 3 Let D™ be the resultant database after
dpplijing the labeling algorithm™of figure 3 to' D) and let
Dy,..., Dy, n = 1 be the original mazimal siratification
used. Ifm is the number of derived predicates in D and
v is the number of new labeled predicates in DY then
vEmeEn,

Proof. Let my; be the number of predma.-tﬁ defined in
each L;, 1 £ ¢ £ n, where the L; comprise the maximal
atra.t;ﬂcatmn he*fcre labeling, so that m = E':" M.
Similarly, let v be the number of predicates defined
in each §;, 1 < i < n, where the l; are the modi-
fied stratum oculput by the labeling algorithm, so that
v = T w. Clearly, the maximum aumber of nega-
tively labeled predicates is less than or equal to m. The
number of posilively labeled predicates defined in I; is
equal to the value of my at the end of the algorithm.
By construction, the maximum value for O af the end
of the algorithm is n — 4, 1 < i £ n. Therefore, the
maximum number of positively labeled predicates is

Mgyl myg*2 4. . +my*(n—1)
Sritgoq i (n— 1)+ mpaw(n=1)+. .. +m+(n—1)
m*(n—1)
= pEm*En

717

Corollary 1 If the number of rules in D is a then the
number of new rules in DY iz less than or equal to a%n.
Example 4 (Revisited).

Example 4 highlights that no re-labeling is required with
the new scheme.

Original BPR Labeling Efficient Labeling
h+-=p,p h+ -pp1 h += =n.p,p
P+—c p+—c pt-c

p-l+=—c n.p + c.

This time if the user subsequently asks the query +
~p,py b, which we handle by converting the query to
+ answer and adding the rule answer + =-p,p, b, 0o
re-labeling is required with the efficient labeling algo-
rithmo. This s becanse positive body literals in a query
rule are not labeled by the algorithm. Therefore, when
all derived predicates in the database, for all their dif-
ferent adornments, irrespective of whether they appear
as positive or negative body literals are pre-compiled
before any subsequent user queries, no re-compilation is
necessary. This is analogous to the case for databases
with only positive body literals and therefore preserves
the spirit of the compiled approach. With the BPR la-
beling algorithm, however, we are forced to re-compile
the database, as we deseribed earlier.

The following example highlights the worst case perfor-
mance of the labeling algorithm.

Example 5.

Original Program Labeled Program
a + =b,b,~c,c,~d,d a+ -nbbmec,cndd
b +— —ec,c,=d,d b+~ —-ne,c,~ndd

¢+ —d,d e +— —nd,d
el s+ —nddil
d—a, dea
d.1le= e
d2+—a

n.b +— —n.c,c.1,~nd,d.1
nec+=-ndd2
nd « a.

4 CONCLUSION

Magic sets are an efficient query processing strategy
for deductive databases containing recursive rules. The
main strength of the magic set approach is that it per-
mits & database to be pre-compiled. When magic set al-
gorithms are naively extended to include negation, the
resultant database is often unstratified. One step in
a solution to this problem involved the BPR labeling
algorithm to separate context dependencies. Although
the BPR. algorithm is adequate for preserving stratifi-
cation properties, in general, re-labeling is required and
therefore, re-compilation for new queries. In addition



718

the size of the compiled code may be very large due to
the exponential number of newly generated predicates.

A new algorithm for labeling & database is presented.
If n is the number of levels in the maximal stratification,
then, in the worst case, the number of generated labelad
predicaies is less than or equal to n?, Typically, we ex-
pect this to be linear. This is a significant improvement
over the BPR algorithm. Another important advantage
is that new queries no longer cause re-labeling since the
labeling algorithm is query independent. The only step
that takes place at query time, analogous to the case for
databases not containing negative body literals, is the
construction of the query rule, This facilitates the tradi-
tional pre-compilation of a database in the spirit of the
magic set approach for positive programs. Additionally,
because the new algorithm is expressed independently
of sips, altering a sip does not require re-labeling (al-
though it will result in different magic rules).

Further oplimisations suggested in (Balbin et al.,
1987) are equally applicable with the new labeling
scheme. For example, if the transformed program con-
tains predicates, p.1,p-2,...,pon, the modified bottom-
up computation needs only to maintain one infernal
predicate which represents the tuples satisfying the p,
i=1,n

ACKNOWLEDGEMENTS

We thank Graeme Port for typically incisive comments.
The second author wizhes to thank Jim Baxter and Neil
Harringten for their support and encouragement.

REFERENCES

APT, K. R., Bram, H. A., & WaALKER, A. (1988).
Towards a Theory of Deelarative Knowledge, pages
80-148. In (Minker, 1988).

Baremy, ., MEENAKSHI, K., & RAMAMOHANARAO,
K. (1988). A Query Independent Method for Magic
Set Computation on Stratified Databases. Techni-
cal report, Department of Computer Science, Royal
Melbourne Institute of Technology.

Baremw, 1., Porr, G., & RAMAMOHANARAO, K.
(1987). Magic Set Computation for Stratified Data-
bases. Technical Report 3 {Revised), Department of
Computer Science, University of Melbourne, Aus-
tealia.

BaLsiv, I. & RAMAMOHANARAO, K. (1987). A Gen-
eralisation of the Differential Approach to Recur-
sive Query Evaluation. Journal of Legic Program-
ming, 4(3):250-262,

BawciLHon, F. (1985). Naive Evaluation of Recur-
sively Defined Relations. Proceedings of the lsla-
madora Conference on Database and AT,

BarciLuON, F., MAIER, D., Sagiv, Y., & ULLMAN,
J. (1986). Magic Sets and Other Strange Ways to
Implement Logic Programs. In Proceedings of the
5th ACM SIGMOD-SIGACT Symposium on Prin-
ciples of Database Systems, pages 1-15, Washing-
tan, DC.

BANCILHON, F. & RAMAKRISHNAN, R. (1988). Per-
formance evaluation of data intensive logic pro-
grams. In {Minker, 1988),

Beerl, C., NaqQvi, S., RAMAKRISHNAN, R.,
SHMUELL, O., & Tsur, S. (1987). Sets and Nega-
tion in a Logic Database Language (LDL1), In
Proceedings of the fth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database
Systems, pages 21-37, San Diego, California.

BEERI, C. & RAMAKRISHNAN, R. (1987). On the
Power of Magic. In Proceedings of the 6th ACM
SIGACT-SIGMOD-SIGART Sympasivm on Prin-
ciples of Database Systems, pages 269-283, San
Diego, California.

CHANDRA, A. & Harer, D. (1985)., Horn Clause
Queries and Generalization. Journal of Logic Pro-
gramming, 2(1):1-15.

CLARK, K. (1978). Negation as Failure. In (3ALLAIRE,
H. & MINKER, J., editors, Logic and Databases,
pages 253-322. Plenum Press, New York and Lon-
don.

Haw, J. & Lu, H. (1986). Some Performance Re-
sults on Recursive Query Processing in Relational
Databases. In Proceedings of the 2nd International
Conference on Data Engineering, pages 533-541,
Los Angeles, California.

MINKER, J., editor (1988). Foundations of Deductive
Databases and Logic Programming. Morgan Kaul-
mann Publishers, Los Altos, California.

ROHMER, J., LESCOEUR, R., & Kemisrr, J. (1986).
The Alexander Method - A Technique for the Pro-
cessing of Recursive Axioms in Deductive Data-
bases. New Generation Computing, 4(3):273-286.

Sacca, D. & Zaworo, C. (1987). Implementation
of Recursive Queries for a Data Language based on
Fute Horn Logic. In Proceedings of the jth Inter-
national Conference on Logic Programming, pages
104-135, Univerzity of Melbourne.

ULLMaN, J. (1985), Implementation of Logical Query
Languages for Databases. ACM Transactions on
Database Systems, 10(3):289-321.



