PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1088,
edited by ICOT. £ ICOT, 1988

A'UM
~ A STREAM-BASED CONCURRENT OBJECT-ORIENTED LANGUAGE —

Kaoru Yoshida and Takashi Chikayama

Institute for Mew Generation Computer Technology
4-28, Mita-1, Minata-ku, Tokyo 108, Japan,
e-mail; {yoshida, chikayama}%icot, jpBrelay.cs.net

ABSTRACT

This paper presents a compulation medel and ils program-
ming language, 4°WA4 1, as a result of our pursuit of high
parallelism and bigh expressivity for the development of a
large scale software. By basing it on streams and integrat-
ing it with objects and relations, A" realizes an elegant
model, natural representation and efficient axecution, all at
once, that have never been dene by any other approaches,

1 INTRODUCTION

In general, the larger a problem s, the harder it s to solve,
exponentially propertional to the problem size. Our goal is
to realize a computation system in which large or eompli-
cated problems can be solved quickly in terms of the total
amount of time spent for the designing, programming, de-
bugging, maintenznce and extension. To achieve this goal,
the ayatem should satisfy two kinds of requirements at once:
one & to offer natural and fexible user interfaces, including
languages and design/program/debugging environments; the
otler is to realize an efficlent implementation. Neither nat-
nral user interfaces nor efficient implementations can exisk
without any sound computation model.)

First, we need a computation model that can extract max-
imum parallelism from the problem and load minimum over-
head to the architecture, and provide high level abstractions.
Furthermore, we don't want & model such that mixes several
paradigms, since it is hard to formalize, onderstand and re-
alize, At first, the model must be simple and uniform with a
single fundamental nation. Abstractions should b built up
based on this notion.

In this paper, we present a computation model for com-
pletely distributed systems and a language realizing the
model, A'WA |, which is characterized by the following three
features:

o Stream-based computation,

+ Object-oriantad abstractions, and

» Relational representation.

2 BACKGROUND

There have been many theories, models and languages pro-
posad for concarrent systems [Filman84).

V4"l i5 a Japanese word, derived from a Sanskeit "ahum™ con-
sisting of Ak and Um, which implies the beginning and the end, an open
valee and & clase voice, and expiration and inspiration. This name was
given to symbolize stream communication which is the basic notion of

this languags.

2.1 Poset-Based Modelling

Concurrent systems are those in which there can exist in-
dependent events. Between these independent events, there
iz no precedence or constraint on which one should happen
earlier or later,

While = totally ordered set (or chain) is a set in which
any pair of elements is given some order, & partially or-
dered set (poget] is a set which may contain elements which
have no order. Since posets reflact the concurrent situation
naturally, concurrent systems have been formalized based
on posets, while sequential systems have been formalized
bhased on chains. The most notable work at this side is
Scott's lattice theory [Scott72] and information system the-
ory [Scott82].

[Prattff] gave a formal language in which a system is rep-
resented as an algebraic formula of posets (strictly pomsets)
af events. The representation is quite descriptive for pro-
ETAmming.

There are other algebraic approaches, called pro-
cess algebras, [Milner30, Milner83, Winskel584, BergstraBd,
Winkowskid7], A process is defined to be a set of ports.
Communication between processes is basically synchronous
and global time and space are assumed to exist. Two systems
are said to be equivalent if their sets of linearized events are
the same. When a new system is addad to some system, the
prover has to re-generate all pessible chaing from all events
in the existing system and in the newly added system. This
would require an extravagant amount of computation. In
other words, models based on the total ordering in global
time and space are weak in modularization.

In eontrast, the sheaftheoretical model [MonteireRE] has
high modualarity. It is assumed that a system has a location
and any activity takes place in some location. Communica-
tion between systems tekes place in the intersection of their
locations. Two systems are said to be equivalent if the set of
intersections of locations in ome system is equivalent to that
in the other. The notien is clear but too farmal.

The diagram of a poset iz & graph. Petri mnets
{Petersonl] and dataflow graphs [Dennisgd, Dennis75,
ArvindT7, Arvind86] are graphical representations. They are
different from sach other in representation form and dynam-
icity, but they have in common localization of functional pro-
cesses and asynchronouns communication which could sup-
port a high degree of perallelism. To keep the function-
ality, procedural languages [Asheroft77] whick adept the
single assignment rule [Teslerf8), and functional languages
[MeGraws2] have been proposed as dataflow languages.

In the dataflow model, how to realize /0, monitors man-
aging some shared resource, as the most typical entities re-
quiring side effects contrary to the single assignment rule,
had been a problem. This problem was solved by the notion
of streams [DennisTh, Arvind82).

Thus, it is clear that concarrent systems should be mod-
elled based on posels. The problem is how to represent the
erdering. Streams are the simplest media for this purpose.
The eaomputatioal model of A'HAL is based on posets and
is represented by streams.

2.2 Stream Computation

A stream i a chain as is a list, but additionally a stream
connotes synchronization.

The noticn of a stream was first intraduced in [Landings],
2s a funection: () — element » stream, thal generates an

clerent and another stream when recelving (), whers () -

may be interpreted as the evaluation timing. Since the
lazy evalualion mechanism that suspends evaluation until
needed was introduced to realize the stream, many [unc-
tional languages supporting streams have been designed
(Ida&3, Dellot8s, Brovai], .

G.Kahn's process network [G.Kaln74, G.Kahn77] was the
first attempt to model a distributed system using streams.
Processes are conmected via streams. Each process defines
relations between its input streams and output streams and
also has ite own memory.

2.3 Helational Programming

[Clark81] proposed a relational language for the purpose af
expressing a process network, not by functions but by rela-
tions. This langnage provided a basic mechanism for con-
current logic programming (CLP}, that is synchronization-
embédded unification and commitment control. . Stream
communication was realized simply by list unification, Fol-
lowing this, several CLP languages [Shapirof3, Clarksd,
Ueda85) have been proposed. Their declarative nature can
extract maximum parallelism and provide high expressivity.

2.3.1 Declarativity

Declarativity is the property that the program contains no
constraint on the execution sequence. The following declara-

tive features of CLF frees the programmer®s mind from con-
cern about the execution sequence.

« Parallel Actions: Goals are executable in parallel
or in &ny order, and their arguments can be unified in
parallel,

o Causal Relations: All that relates one gual. Lo an-
other is data dependency or causality, that is the rela-
tionship of their arguments.

¢ Asynchronous Communication: The writer goal
does not wait for the varizble to be read. Goals wait
only when they read a variable,

Declarativity is one of the greatest advantages to be obtained
from concarrent programming. A'ILM inherits the above
declarative features from CLP.

2.4 Object-Oriented Abstractions

The notion of 2n object [Goldberg83] is natural. The object-
oriented paradigm’s specification of abstract computation by

635

message-passing and encapsulation promeotes top-down de-
sign fprogramming, systematic designing, and fexible mod-
ification and extension. Iis modular programming sapport
by class inheritance makes the program code strikingly com-

pact.
2.5 Integration of Streams and Ohjects

An object or a process is the abstraction of iterative com-
putation as formalized by the fixed-point theory [Staplesid,
WinkowskiBT, Milner83, Bakker87]. Objects can be inte-
grated with streams naturally, just by regarding consumers
and producers of atreams as objects.

In A M , a system is composed of streams and ob-
jects. Computation consists of consumption and produwetion
of atreams. As long as there exist messages, computation
may procesd. When there is no message left, this is the
completion of the computation.

In the program, each stream can be looked upon as an
object iteelf. Making scquaintance with an object 1s getting
@ stream toward the object. fntroducing some asquainfonce
o anotheris splitting the stream toward the former into two
and passing one of the two streams to the latter:

[Shapirof3B] proposed an object-criented programming
style for CLP. This style shows the framework of stream
communication and generation management of an ohject.
An object is represented as & sequance of tail recursive goals,
each of which has an interface stream to receive a message
from, and carries arguments as its infernal states. A clause
is regarded as a generation of an object, a tail recursive goal
a5 the creation of & new generation. Attempting to program
in thiz style revealed several substantial problems as follows,
which motivated s to design AWM .

Semantic Representation: Deadlock, that iz the state
in which no goal is executable, is cavsed by very liny bugs,
such as misnaming and mispositioning logical variables that
represent internal states of objects, much more often than
by algorithmic errore. To solve large scale or complicated
problems, program representation should be more semantic
and flexible than syntactical. .

AWM provides chject-oriented abstractions, including
message passing, name association of slots, and class inher-
itence, which will make the semantics clearer and program
modification easier, and will also increase modularity,

Implicit Completion: Deadlock also oflen occurs due
to falure to connect and close streams. In stream program-
ming, the most important things are to be sure to connect a
stream to its destination, and to close a stream. Failure to
conmect does not happen so often, but streamn closing is often
overlooked as it is both trivial and burdensome. We would
like to offer scme lingnistic support to remedy this problem.

A'UA implicitly closes open streams and connects orphan
streams to sink objects that absorb messages.

Uniform Universe: Objects with stream interfrces and
primitive data objects are treated differently: the former
requires stream merging when they sre shared, but the latter
not. ‘This decreases the ability of top-down programming or
program rensability, since different programs for the top level
must be prepared depending on the data type which might
be hidden in a lower level.

G40

A'UA realizes a universal object space. There exist noth-
ing but objects which communicate with each other via
streams. Primnitive objects, such as Integers and atoms, also
hawe the same stream interface. So, we can write generie
programs in a top-down manner. [Aczel88] formalizes snch
infinite levels of abstraction.

Solid Absiraction: Several approaches to provide a
macro package for this object-oriented programming stvle
have been proposed [K.Kahn86]. But, syntax sugars melt at
execution time.

A'UA preserves its object-oriented abstraciions at exe-
cution time, which will be a great help for debugging.

2.6 MNondeterminacy

G.Kahn's model was limited to deterministic {or functional)
processes, whose samantics zre determined only by the pa-
rameters appearing in the program.

[Brockd1] peinted out that a nendeterministic process,
which may accept either a single event or multiple serial
events from a stream nondetarministically, cannot be dafined
only by the relations between strezms.

Nondeterminacy in Stream Merging: . A'LA makes

" this problem simple. A stream is split into two when it is
shared, so a gtream eventually becoines a tree of streams as
the amount of sharing increases. At a splitting {or merging)
joint, messapes from the two branches are nondeterministi-
cally ordered, Nondeterminacy exists only in stream merging
and objects are deterministic,

2.7 Graph Grammar

In general, alanguage is defined by a grammar [Mandriclif 7).

A sequential program is regarded as a string of symbals,
A sequential language s defined by a string grammar which
rewrifes one non-teeminal symbaol to another by applying one
production rule at a time,

In contrast, a concurrent program is regarded as a graph
consisting of vertices as processes and edges as communi-
cation links. A concurrent language Is defined by a graph
grammar [Ehrigr%], which rewrites non-terminal graphs to
others by applying multiple production rules al one time.

[KreowskiB6] made clear the correspondence between
derivation in a graph grammar and computation in a Petrd
net. [KaplanB3] proposed a language which visualizes the
graph derivation.

Derivation of Nils: In thiz paper, all pictures are drawn
in a certain manner that messages should flow from right fo
left toward the leftmost object., We define a language for
AL, with 2 grammar which keeps this manner, so that
we can write a program like drawing = picture.

A stream is represented s a pair of terminals: an inist and
an outiet, to indicate the direction of message flow. Two
straams are connected to be one, when the inlet of one iz
connected to the outlet of the other, The consumer object
holds an fmlef to receive a message from, and the producer
ohject holds an outlef to send 2 message to. A closed stream
is represented as nil,

The grammar iz composed of expressions, which are cat-
egorized into inlef, owtlet and nil expressions, depending on
what they express. A method of an object is defined as a
set of nil expressions, which is comstructed from dnlet and

outlei expressions. The derivation of a set of nil's leads to
the complation of computation.

2.8 Efficient Architecture

As mentioned earlier, the single assignment rule is essential
to increase parallelism. In CLP, the single assignment rule
is assured by logical variables, but logical variables can be
unified in any direction and shared by multiple readers. A
process may walt for any combination of multiple events.
First, it fs 0 rare (and strange) for cne process to non-
deterministically read or write an identical variable, but the
architecture always has to prepare for the bi-directional uni-

‘fication of any logical variable. Some CLP languages allow

to specify variable modes, but some do not. The lack of vari-
able modes although some CLFP languages do support them,
makes it invisible from where to where messeges flow, so that
the program readability and the potential ability for opti-
mization and error-detection &t compilztion time decrease.

Second, garbage collection {GC) is one of the most critical
problems to be solved for making parallel architectures prac-
tical. To increase memaory usability and obiain continuous
response, most of the discussions have been made on real-
time GC [Cohensl, Chikayama87, Gotod8), The problem of
multiple references makes this hard to realize.

The stream computation of A LA makes the architecture
simpler and more efficient.

Single Assignment and Single Reference: A stream
ig consumed by a single reader and produced by a single
writer. This is the single reference single assignment princi-
ple. The single assignment raises parallelism in the program,
which can be supported by the architecture. The singla ref-
erence expands the possibility of static optimization and er-
ror detection, makes GO simple, resulting in better memory
usability.

Single Direction and Single Event: Fach object waits
for a single event, of either receiving a message or detect-
ing thal its interface stream is closed. Nondeterminacy that
deals with multiple event waiting exists only in stream merg-
ing. The single direction single event rule makes the process
scheduling simple.

3 COMPUTATION MODEL

In this section, we define the computation maodel of
A'UA with some interpretation for intuitive wnderstand-
ing.

3.1 Systems
A system is composed of streams and objects.

3.2 Streams

A stream is a chain which s represented as a pair (£,<)
where £ iz a et of elements and - iz a total order betwean
any pair of messages, For e, ez € £, 1y < g implies that
¢y should be received precedeing eg.

Let us add twe additional elements: boftorn L and fop T,
such that | < e = T for any e € £.

A gtream that is complemented with bottom and top is
said to be complete and represented as a pair (£, =), where
£ = £U{L,T}. The bottom L is the initial state of the
stream, undefined, [t aymbolizes the existence of a consumer

{or target object) that receives messages from the stream,
There exists only one consumer for each stream. The top T
is the final state of the stream, nil, that shows the stream is
closed,

" Produetion and Consumption: We define four opera-
tions on streams: send, close, recaive and is.clese.

As a relation, there is no distinction between send and
receive and between close and is_clesad.)
send{X,m,¥), receive(X, m,¥): The least clement of

stream X iz associated with measage m and stream ¥ is
the rest of the stream, ie.

Jeffle)=m, X 2V, £={e}ul, ¥e'e £e < ¢')),
where X = (£,<), ¥ = (£',=), [is a function associat-
ing an element with a message.

clogel(X), is_closed(X): Stream X s completed by mil,
e, £=g, L<T where X = (f,'—-{], f=fu{L,Th
Operationally, they are different: send and close instanti-
ate an undefined stream and receive and is.cleaed chserve
it. To distinguish their operational semantics, we specify the
stream direction by %7 for the stream where instantiation {si-
ther association or completion) takes place and & for the
stream where the instantiation is observed. They can be re-
garded as terminals: 77 Is a terminal to send & message odt
o 2nd A s & terminal to receive a message from, so we refer
te %7 ag the outlef and M as the indet, as shown in figure L
object(L))
inlet outlet

— o f— — — — —

X& gtream X%

ail{ T}

Figure 1: Stream

Send{X 7, m,¥™) associates the least element of stream A
with message m.)

xa mﬁﬂgﬁ ¥
- L

X¥Y m ¥y

_Figurg 2: Message Sending
Close(X™} completes stream X by il
Xf‘__._[
w

X
Figure 3: Stream Closing

Receival{X® m,¥¥) chserves that the least element of
etreamn X is essociated with message m.

1s_clossd (X2) observes that stream X s completed by nil,

Connection: Connecting an inlet to an outlet implies

that two orderings in a row (<<} results in one ordering

(=)

connact (X ¥ V&) unifies stream X and stream ¥ are iden-
“tical, e X =T,

3.3 Channels

A channelis a poset eomposed of streams (chains), which is

represented as a pair {£,2) where < is a partial order. A

channel (poset) is converted to be a stream (chain) by the

following operation.

641

Serialize((®,5V): Stream § is a chain of the messages
in chanmel ', where incomparable messages in channel
' are nondeterministically ordered, je.
=& Jepeafar < EF ez €0
where C = (£,4), §=(£,«)
Since posets generalize chains, streams are channels. We give
the following definitions using channels..

3.4 Joints

A joint is an operation mapping two channels to another:

channelx channel — channel. We define two kinds of joints:

merge and append.

Merge(XS V& Z¥): Chanuel £ is the union of all messages
from two disjoint channels: X and ¥'; the orderings in
XandY arekept,ie. Z=XUY, XnNY =4

Figure 4: Stream Merging
Append (X%, Y2, Z9): Channel Z is the union of all mes-
sages in two disjoint channels: X and ¥, the messages
in X precede any message in ¥ and the orderings in X
and ¥ are kept, i.e.
Z=XUY, XnY=¢, YeecX Fel¥le<e' €).

Figure 5: Stream Appending
3.5 DMMessages

A message is an element of a channel which is represented
as & pair (¥, P) where v is 8 message name and P Is a tuple
of stream terminals,

A message is called either an atomic message or a com-
pound message depending on whether P is empty or not.

Each compound message is identified by the message
name, the number of the terminals and their directions.
Even if messages congist of the same message name and the
same number of terminals, they are different if any of thelr
terminals has a different direction.

Compound. messages work as conmectors. As mentioned
above, one channel is connected to another when the inlat
of the one and the outlet to the other are given. Thus,
the sender and the receiver should specily complementary
directions for each terminal.

ExaMpLe: Message a(X2 ¥V, Z4) has a name a and
thres terminals: two inlets X2 and 22 and one inlet ¥'7,
so this message is identified as a(d, 7, 4). To recelve this
message, the Larget ob ject should speeify receiving o message
like 2{U¥, V&, WV),

Inquiry Message “Who are you?™: There are several
generic messages which any object is suppoesed to Teceive

642

and anawer, Among them, the most interesting one is the
inguiry message, who_are_you{ Who¥). When an object re-
ceives this message, it is supposed to send a message to outlet
Who, which should reflect the object itself, such as an inte-
ger value for an integer object. "Who are you?" is just a
message, no different from any sther message.

3.8 Objects and Generations

An olgect is a chain of gensrations, whose overview is de-
picted in figure 6.

ob ject
i serialize

=<
slots . merge

Figure 6 Overview of an Object

Creation: When message new(X™) is sent to a class,
the class creates the O-th generation of an instance, by the
following operation. :

New{Obj*, DV, 597 creates an object O8® which is unde-
Jined (1), where § i= a set of streams wach of which
represents an internal state or attribute of the object.

After sending an indlintion message (initiata) fo the 0-th
generation, the class attaches a serializor which will serialize

the messages from the cutside channel, as shown in figure 7.

Each generation observes the inlet of the serializer, that is

called the interface stream.

object Imtaton e

initiate
0-th gen. O O < }(

Figure 7: Creation

There are several primitive oljecls, such integers (a.g. 1),
an atoms (e.g a), booleans (eg. ‘true), strings {e.g.
"*hRi®*), classes (e, ##stack), and some system defined
objects, such as sink objects.

Sink Object: A sink olject recelves messages from its
interface stream and, out of the terminals contained in the
messages, it closes each outlet and connects each inlet to
another sink object. .
Routine: The behavier of each peneration is defined by
a methed, represented as a palr {e, A), where ¢ is an event
that is either receive or is_closad, and A4 is & set of ae-
tions which contains any number of send, close, connect,
merge, append, new and the primitive or system-defined ob-
ject creation, and one or fewer descend defined as follows:
Descend(Sel f&, §¥) creates a new gencration SelfS which
is undefined (L).
A generation first waits for an event on its interface stream.
When it observes an event, it serches an appropriate method
for the event, then it takes the set of actions, as shown in
figure 8.

The actions may be exccuted in parallel or in any order.
The streams related with the actions may be connected inde-
pendently. Since the generation descending action and ather

ohject
Hest®

n-th gen. O O

J descend

Sel o Zast? ’
{n+1)-th gen. - ¢
messages sent from
L deseand the n-th generation

{n+2)-th MO_O_O_ - -

messages sent from
the (n-+1) generation

Figure 8: Succession

actions may be executed in any order, there can exist those
actions faken by different generations at a time. When some
generation sends a message to itsell, itself means the next
generation of the object,
Termination: An object descends generations until it
receives & termination message ("Sterminste’), as shown
in figure 9. When an object receives the termination mes-
sage, it completes all the streams it holds, such as slots, and
terminates its life,
object cut off
Rest™

n-th gen.

termination
MEeEsage

fterminate
_ ~O—0—---O~@1
(n+1)-th gen, . Last

I"igm'\a 4; Termination

|l descend

3.7 Slots

An object may hold a set of stream terminals. Each slot
is associated with a slot name and accessible by the name
beyond generations. There are two kinds of slots: inlet slots
and outlet slots according to thelr directions. An abject ac-
cesses each slot by sending 2 particular message to itself.

3.7.1 Inlet Slots

Reference: When messege get_inlet (N ame™, Slat¥) s
sant, the current inlet is given to the accesgor and & new slot
is created, which holds a closed stream,

Updating: When message set_inlet({Name™, Slat®) is
sent, the current ialet is conmected to a sink object and a
new slot is created, which associates the given inlet with the
slot name,

3.7.2 OQOutlet Slots

Reference: When message get-outlet{Name", SlatD)
is gent, the current outlet is split into two, the cne Is glven
to the accessor and & new slot is created, which holds the
other.

Updating: When message sat_outlat{Name7, Slof¥)
is sent, the outlet the current slot holds is closed and a new
slot is created, which associates the given stream with the
slot name,

3.8 Classes

A elass is an object which defines a set of slot names, & sat
of methods and = set of super classss it inherits and creates
instances according to the definition. There is no notion of
meta classes whose instances are classes.

A clase can Inherit a set of methods from one or more
classes. Class inheritance expands the set of applicative
methods, but does not create any instance for the inherited
elasses. For every event, an object searches for an appropri-
aie inethod by traversing the inheritance tree.

4 LANGUAGE

We define a language for the compuetation model, with a
two-layerd grammar:
the basie gramsmar, which represents the computation
madel exactly, and

s the extended grammar, which introduces several exten-
sions and linguistic supports into the basic grammar for
ease of writing compacl and safe programs.

Before explaining the details, we give two examples: Stack,

a typically object-oriented program, and Thee Reverse, a
highly paratlel program, both written in the extended gram-

INar.

Example 1 {Stack) (see figare 10)
A stack helds the top of the stack, which initially points at
the bottom of the stack,)

For message push{~Data}, the stack creates a new element
and asks it fo set the gven data, Data, and the current top,
respectively in its slots date and next. Then, the stack holds
the element after the sending as the new top.

For message pop(Data), the stack asks the current top to
gel the current data and next, and makes the given outlet
Hext the new top.

Method read({Data) is the same as method pop(Data)
excepl for that it does not update the current top.

Method test creates 2 stack, pushes an integer ! onto it,
checks if the data by read and pop are the same.

class stack. 1)
out top. f2)
:ipnitiate =» Fbottom = !top, 8

:push{"Data) -» felement:set(Data,!tepl= ltep. [}
:pop(Data) -> !top:get(~Data,~Next) Next= ltop./5}

:read (Data) -» |top:get(~Data, Next). (&)
and. {7
class element. 8)

out data,next. {9)

isat{"Data, Next} -» Data= !data, Next= Imext. [id)
:Ea'l:{ﬂata.ﬂart} -» !data= "Data, !'next= "Hext. {1I)

end . {18}
clags bottom. {148)
:get{eos Next) -» . {14}
end. (15}
class test_stack. {18}
roest((A==R)) -3 {17)
#stack:push{l):read("A) ;:pop(~B). {18}
and. {1a}

Figure 10 Program of Stack

643

Example 2 (Tree Reverse) (see figure 11)

Method do (280} reverses each node of the given tree T to
ohtain a reversed tree RovwT, Simultaneously it obtains the
maximum Max of the leaves and sifts the leaves inte even
integers "Evens and odd integers ~0dds. If T Is a leaf (4-
), it is the rewersed tree and the maximum. If T is a node
{10-19}, its left and right trees are reversed.

Method test (£5.20) creates & reverse object, makes it
reverse a tree {{1,{11,12}},{2,{21,22}1}, and generates
a stream of the Ansvers, such as reverse:v(“R}:max:n(23)
revens m{2) {220 :n(12) rodda:n(21) :nl1) tali): :,
where “Ris the reversed tree, {{{21,22},2},{{12,11},1}}.

class Treverse. {1}
1de{"T,RevT, Max, “Evens , "0dds) ->» (8
{class_of T) 7 (i8)
tintegar -> {4}

T= “RevT, T= ~“Hax, {5)
{Tmod 2w= Q) 7 { ()
t‘true => Evens:n(T) ; (m

:'falge -» Odds:n(T) {&}

)i (8
ivactor -F (14)
T:alement{0,~L], (11}
#raoverse:do(L, Revl, "MaxL,Evens ,0dds), (18
T:element(1,”R), (15}
treverse:do{R, "RevRk, MaxR,Evens ,0dds}, [I{}
{RevR,Ravl]} = ~RavT, {15)

{ MaxL > Maxk } 7 ({18}

ftrus ~» Maxl= "Max ; {17}

:"falsa -> MaxA= "Max {18)

) " (19)

J. {24)
end ., a1}
class test_reverse. (28}
tteEt = &8}
#revarse de({{1,{11,12}} {2 {21,22}1}, 24)
“RevT, “Max,Evens,Odds) , 24)
Answarsdl:reversa: v{RevT}, {28}
Answersf2:max:n{Max), {86)
Answvers$d:evanss “Evens, {27)
Answers$4:odds= “Ddds, 28)
inopl " Answers) . {&a)
:nop{Answers) -» . (&a)
end . 81}

Figure 11: Program of Tree Traverse

5 BASIC GRAMMAR

The basic grammar represents the computation model ex-

actly and is characterized by the following two roles:

R.1: For each stream, its two terminals: an inlet and an out-
let must be Epeciﬁ.ed in the method.

RZ: Each action is represented &s an expression, which de-
notes either an inlet, an outlet or nil as its result, and
expressions can be constructed according to their result
category. A method must be composed of nil expres-
sions, .

Missing & terminal and leaving inlet or outlet expressions

might lead to deadlock. These rules are given for the pur-

644

pose of completing all the streams, ie. for promoting the
completion of computation.

5.1 Class Definition

A elass definition consists of a class name, super classes, slot
names and methods as follows:) :
< ClassDefinition> 1=
class < ClassName
| super < ClassMame> { *,* < ClassMames> } 0.0]
in <SlotNames { *,° <SlotNames } 7.7]
[out <SlotNemes {*,* <SlotName=} * .7]
{ <Method= *.* }
end . * .
< Method> = < Event> ' |* | <detions> { *,' <Aetions>]
< Aetions> n= < NilErpression>

LI)
.

5.2 Stream Variables

A variable represents = stream, which has two terminals: an

inlet and an outlet,

Inlet iz a terminal from which a message is received, or
which iz connected to the outlet of another stream. An
inlet is specified by a variable name preceded by ',
eg. "X

Outlet is 2 terminal to which a message is sent, to which the
inlet of another stream is connected, or which is closed.
An putlet is specified by & variable name, e.g. L.

Mil is the state laft after an outlet is closed,
5.3 Expressions

Events and actions are specified by expressions. An expres-
sion represents either an inlet, an outlet or nil as its result,
and is correspondingly named an inlet expression, an outlel
expresgion or a nil ezpression, as listed in table 1.

All pictures in this paper are drawn in a certain manner
that messages should flow from right fo loft toward the left-
most abject. Expressions have been desigred to keep this
manner.

ExAMFLE: #bottom = !top at (¥) in example 1 means
that messages flow from the streems which will be merged
into slot top, to an object #bottom.

Expressions can be constructed according te their result
category. Connection connect(X, ~¥) is represented as a
combination of merge and close, e X = "Y:i: .

ExaMmPLE: X:mi:m3 = ¥ :: means that outlet X is sent
two serial messages: m1 and m2 and connected by inlet ¥.

MNon-nil expressions can be specified for parameters con-
tained in messages, since they express stream terminals.

ExampLE: method test in example 1 is equivalent to:

1test(TF) -» #stack:push{l):read(~A):pep(™B)::,

(A == B) = °TF ::.

6.4 Descending Action

{(Generation descending is an action which can be taken in
parallel with the other actions. The following two expres-
glons: swecegsion and fernunation are provided to abstract
the generation descending.
Succession (< Eweni> '-»") merges the rest of the inter-
face stream [Rest®) into the last Self { Lost™), as shown in
figure 8.

ExaMPLE: imo=» tde, s equivalent to:

:m = Reat | <== “Splf, Zelf:da = “Rest.

Tahble 1; Expressions

relation expression | result |
recedva("X,m,¥) | 71" <Messuge> '=' <Out> | <Nil>
- N m =¥
iz_clozed("%) £ls < Nil=
pend(X,m," Y} | <Ouf» ':' <Messages < Ol
I:m Y
clese(X) <Ouiz ':;? < Nil=
L
merga("X,"Y,Z) | <Owis '=' <fn> < Ol
- Z="K ¥
append{ K, Y,Z) | <ln= % <ln> <in>
ENCY "z
descand{"X,5)} 1ge=t o fu < Nil
¢== "%
Termination (<Bvent> '-|") connects the rest of the in-

terface stream { Rest®) to a sink objest, sends & termination
message to the last Self and then closes its tail, as shown in
figure &,
Exampre: imo=| ide. s equivalent to:
:m = Rogt | <=m “3Sglf, Self:do:'$terminate’::,
Wieink new{"Rast)r:,

5.5 Self

For sach generation, the object itself means the next gen-
eration, which is accessed by name $salf in same way as
alots.

Causality on Self: A method is expanded in the top-
to-bottom, left-to-right inner-te-outer order. The order of
TESSALES being sent Lo sbself is determined in accordance
with the method expansion order. :

If sending-to-self expressions are specified as parameters
of & message lo be received or sent, the Self referred to is
the one just after the receiving or just before the sending
respectively.

ExaMPLE: :geti{ldata, 'next) ->. is equivalent to:

:get{Data,Next) -> !data= “Data, !nexv® “Mext.

that is expanded in the basic grammar as follows:

:pet(Data,Naxt)= Rast | <== Salf,

Self:get_cutlet(data, Data)
iget_outlet (next, "Next)= "Rest.

5.8 Vaolatile Objects

Each generation is (1) activated by a certain event and takes
some actions according to the event, and (2) descends to the
next generation in parallel. The former means conditioning
and the latter looping. Originally, objects were themsolves
condition handlers.

If a class was defined for handling each condition, however,
many small elasses would have to be defined and the program
context would be geographically scatterad into pleces. We
introduce the notion of a velatile object, which is defined
within a method and is realized in the object framewark.

Volatile Classes: A velatile class is tempararily defined
within & method. Any number of volatile classes can be
defined within a method and they can be nested, je. in
the definition of some method of some volatile class, another
volatile class may be defined. There is no distinction between .

external classes and volatile elasses except that the former
have external names but the latter do not. External clasees
can be accessed and inherited using their external names
by any other classes including volatile classes, but volatile
classes cannot.

ExAMPLE: Method de in example 2 contains thres
volatile classes: $vi:fy-£0), $vil:(7-4) and $vi2:f1718),
where $v1, $v11 and $v12 are temporary names given for
explanation.

Volatile Objects: A wvolatile object is an inetance of
some volatile class, and is executable in parallel with its
creator.

Creator-Bound Stream: FEach volatile object iz given a
stream Lo its creator at initiation, and can access the stream’
25 a gutlet slot named §creator. The creator-bound streams
passed to multiple volatile ebjects are appended according
to the method expansion arder.

5.68.1 Creation of Volatile Objects
The creation of a velatile object is defined with an interfaca
streain and a class definition specified as follows:
< fmmutable Volotde Qbject Creation> =

<Inderface> +74 < Fomutable Volatilelass Definition
< Mutable Volatile Object Crealion 1=

< Interface> r=r' < Mulable Volatile ClassDefinition>
<Interfaces> = < fax | < Cul>

Volatile obiject creation expressions are nil expressions.

Basie: Inlet as Interface I an inlet was apecified for
the < Mierface>, the volatile object takes the inlet as its
interface stream.
ExaAMPLE: A volatile object created by:
“Hunger T (:'true -» :eat; :‘false -> :sloep)
receives a message from inlet “Hunges,

Extension: *Who are you?” to Outlet If an
outlet was specified for the < nterfoce>, the message
whe_are_you(Who) is implicitly sent to the outlet and the
volatile object takes inlet "Who as its interface stream.
ExamrLs: (Tmed 2 5= Q) 7 (...) is equivalent to:
(T mod 2 == 0):who_are_you{Wno}::, “Whe 7 (...).

5.6.2 Immutable and Mutable Volatile Objects

There are two kinds of volatile classes: immutable volotile
{1V} elusses and mulable volatile (MV) closses, which differ
from each other in their variable seope and relationship with
their creator, e.g. the §v1, §v1i and $vi2 are IV classes.

Scope: Slot names are permanent nomes which are valid
outside generations. In contrast, variable names are fempo-
rary nantes which are valid only within a generation. The
space in which a name is visible is called its name scope.

Immutable Volatile (IV) Objects:

Transperent Scope: An IV object shares the same scope
a5 its creator. The same varizble names in an IV object
and it creator represent an identical stream/channel,

» Creator as [is Nex! Generation: For an [V object, the
Self and its slots are those of its creator, i.e. $self and
feresator are identical,

IV classes are used mainly for conditioning.

645

Mutable Volatile (MV) Objects:

» Independent Scope: An MV object has an independent
name scope, The same variable names in an MV object
znd its creator represent different stream fchannels.

o Creator as a Slot: An MV object is another chain
of generations, whose Self and slots are independent
from those of the creator, ie. $self is different from
jcreator.

MV classes are used mainly for looping.

Example 3 (Prime} (see figure 12)

A program for the pipe-lined prime number generator is
given as follows, where lines (15-25) defines the creation of a
mutable volatile objact.

class primes. (i}
:primes(~Max, “Ps) =-> 8
:generate(3,Max,Ne), #sift:de(3, Ns Ps:n(2}).(5)
:genaratel N, “Max, “Ns) - {4)
CiN+2 = "NewN) < Max)} 7 ((5)
:"true -> generate(Wewl, Max, Ne:n(Newl)); (4}
:'false > ¥ end ¥ (7}

e : (&)
end. 1)
class sift. o
:da("V, Na, “Ps) -3 {11)
S:initialize(V, Pa)=s “¥s, 1)
"5 =» [out me, next, to_next, primes; {13)
iinitialize("V,"Ps) -» (14}

¥= Ime, 0= !mext, Fs= lprimes. {15}
n{"X) =» {16}

(X mod 'me == Q). 7 ((11

:"true - ¥ do nothing ¥ (e}

(ifalea -3 {14)

(lnaxt == 0) 7 ()

:“true -> ¥ there is no next yet ¥ [2I)
= !next, Ns= !to_next, eg)
#sift:do(X, “Ns, !primes:n(X}}; (&%)

:"falge -> !to_next :n(X) {24}
>} (25)
and. &5}

Figure 12: Program of Prime Number Generator

6 EXTENDED GRAMMAR

The basic grammar is extended for the purpose of ease of
writing natural, compact and safe programs. The following
extensions are made:
o The meaning of a variable name is extended from a
stream to a channel, so that streams toward the same
ohject can be identified only by variable occurrences.

Nen-nil expressions can be specified for actions, which
the language system will implicitly complete. This lin-
guistic support protects us from unexpected deadlock.

s Macro expressions and abbreviations are provided, so
that we can write simple and compact programs even
withont paying attention to the notions of message
passing or stream.

646

8.1 Channel Variables

Here, let us think of a simple example, Consult, that is let
two persons (X and V') solve some problem (P) by their own
strategy and collect their answers [A); each person may give
more than one answer.

(1) In case of collecting their answers in any order, for the
program in the basic grammar:

rconsult("P, “&, "X, “¥) -»

X:solva(Pl, Al)::, Y solvae(P2Z, A2)::,
FP="PL ="P2 v, A = AL = "42 ::.
let us represent the merging joints cnly by the cccurrences
of sutlel variables as follows:
reonsult(CF, <A, “K, <Y} -3
irsolve(P, &), Y:=sclve(P, A).

(2) In case of collecting their answers in the order that the
answers from X should precede any answer from ¥, for the
program in the basic grammar:

seonsult("F, "4, "X, °Y) =2

X:solwvel(P1, A1)::, Y:isolwelP2, A2)::,
Pe="Pl= "P2 i, A= TA1 \ TAZ ::.
let us represent the appending joint by the occurences of
outlel variables with ordering numbers as follows:
sconsult{“P, A, “X, “¥Y, “Z)} -»
K:golve(P, A31), Y:isolve(P, A%3).

Our programimers’ concern is what to do an object, rather
than how to connect streams toward it With the extention
of the meaning of a variable name from = stream to a chan-
nel, the programmer’s inteation can be represented directly.
Generally, a channel may be any combination of merge and
append jaints. Thus, a variable name represents a channel
whicl may have the following occurrences:

Oneé or Fewer Inlets , which is specified by the vanahble
neme precaded by *77, eg. X,

Zero or More Unordered Outlets , each of which is
specified only by the variable name, e, X, and merged
inta the inlet, and

Zero or More Ordered Outlets , each of which is spec- |

ified by the variable name succesded by *§* and some
ordering number, e.g. X$2, and i= appended according
to the number into the inlet.
EXaMPLE: channel ¥= “Pi= "P2= ~“51% "52) "53::, can
be represented by one inlet X, two unordered outlets, X's,
and three ordered outlets, ®51, %2 and X33, es shown in
figure 13.
st rpe b s Blesay e M

(x '53)

X
X%3

Figure 13 Channel Variahles

6.2 Implicit Completion

In stream programming, the most important thing iz en-
suring the closing and connecting of streams; otherwise, an
unexpected deadlock might occur. OQur programmers, how-
ever, would kike to be kept away from such detailed logic as
much as possible. The grammar is extended in both direc-
tions toward fexibility and reliability as follows:

(1) Nen-nil expressions, that leave outlets open er inlets un-
connected, are allowed to be specified for the < dctionss,

(2) Mon-nil steeams are implicitly completed. Implieit com-
pletion includes: (&) eutoclesing outlets, (b) antodischarging
inlets, and {c) antotermination objects.

6.2.1 Autoclosing Outlets

Leaving one outlet open might cause deadlock, becanse there
might be some object waiting for messages sent from the
outlet. Qutlets left open are implicitly closed. Among those
autoclosed are:

[1) The result of 2n outlet expression, left open,

{2) The missing outlet of a channel,

{3) The current outlet slot en vpdating, and

{4) The outlet slota at termination of an object.

6.2.2 Autodischarging Inlets

Leaving one inlet unconnected also might cause deadlock,
becanse there might be some object waiting for messages
from some stream contzined in some message running to-
ward the inlet. An unconnected inlet is connected to @ sink
object, This is called discharging an inlet. Among those an-
todischarged are:

(1) The result of an inlet expression, left uneonnected,

(2) The missing inlet of a channel,

(3) The interface stream cut off at termination, and

(4) The inlet slots at initiation of an object.

8.2.3 Autoterminating Objects

Most objects are terminated when their interface stream is
closed, but we often fail to specify the termination, and that
will canse deadlock. When no method for termination is
dafined , the ehject is implicitly terminated when its interface
stream is closed.

6.3 Macros

Many kinds of macro expressions are provided for ease of
writing compact programs as follows:
Arithmetic/Logical Operation Macros |
each of which represents the outlet to the opera-
tion result, eg. T mod 2 == 0 represents TorF with
Timod(2, M) :: ,Mieq(d, "ToxF): .
Instance Creation Macro ("4 < ClassNames),
which represents outlet Obj with message new{"0bj)
sent to the class,
ep. #stack represents 3 with ##stack:new(™3):: .

Outlet Slot Access Maero (' < SlotName>),
whose semantics depends on the context.
Reference: In the may-be-outlet field, it rapresents Slet
with message get_outlet(Name,“Slet),
e.g. ldata= "Data merges “Data into the current data.
Updating: In the rust-be-inlet field, it represents inlet
“Slot with message set_outlet(Name ,Slot),
e.g Data= !data makes Data the new data.

Inlet Slot Access Maero ('8 <SloiName>) |
whose semantics depends on the context.
Reference: In the may-be-inlet field, it represents inlet
“Slot with message get_inlat{Name,5lot),
e.g. Curs dans connects the current ans to Cur.
[ipdating: In the must-be-outle? field, it represents out-
let 5lot with message set_inlet(Name, " Slot),
€. Bans= “New makes “Naw the new ans.

6.4 Abbreviations

“Self” ag Defanlt Destination: When ne destination
is specified in message sending or closing, the destination is
assumed to be the the object itself, e.g. :nop(Answers) in
example 2 is equivalent to: §zelf :nop(“Ansvers).
Updating Destination: In sending a message to a
named stream, such 23 an outlet slot and the object itself,
the cutlet left after the sending is assurmed Lo be the new gen-
eration of the destination, e.g. !top:get(“Data, ~Next) is
equivalent to: 'tep:get(~Data, “Next) = !top.

7T IMPLEMENTATION ISSUES

We hiave implemented an experimental system {or A'LM om
KL ar Flat GHC {a subset of GHC), including its compiler
and execotion environment. Using this system, several ap-
plication programs are being tested to investigate and im-
prove the expressive power and performance of A'LAL | lts
debugging environment is now under development.

In this section, we describe several implementation izsues
which aze perticular to 4"UAM |

T.1 Implementation of Stream Joints

A channel consists of stream joints. If each joint were jm-
plemented ag a process, o greal number of processes wonld
be created. For a stream programming language, one of the
most critical points for the performance is how to implement
gtream joints effectively,

T minimize the number of processes, we took the follow-

ing strategy:

v Joint as a Vector: Each joint is represeneted as a static
vector which consists of a tag T indicating either merge
or append, and twa streams X and ¥, fe. 2={T X, ¥}

s Seriglizer as a Vector Consumer: In front of the first
joint, which interfaces an object with the outside, & dy-
namic process, serializer, is created, so there exist se-
rializers as many as objects. The serializer consumes
2 nested vector according to the tag and generates a
stream.

Since the number of joints can be much larger than that of
chjects, this strategy is very effective for performance.

7.2 Optimizations Owing to Streams

The single assignment single reference property makes sev-
eral static optimizations possible, among which are the fol-
lowing:

1. Combining Merge, Append and Clase: If one stream of
& joint is closed, the other stream can be unified with
the result, ez, merge{X,¥,2} and clese(X) leads Y=Z.
Thus, no wasteful joint is ereated for connecting streams.

2. Shortening Dereference Chaing: Applying the above
elimination repeatedly might generate many transitive
unifications, e.g. =Y, Y=Z. Such an intermediate vari-
abie like Y can be reduced since it is assured that there
iz no other Y. Then, the above pair results in X=2. This
minimizes the length of dereference chain that is tra-
versed at execution time.

7.3 Implementation of Variable Nams Scope

When I'V classes defined in & method, which TV objects are
created and which channels they access are determined at

647

execution time. In any case, all the related channels must
be completed. Tt is impractical to generate a different code
for every possible cese statically. The physical code must
be minimized. Variables scope control is one of the most
difficult problems for siream programming langnages.

Cr solution is simple: what 15 determimed dynamienlly
should be solved dynarmically.

Scope Objects: A scope oljec! manages name associa-
tion of shared variables within a generation of an object,
while other objects manage name association of their slots
throughout their lives. An IV object shares [holds a stream
to) the scope abject of its creator, while an MV object cre-
ates an independent scope object for itself,

Scope objects are terminated similarly as other objects do:
when its interface stream is closed, the scope object com-
pletes all the terminals it holds, i.e. autocloses the outlets
znd autodischarges the inlets.

Global and Local Variables: It is not necessary to cre-
ate a scope object every time an IV object is created. The
scope object is needed only when one or more variable names
are shared among the IV objects and their creators.

The compiler categorizes variables into two: local varinbles
and global variables.

» Local variables are those which appear only in one ob-

ject, Their name association is statically resolved,

o (Flobal variables are those which are shared by more than
one object within a scope. If there exist one or more
global variables, the compiler generates codes for cre-
ating a scope object and for sending 2 message to the
scope object to access every global terminal by its vari-
able name,

7.4 Implementation of Primitive Objects

In the current system, each primitive cbject is realized as a
process which receives messages from its intérface stream as
the other objects are. How to implement primitive abjects
iz ancther eritical point for the performance. The following
mechaniam, unification failure handler, makes it possible to
represent primitive objects as their exact values,

Unification Failure Handler: For example, the message
sending expression, X:add(Y,Z) = “NewX, is translated in
KLl to: X=[add(Y,E} |New}] .

If we represent primitive objects as themselves, for exam-
ple, integer objects just as integer values, eg. X=1, =32,
then the unification 1=[add(2,3)|1] must be made frue
KLY would make such a unification fail. In order to make it
troe, some extensions must be introduced into KL1.

For a certain goal and all of its subgoals, a predicate for
handling such failure can be specified, which is invoked in-
stead of simple failure. It ie called the wniffeation fodlure
handler. The unification failure handler receives the two
original arguments of the unification. If two structures are
unified and the unification failed for certain of their elements,
then these elements are passed as the arguments to the uni-
fication failure handler. The execution of the unification
handler takes the place of that of the unification itself.

If integers must understand add messages, the unification
failure handler should have a clawse such as follows:

648

nandler{Int, [add(&ddend, Sum)|Rest]) :-
integer{Int), inta-gar{hddand) I
add{Int, Addend, Sum), Int = Rest.

The unification failure handler mechanism is harmless to
IKLL. The ahove is defined to be appropriate for the ex-
ecution of A"MAd | but users who prefer KL1 can define
another unification failure handler that simply fails, keeping
the original semautics of KL1, Therefore, it is very general
and effective for the implementation of primitive objects.

8 Comparisons with Other Works
8.1 AWM we, Other COOP Languages

Thera have bean proposed several concurrent object-oriented
programming [COOF) languages [YonezawaB86, [ehikawao,
YokoteBG, Americadl, ThongsT, HurBT). Most of these lan-
ganges realize parallism by infroducing a parallel mechanism
onto sequential contrel. Objects are runnable in parallel, but
ingide each abject, control is sequential. Synchronous com-
muncation makes programming herder. Most of the pro-
grammer’s attention is on how to draw the execution thread
rather than on what to selve. With such control dependent
programming, it is hard to expeet high expressive power or
high parallelism.

A'LM is most different from and superior to these COOP
langnages mainly at the following two points:

(1) Declorative Definiiion: The object behavior is defined
declaratively: an object takes actions in parallel, which are
related with each other only by causality, and its commu-
nication is asynchronous. Declarativity is one of the most
important clues on how to make concurrent programming
simple and practical.

{2} Conditioning by Volatile Objects: Most of object-
oriented languages realize a condition handler using the
higher-order notion, continuation, that is the rest of & pro-
gram. For example, the bleck scheme in Smalltalk is to create
a Trie object and a False object and pass the program con-
text to be executed after conditioning, to both of them. The
Trite and False chjects must he meta interpraters that can
interprete the given program code.

At realizes condition handlers in the framework of ob-
jects, by volatile objects. The volatile object scheme neither
creates more than one condition hander object nor requires
any meta control, so it is uniform in the concept and efficient
in the execution,

B2 AWM wvs. Actor

The Actor model [Hewist7TA, Hewitt7TE, Agha86) is the
closest in peint of view to cur model. In both models, the
basis is on posets, objects and causality, communication is
asynchronous, and actors (objects) can be created dynami-
cally. The differences are as follows:
In the Actor model,

(1) The arrival order of avents at an actor is uncontroliable
in the program. The system implicitly inserts an arbiter for
each object, which serializes events.

{2) Addressing is direct. Messages are sent directly to the
target actor, so the programimer must notice that an actor
should be created belore messages are sent to it.

() Computation iz functional, The actor returns the com-
putation result to the destination actor that is specified in

the request message as a continuation.

In AT,
{1) The ordering is explicitly representable in the program.
We can specily orders between multiple messages toward an
object, using streams.
(2) Addressing is indirect. A stream may be connected to ei-
ther the target object or another indirect stream some time
in the fufure and the connetion may happen from anywhere,
so we can send a message to any stream without malking sure
if it is connected to the target object.
(3) Computation iz relational. The object defines only rela-
tions between incoming streams and cutgoing streams, which
are symmetric.

8.3 Streams vs. Channels

[TribbledT] defined a channel to be a poset in contrast to a
stream which is a chain. The main purposes of introducing
channels are the following teo:

(1) to regard a stream tree as a single entity,

() to reduce the number of serializer processes for high per-
formance,

In addition, multipls writers and mullipie readers were
allowed for one channel and
(3) the writing order between multiple writers was controlled
nondeterministically,

(4) multiple readers were allowed to read different chains
from a single poset.

The former {1) and {2} are well-understaod: {1} is a matter
of reprogentation and (2) is that of implementation. Wa
realized (1) by regarding a variable name as a channel and
(2) by vectorizing stream joints.

However, it is hard to understand that the latter (3) and
(4) make eny logical sense. In A'L{M ., & channel is com-
posed of streams. Ounly single reader is allowed for each
channel and each writer holds & component stream of & chan-
nel. This makes semantics more sound and implementation
simpler.

8 FUTURE WORK

By basing it on streams and integrating it with objects and
relations, A'IM has satisfled most of our requirements: el-
egancy in the model, paturalness in representation and effi-
ciency in execution, but not well enough.

The language represents the model well, but is not ab-
stract enough for programming yet. More expressive power
ia needed. We would like to supplement abstractions and
linguistic supports to the language.

In the experimental system, we utilized the parallel com-
putation and communication mechantsm of KL1, including
unification and commitment contrel, bit the basic mecha-
nism required for A'Z4A is much lighter. We plan to design
and develop an independent system that provides the ba-
sic mechanism sufficient and wall-suited for A'LA4 by itself,
With this system, we will prove that A'2A is practical as
much as elegant,

ACKNOWLEDGEMEMNTS

This reséarch has been done as part of the FGCS project in
ICOT. We would like to thank Kaguhiro Fuchi and Shun-
ichi Uchida for giving us this research opportunity. Our

thanks are also sent Lo all those who gave us valuable com-
ments and suggestions on A'MAM and the paper.

REFERENCES

[AshcroftTT) E. A Asheroft and W. W, Wadge: Lucid, a Noa-
procedural Language wilh Heration, CACM 20(7), 1977
[Aczel88] P. Aczel: Non-wellfounded Sets, USLI Lecture Notes

14, Stanford University, 1988,

[Aghaf8] G. A. Agha: 4 Madel of Concurrant Compuiation in
Distributed Fystems, MIT Press, 1085,

[AmericaB5) P. America: Deffuilions of fhe programming lan-
suoge POOL.T, ESPRIT preject 415, Doc.0l, Philips Re-
search Laboratories, Bindhoven, the Netherlands, 1955,

[ArvindT7] Arvind and P Gostelow: A Compuler Capable of
Ezchanging Processors for Time, Proc, IFIP 77, 1977,

[Arvind82) Arvind and J. D. Brock: Streams and Managers,
LMCE 143, pp.453-465, Springer-Verlag, 1082

[Arvind86] Arvind and D. E. Culler: Dalaflow Architeciure, Ann.
Rev. Computer Science, 1:225-53, 1084,

[Bellt85] P. Bellot and B, Robinet: Sireams are noi Dreams,
LINCS 242, Springer-Verlag, 1085,

[BakkerB7]J. W. de Bakker, J. J. Ch. Meyer, and E. R. Orderog:
Infinite Streams and Finile Observations in The Semantics
of Uniferm Cencurrency, Theorttical Computer Scienee 49,
North-Helland, 1957

[Bergstradd] 1. A, Bergstra and J. W. Klop: Process Algebro for
Synchronows Communicafion, Informantion and Contraol 60,
1884,

[Brock81]J. . Brock and W. B. Ackerman: Seenarios:Ad model
of Non-determinate Computation, LNCS 107, Springer-
Verlag, 1981, .

[Broys) M. Broy: A Theory for Nondeterminism, Porallelism,
Communiention, and Concurrency, Theorstical Computer
Science 45, North-Holland 1985,

[ChikayameB7] T. Chikayama and Y. Kimura, Mulliple Reference
Management in Flai GHC, Proc, of 4th 10LP, 1887,

- [ClarkBI} K. Clark and §. Gregory: A Relalional Language for
Faralle Programming, Concurtent Frolog Vol.1, MIT Press,
1987.

[Clarks4] K. Clark and 5. Gregory: PARLOG: Parallel Program-
ety i Logic, Concurrent Prolog Vol 1, MIT Press, 1987,

[Cohendl]], Cohen, Garbage Collection of Linked Dala Siruc-

. tures, ACM Computing Surveys 13(33, 1981,

[Denni=Gd1]. B. Dennis: Programming Cenéralily, Parallelism
and Compuler Architeciure, Proc. of IFIP 68, 1969,

[DeunisT5] 1. B. Dennis: Prelimingry Architecture for o Basdic
Daig-Flow Processor, IEEE Symp. on Comp. Arch., 1975.

[DenniT6) 1. B. Dennis: A Lenguage Design for Struciured Con-
enrrency, LNCS 54, Springer- Verlag, 1076,

[Ebrighd] H. Ehrig: Jfefroduckion fo the Alpebraic Thebry of
Graph Grammars, LNCOS T3, Springer-Verlag, 1979,

[Filmangd] B E. Filman and . P, Friedman: Coerdingied Com-
ruting = Tools and Techniques for DMsiribuled Soflware,
MleGraw-Hill, 1984,

[Goldbergdl] A, Goldberg and D. Hobson: Smalltalt-80: The
Language and M fmplemeniofion, Addison-Wesley, 1083,

[(Fotod8] A. Gote, Y. Kimura, T, Nakagawa and T. Chikayama,
An Imcremental Garbage Collection Methed for Parallel In-
ference Machines, Proc. of LP88, Seattls, 1988,

[MewittTTA] C. Hewitt: Viewing Confrol Struciures oz Paiferns
of Passing Messages, Artificial Intelligenee 8(3), 1677,

[Hewitt77B] C. Hewitt mnd H. Baker: Lows for Communicoting
Parallel Procegses, Proc. of IFIP Congress 77, pp.987-592,
North-Holland, 1977.

iIdaﬁﬂ-] T. Ida and I. Tanaka: Fenctional Progromming with
Stregms, Proc. IFIP 83, pp.265-270, 1983,

[1zhikawa36] Y. Ishikawa and M. Tokoro: 4 Concurrent Qbject-
Oriented Knowledge Representotion Language Orentff/ K
fts Features and fmplementation, Pros, of OGOPSEA'SS,

[Hurg7]J. H. Hur and K. Chon: Querview of o Parallel Objeci-
Crriented Lenguege CLIX ENCS 276, Springer-Verlag, 1957,

649

[K.Kahn86) K. Keho, E. D, Tribble, M. 5 Miller, and D. G.

Bobrow: Vulean: Eopiea! Concurrent (Mjects, Concurrent
Prolog Vol.2, MIT Press, 1987,

[G.Kahn?4) G. Kahn: The Semaniics of o Simple Longuage for
FParallel Progromming, Proc. of IFIP 74, ppAT1-475, 1974,

[G.Kahn77] G. Kahn and D. MacQuesn: Corowtines ond Net
works of Perellel Processes, Proe, IFTP 77, pp.993-998, 1077,

[KaplanB8]S. M. Keplan and G. E. Kaiser: Gerpr (Fraph
Abstroctions for Concurreni Programming, LNCS 300,
Springer-Verlag, 1988,

[KreowskiBd] H-1. Kerowski and A. Wilharm: Nel Processes
Correspond to Dertvation Processes in Graph (rammars,
Theoretical Computer Science 44, Nosth-Helland, 1986,

[LandinB8] P. 1. Landin: A Correspondence befween Algol60
end Church's Lambda-Notation: Part I, Comin. ACM B(2),
PP BIL101, 1966,

[MeGrawB2) 1. R. McGraw, The VAL Language: Description and
Analysis, ACM Transaction on Programming Languages and
Systemns 4(1), 1082,

[Mandriolis?] D. Mendriali and C. Ghezsi: Theoretical Founda.
tien of Compuier Science, John Wiley & Sens, 1087

[Milner80] K. Miloer: 4 Calenlus of Communicating Sysiems,
LNCS 92, Springer-Yerlag 1980,

[Milner3] B. Milner: Caliculi for Synchrony and Asynchrony,
Theoretical Computer Science 25, North-Holland, 1983,
[Monteiro8G] L. F. Monteiro and F. C. N, Pereira, A Sheafl
Theorelic Model of Concurrency, Symp. on Logic in Com-

puter Science, 136,

[PetersonBl] J. L. Peterson: Pelri Nel Theary and the Modeling
of Sysiems, Prentice-Hall, 1981,

[Pract86] V. Pratt: Modeling Concurrency wiih Partial Orders,
International Journal of Parellel Programming 15(1), 1988,

[SeoteT2] D. S, Scotl: Continuous Laoitices, LNM 274, Springer-
Verlag, 1872

{ScotkBZ] D. 5. Scott: Domains for Denofotional Semandies,
LKCS 140, Springer-Verlag, 1082,

[ShapiroBY] E. Shapito: A Subset of Concurreni Prolog and fis
Interpreter, Concurrent Frolog Vel.1, MIT Press, 1087,
[Shapirc83B] E. Shapire and A. Takeuchi: Object Oriented Pro-
gramming i Concurrent Prolog, Concurrent Prolog Vol 2,

MIT Press, 1987.

[Staples8d] J. Staples and VL. Nguyen: Computing ihe Rehavipr
of Asynchronous Processes, Theorstical Computer Science
28, Morth-Holland, 1953,

{TeslerG8] L. G. Tesler and H. J. Enea: A Language Design for
Coneurrent Processes, Proc, of 5JCC, 1968,

[TribbiefT] E. T, Tribble, M. 5. Miller, K. Kahn, D. Bobrow and
C. Abbott: Channels: A Generalization of Streams, Con-
current Prolog Vol 1, MIT Press, 1987,

[UedaBS] K. Ueda: Guoded Horn Clanses, Concurrent Prolag
Vol.1, MIT Press, 1987.

[WinskelB4] G. Winskel: Synchronizafion Trees, Theoretical
Computer Science 34, ppd3-83, Morth-Holland, 1064,

{WinkowskisT] J. Winkowski: An Algebra of Processes, Journal
of Computer and System Sciences 35, pp.206-228, 1987,

[YokoteBS] Y. Yokote and M. Tokoro: The Design and Imple-
mentation of ConcurrentSmalltalk, Proc. of OOPSLA'SE.

[YovezawaB6] A. Yonezawa, J.-P. Briot and E. Shibayama:
Object-Oriended Concurreat Progromming in ABCL/),
Proe., of DOPSLA'EE.

[ZhonghT) ¥. Zhong and M. Sowa: Tewards on Jmplicitly Parallel
Mhject-Oreented Language Proc. of COMPSAC'ET, 1087,

