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Abstract

Concurrent languages which use a procedu-
ral interpretation of guarded Horn clause res-
olution are an active area of research. We
argue that proof theory does not provide a
good model for the semantics of such lan-
guages. Although guarded Horn clause lan-
guages (GHCL’s) use directed forward chain-
ing, they dynamically add arrival order as-
sumptions apart from those made in the pro-
gram. DBecause of these additional assump-
tions, programs do not specify a logical de-
ductive system. We also argue for an execu-
tion model of GHCL’s which assumes a guar-
antee of delivery of communications. However,
a logical reading of GHCL programs is not ex-
pressive enough to infer the consequences of
a such a guarantee. It is our conjecture that
the semantics of actors provides an adequate

*The first author's work has been supported by
DARPA under ONE contract number N00014-85-K-
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model for GHCLs.

1 Introd uction

A family of concurrent logic languages using a
notation based on Horn clause resolution have
been defined. These languages include Par-
log [CG886], Concurrent Prolog [Sha87], and
Guarded Horn Clauses [Ued86]. A Horn clause
consists of an atomic formula called the head,
and a set of atomic formulae, called the body,
with.a “<" between the head and the body,
and “&"s between the atomic formulae in the
body, e.g.,

H <« Bi&...&B,

where an atomic formula has the usual mean-
ing of predicate symbol applied to some fune-
tions. A Horn clause is taken to be universally
quantified over all the variables that oceur in
the terms of its atomic formulae,

(VX,Y,Z)H < Bi&...&B,

where X, Y, Z are the variables occurring in
H and the B;. A special case is where the



body is empty, for example,
fact(o, 1)

says that the factorial of 0 is 1, where
fact(X,Y) denotes the relation of ¥ being the
factorial of X.

A program in a Horn clause language is a set
of Horn clauses together with a goal which is
either a single atomic formula or a conjunction
(i.e., “and™) of atomic formulae. It is called a
goal becanse the system will try to find values
for its variables which make it provable from

the clauses in the program. The goal is taken

to be (implicitly) existentially quantified. For
example,

7- fact(3,Y).

asks what iz the value of Y such that Y is the
factorial of 3.

In order to prove a goal, a Horn clanse
programming system has to prove each of its
atomic subgoals. In this way, a goal may cre-
ate an AND node in a proof tree, since it calls
for proving a conjunction. To prove an atomic
subgoal, the system can try any Horn clause
in the program whose head unifies with the
subgoal.! These possibilities form an OR node
in a proof tree, since a proof of any one will
suffice.

Each possibility yields further information
about the values of the wariables, and also
yields some further subgoals, from the body
of the Horn clause nsed. Whenever one of the
possibilities fails, the system tries to prove the
same subgoal using a different clause, An OR
node fails if each of its possibilities fails, and
an AND node fails if any one of its subgoals
fails.

Strictly speaking, a guarded Horn clause,

H Had El,.-..ﬂm I Bl’III’B“

¥Two atomic formulae are unified by a substitution
of values for their variables which renders them equal.
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is not really a Horn clause since it involves the
commit operator *|". Here, as before, H is the
head and B1,...,Bn is the body; in addition,
G1,...,Gmis the guard. The procedural inter-
pretation is that if all atoms in the guard suc-
ceed, then a system is committed to the clause,
in the sense that no other clause will be tried
for proving the goal in question; thus that goal
will succeed if and only if all the atoms in the
body succeed. For example, in GHC the re-
cursive part of a factorial program could be
written as follows;

fﬂ.ﬁt(“.?} = N>0 I d{u:i:“i)l
fact(N1,F1}, *{N,F1,F).

In addition these langnages have flat ver-
sions which disallow recursion in a guard. In
other words, only system predicates such as
N>0, as opposed to user defined predicates,
are allowed in guards. Thus, in Flat GHC
(FGHC) there is no unification of variables
in a goal with non-variables during head or
guard evaluation; this means that variable oc-
currences in heads and guards have what is
called “input mode.” Flatness further simpli-
fies evaluation and allows efficient implemen-
tation.

We will use FGHC notation for our ex-
amples but the discussion applies equally

well to other guarded Horn clause langnages
(GHCL').

2 Alternative
Interpretations

We now consider some alternative interpreta-
tions of FGHC, as well as some alternative
approaches fo base-level implementation lan-
guages. Just as we did above, the developers
of FGHC have traditionally given a backward
chaining interpretation in which the head of
a clause H is considered as a goal to be sat-
isfied, the guards G1,G2,...,Gm as precondi-
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tions that must be satisfied before subgoals
can be processed, and B1,B2,...,Bn as sub-
goals that must be proved to establish H. In
backward chaining, the system hypothesizes a
conclusion and uses the rules provided to find
the hypothesis supporting facts [Win84].

However, it may be more natural to inter-
pret FGHC in terms of constraint-driven or
directed forwerd chaining, in which the head
H of a clause is interpreted as a constraint to be
satisfied, the guards G1,G2,...,0m as precon-
ditions that must be satisfied before other con-
straints can be processed, and B1,B2,...,Bn
are interpreted as further constraints propa-
gated from H.2 In forward chaining, the sys-
tem uses known facts to deduce new ones. In
GHCL's, facts are represented by claunses.

The forward-chaining interpretation fits
GHCL’s better because GHCL’s do not ac-
tually search for alternative ways to satisfy a
goal. Instead, they just elaborate one possible
solution to the constraints imposed by H. In
GHCL’s, once a gnard is satisfied, the system
is committed to that clause, and even if the
clause fails to yield a value that contributes
to an overall solution, no other clause will be
tried. By contrast PROLOG backiracks, i.e.,
it undoes some variable bindings and tries to
find other values for them that can satisfy the
entire set of clauses.

The forward chaining interpretation of
GHCL’s can also be seen as a message pass-
ing interpretation, whereby given a clause

H:- G1,62,...,6m | B1,B2,...,Bn

the head H matches incoming messages, the
guard atoms Gi,...,Gm must all be satisfied
before the clanse can commit, and the body
atoms B1,...,Bn all send messages after the

*We use the term constraint-driven in a very re-
siricted sense. GHCL's are not constraint-oriented
languages with the same generality as [Sted0d]. The
term directed is appropriate since the “goal” clause con-

strains which new facts are Lo be used in deriving other

facts.

clause commits. Under this interpretation,
GHCL’s are very similar to actor languages.

For each guarded Horn clause there is a cor-
responding ‘Horn clause obtained by ignoring
the commit operator, and this Horn clanze has
a legitimate declarative reading in logic. Nev-
ertheless, the relationship between the Horn
clause logical semantics and computations of
GHCL’s' programs remains to be character-
ized.

3 Arrival Order Nondeter-

minism

The execution of GHCL's involves an exponen-
tially increasing number of assumptions about
the order in which messages arrive. We can
illustrate this issue with a simple example,
a bank account that responds to deposit,
withdraw and balance messages. This ac-
count can be represented by a variable, say
AcctlMessages.

account {AcctiMessagea, 100, ’'Clark’)

which means that the unification variable
AcctlMessages, is the message stream for an
account with balance 100 and owner Clark.
The implementation of a shared account would
consist of a a clause for each kind of message
that might be processed by a bank account.
Thus a withdrawal message might be handled
in FGHC using two clauses, one for the case
where there is enough money in the account to
cover the request and the second for the case
where there is not. Note that [Head|Taill
represents a list with head Head and tail Tail
and [ ] denotes the empty list. The clauses
may look something like this.



account( [withdraw(Amount, Response)|
MoreMessages] ,Balance,Owner):-
J*Withdraw Amouni inte the account®/
=»=(Balanca, Amount)} |
/*balance is greater than request®/
plus(Balanca, NewBalancs, Amount),
/*Bind NewBalance */
kesponse = withdrawalReceipt(imount,
Dwner, NewBalance),
J*Bind Response fo a receipl®/
account(MoreMessages, NewBalanca,
Owner).
J*ask aecount io process MoreMessages
with balance NewBalance*/

account { [withdraw{ Amount ,Responsa) |
MoreMessages] ,Balance,Owner) :-
S*Withdraw Amoeunt from the account®/
<(Balancea, Amount) |
/*balance is less than request*/
Response = overdraftNotice(Amount,
Owner, Balanca),
/*Bind Response to an overdrafi notice®/
account{MoreMessages, Balance, Dwner).
S*ask account to process MoreMessages
keeping the same balance and owner®/

If two users named Ueda and Shapiro
need to share common access to Clark’s ac-
count, then a stream merge must be explic-
itly declared. The following expressions de-
clare the variables UedaAcctiMessages and
ShapiroAcectiMessages such that when these
two message streams are merged, the result is
AcctlMessages:

merge{UedahcctiMessages,
ShapiroAcctifessages,AcctiMessages)

UsdaMessages = [UedadcctiMessages |
HoreledaNessages]

ShapircMessages = [ShapirodcctiMessages |
MoreShapiroMessages]

where the implementation of merge uses a
standard technique for stream merges de-
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scribed in [Sha87]. Now Ueda and Shapiro

can concurrently communicate with the ac-
count using their respective message streams.
If Ueda attempts to withdraw 70 using

VedaAcctiMessages=[withdraw(70,
UsadaResponaa)]

while concurrently Shapiro attempts to with-
draw 80 using '

ShapirocAcctiMessages=[withdraw(80,
ShapiroResponse)])

then one of them is going to get an overdraft
notice,

Let us try to state the possibilities in a log-
ical framework. Let Ty be the theory whi-:ﬁ'l
is derived from the Horn clauses that are
obtained- by ignoring the commit operators
in the above expressions. In order to log-
ically derive from Ty the wvalues of UedaRe-
sponse and ShapiroResponse, some additional
assumptions must be made. Making these as-
sumptions, we can obtain new theories T} and
T; by taking the union of 15 and, respectively,
Ighila t assumption or the second assumption
elow:

{Acet] Messages = [withdraw(T0, UVedaResponse),
withdraw(80, Shapiro Responase]])
{AcctiMessages = [withdrow(80, Shapire Response),

withdraw(70, UedaResponse)]}

The assumptions made to derive 77 and T3
are called arrival order assumptions. The re-
quirement for such assumptions is an inherent
characteristic of concurrent systems, where it
is often the case that subszequent behavior can
be critically affected by the order of arrival of
communications.

Now in T7, we can deduce

UedaResponse=withdravalReceipt {70,Clark,30)

ShapiroReaponse=overdraftNotice(80,Clark,30)
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which states that Ueda gets his money while
Shapiro gets an overdraft notice, whereas in
T, we can deduce

Shapirofesponse=yithdravalReceipt (80, Clark,20)

UedaResponae=ovardraftNatica (70, Clark,20)

which states that Ueda instead gets an over-
draft notice while Shapiro gets his money.

The above discussion can be formalized in
a metatheory which records the assumptions
that need to be made in order to account for
possible FGHC computations. We define a re-
lation <, to represent the notion of an fmme-
diale compulalional eztension of a theory.

(T < To) & {(T=To) V(T =T)}

More generally a notion computational exfen-
sion, (<7) can be defined simply as the tran-
sitive closure of <. relation. In other words,
a computational extension is a theory which
includes assumptions that cannot be inferred
from a logical reading of a given set of axioms
but have instead been added by the computa-
tional system.

Because arrival order assumptions represent
interleavings of messages (or, alternately the
order in which the constraints are propagated),
the number of these assumptions may grow ex-
ponentially with time. The need for these as-
sumptions is not dependent on whether one is
using a backward chaining or a forward chain-
ing interpretation of FGHC. Furthermore, the
computationally extends relation does not pro-
vide a basis for choosing between the two pos-
sibilities and therefore does not serve as an
adequate logical semantics for FGHC.

Notice that the two theories have contradic-
tory assumptions. Because a logical deductive
system cannot allow two contradictory state-
ments to be inferred from the same set of facts,
it is our conjecture that there is no logical de-
ductive system such that the computations of

a GHCL program correspond exactly to the
proveable theorems. '

The computational extension of a theory is
equivalent to augmenting the original theory
with a set of axioms specifying the order in
which constraints are to be processed, or in
the message-passing interpretation, the order
in which messages arrive. The computational
system provides this extension.

In the context of GHCL’, an event is the
binding of the head and the guards of a clause
(i.e., a commitment). The activation order is
the link between events caused by constraint
propagation (or alternately, goal reduction).
The arrival order is the order of messages on a
stream; in case of shared streams, such as the
one in Clark’s account in the example above,
this order is determined by the merge. The
order of events in any concurrent system is a
partial order obtained by the transitive closure
of the arrival and activation orders.

Farly work in actor semantics showed that
the laws of parallel processing [HB77] imply re-
alizability of events in a concurrent system in
a global time [Cli81]. Global time is a retroac-
tive construct and dependent on the frame of
reference; it is constrained by the fact that it
may not violate the transitive closure of ar-
rival and activation orders. This limitation
also applies to computational extensions. In
actor semantics, a history consistent with the
initial configuration is obtained by the transi-
tive closure of the possible transition relation
[Aghss).

4 Fair Merges

The merge described above need not be fair. If
Ueda keeps sending messages, Shapiro’s mes-
sage may never be received. The assumption
that communications sent will eventually be
received is similar to the notion that a func-
tion when called will actually be invoked. The



guarantee of delivery of communications in ac-
tor systems means that such merges are fair.
The term complete merge is more appropriate
because there are a number of other definitions
of fairness,

The guarantee of delivery simplifies reason-
ing about programs. For example, it can allow
us to reason about convergence in the compu-
tation of a function despite the possible pres-
ence of other diverging invocations of the func-
tion. In practical terms, the guarantee implies
that a continuously functioning operating sys-
tem can be brought down gracefully [Agh86].

One consequence of the guarantee of deliv-
ery is unbounded nondeterminism in the re-
sults of the execution of a program. For ex-
ample, a program can be written which will
produce one of an infinite number of integers
and which is nevertheless guaranteed to stop.
Unbounded nondeterminism cannot be mod-
eled by choice-point nondeterminism with a fi-
nite number of choices at any given time. This
limitation is a simple consequence of Konig's
lemma.

For example, using (nondeterministic) tur-
ing machines, it is impossible to specify a pro-
gram which may have one of an infinite num-
ber of possible results and which is neverthe-
less guaranteed to halt. In a model of concur-
rency which assumes the guarantee of delivery
(or fair merges), it is possible to write such
programs.

The usual interpretation of GHCL’s is
based on choice-point nondeterminism be-
tween clauses that match a given set of con-
straints. Using this interpretation a fair merge
cannot be defined. Shapiro [Sha87] provides
two possible implementations of fair merge in
Concurrent Prolog. However, these implemen-
tations assume that the underlying Concurrent
Prolog machine is “weakly stable,” a property
which in turn cannot be defined in Concurrent
Prolog.
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Unbounded nondeterminism has been han-
dled in actor semantics by defining a poten-
tially infinite transition relatiom, called the
subsequent transition [Agh86]. The subse-
quent transition relates a given configuration
to the first configuration along any path (de-
fined by the possibility relation) in which all
communications pending in the given config-
uration have been processed. Such a rela-
tion can also provide an operational model of
GHCL’s with fair merge.

5 Comparison with Actors

We briefly compare programming in FGHC
with programming in a core actor language.
While the actor metaphor differs consider-
ably, both the code and its execution have a
rather similar functionality. The difference is
that actors have the characteristics of object-
based languages, whereas object-based lan-
guages have to be simulated on top of a lan-
guage such as FGHC.

We provide the code for the shared account
discussed above in an actor base-level imple-
mentation language named ACORE [Mang6],
which is a realization of the minimal actor lan-
guage ACT [Agh86]). Each actor has a num-
ber of message handlers (indicated by => be-
low), one of these handlers will be applicable to
the incoming communication. Note that there
is OR-concurrency between the message han-
dlers and AND-concurrency hetween different
commands within a handler. There is also
AND-concurrency in the selection of a pend-
ing communication” which is to be processed
“next,” where the notion of “next” is relative
to a frame of reference.

History semsitive behavior in actors is cap-
tured by the concept of replacement behavior.
The replacement process is fully pipelined to

*A pending communication is 2 communication
which has been sent but not processed.
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provide maximal concurrency. In ACORE, if
the replacement behavior can be denoted by
a change in the parameters of the same be-
havior definition, a “ready” command is used.
The command provides new values for the pa-
rameters. As soon as these values have been
determined, the actor is ready to accept the
next message.

The code for a communication handler® to
process withdrawalsin an account is as follows:

{ DefBehavior ascount (balance owner)
(=> (:withdraw ameount)
(If (>= balance amount)
; Withdraw emount requested
{ Then
{Let {(newBalance {~ balance amount})
et newBalance be balance less withdrawal
(Ready (balance newBalance))
;Account is ready for the next message
(Return (withdrawalReceipt
amount owner newBalance))))
{ Else
(Ready)
rAecount is ready for the next message
{ Complain (overdraft¥oticae
amount owner balancel})}}}))

The interactions corresponding to those dis-
cussed above for FGHC are as follows:

{DefName Acctl (Create account 1000 'Clark))

declares a new identifier named Acet1l and
binds it to a new account with balance 100
and owner Clark. Again suppose that two
users named Ueda and Shapiro need to share
access to Clark’s account. The following com-
mands give them the ability to communicate
with Aceti:

{Send Ueda Acctl)

(Send Shapire Acctl)

Also  called a *method®
languages.

in object-oriented

Now if Ueda attempts to withdraw 70 from
Acct1 using the command (withdraw Accti
70), while concurrently Shapiro attempts to
withdraw 80, then the operation of the account
will be serialized so that one of them will get a
withdrawal receipt and the other an overdraft
complaint.

6 Conclusions

Code and interactions in FGHC are very simi-
lar in structure and results to those in actor
base-level implementation languages, as the
above example shows in detail. This is rather
surprising and confirms the fact that a GHCL
guch as FGHC has the requisite structure and
functionality to serve as a baselevel imple-
mentation interface between concurrent hard-
ware and software, much in the same way as
actor languages can.

The closeness of FGHC to actor core lan-
guages raises the issue of how their semantics
are related. A denotational semantics for ac-
tor languages based on system configurations
has been defined. Actor Theory provides a
meaning for the scripts of actor programming
languages, obtained recursively by analyzing
the script as a system of communicating actors
[The83][Agh86]. On the other hand, to our
knowledge no formal semantics has yet been

proposed for FGHC. It is true that some types

of reasoning about FGHC can be carried out
using a declarative reading of the programs.
Such reasoning is in fact similar in structure
to the concept of serializer induciion in actors
which permits the inference of static proper-
ties of a program.

Another interesting issue is of the relative

efficiency of implementing the two languages.

Becanse FGHC is based on the use of unifi-
cation variables to implement local changes, it
may well be that actor based system may have
greater efficiency than FGHC. Furthermore, it



appears that FGHC can be implemented using
actors with the same efliciency as any other
implementation method.

The base-level language of the classic von
Neumann architecture provides instructions to
perform a sequence of fetch-compute-store cy-

cles. This implies that von Neumann architec-

tures and their programming languages such
as COBOL and FORTRAN are both inher-
ently sequential; and in fact, as we all know,
they fit together very well. Unfortunately, the
enormously long sequences of fetch-compute-
store cycles imply a tremendous traffic be-
tween the processor and memory, and so the
link between them becomes a chief limitation
on the speed of execution. One of the ob-
jectives of new base-level languages, or to use
Shapiro’s terminology, high-level machine lan-
guages, is to break this bottleneck.

A number of base-level languages have been
proposed besides GHCL 's and actor languages.
Some of these languages, such as vector and ar-
Tay processing languages—which provide the
model for machines like the Cray—are only
slight extensions of the basic von Neumann
model. Others, such as the SIMD languages,
are quite special purpose, though elegant and
powerful for those applications that can fully
use them. Actor languages and guarded Horn
clause languages, on the other hand, are gen-
eral purpose base-level languages for imple-
menting concurrent systems. Research on the
relationship between these two kinds of lan-
guages should continue to be fruitful.
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