PROCEEDINGS OF THE INTERMATIONAL CONFERENCE
OM FIFTH GENERATION COMPUTER SYSTEMS 1988,
edited by 1COT. © ICOT, 1988

SOFTWARE FOR THE REWRITE RULE MACHINE*

Joseph A. Goguen' and José Meseguer
SEI International, Menlo Park CA 94026

ABSTRACT

The Rewrite Ruls Machine (RRM) has an innovative mas-
sively parallel architecture that combines Bne-grain SIMD
computation with (two levels of) coarse-grain MIMD com-
putation. This paper describes techniques for compiling and
running functional, object oriented, relational (i.e., “logic”),
and multi-paradigm languages on the RRM. The languages
that we use for illustration have the advantage that they
are rigorously based upon logical systems, but the imple-
mentation techniques are more general, and even apply to
imperative languages. The most novel of these techniques
is & restricted form of secend order rewriting, which involves
variables that can match against function symbaels. Rules in-
volving such variables have enormous expressive power, and
can also be implemented very efficiently on the RRM; indeed,
they sre implemented essentially the same way as ordinary
rules. A second innovative technique involves representing
akjects (with local state) in graphs, by restricting the ways
that rules can act on them. The REM languages also em-
body many useful modern features, including abstract data
types, Aexible generic modules, powerful module intercon-
nection, multiple inheritance, and *wide spectrum” integra-
tion of specification, documentation and coding.

1 Imtroduction

Beginning with a plea for powerf{ul, simple languages that are

* rigorously based upon pure logics, this introduction discusses
multi-groin concurrency and our model of computation, con-
eurrent term rewriting. These concepts mobivate the Rewrite
Rule Machine (RRM) architecture and Janguages. The sub-

. sequent body of the paper provides details about the lan-
guages and their RRM implementation, showing that they
can be given very efficient implementations in park because
of their high level abstract character and clean design. The
references deliberately emphasize related works by the RRM
group. See [16] for details of RRM architecture.

1.1 Programmability and Logical Languages

Programmability is a central issue for massively parallel ma-
chines, because such machines lose their valoe if they are
too difficult to program. We suggest that declarative lan-
guages are the key to combining hardware efficiency with
programming ease, Programs in such languages tend to de-
scribe problems, rather than solutions. From the hardware
viewpaint, declarative languages do not prescribe specific

*Supported by Ofies of Naval Ressarch Contracts NOOOL4-65-C-0417
and NO0014-B6-0-0450,

tAddreas from Seplember 1988 caward: Oxford University Com-
puting Laberatory, Programming Research Groap, 8-11 Hable Road,

FOOFS Eqlog
reflective Horn clause logic
equationz] logic with equality

OBJ
eqeaticral logic

Figure 1: Overview of Languages

erders of execution, and thus give maximum opportunity
for concurrency. From the software viewpoint, declarative
languages avoid the need to explicitly proegram concurtency,
which in general is difficult. Moreover, a modern declarative
language can provide [acilities that can greatly sugment pro-
grammer praductivity, including the wide speciram integra-
tion of specification, rapid prototyping, validation, testing,
decumentation, and coding, as well as generic modules, mul-
tiple inheritance, and program transformation, all of which
support rensability, as well as strong typing and multiple
inheritance, which support exeeption handling.

Since all this ean be given a solid logical foundation, cor-
rectness problems can be properly addressed, with both pro-
grams and proofs in the same formal system. Moreover,
programs written in declarative languages do not need to
be rewritten if the underlying hardware is slightly changed
— p.g., if more processors are added — since they are al-
ready independent of any assumptions about the underlying
hardware.

The most promising approach to declarative program-
ming may be through logicel programming lenguages, which
[roughly spesking) are languages whose statements are sen-
tences in some logical system, and whese computation is de-
duction in that system {[1%] gives a more precise definition}.
This paper describes RREM fmplementation techniques for
four wide spectrum logical programming languages:

1. OBJ [2,8], which is purely functional;

2. FOOPS [18], which combines functional and object ori-
ented programming;

3. Eglog [10,12], which combines functional and *logic”
(i.e., Horn clause relational) pregramming; and

4. FOOPlog {13], which combines all three major emerging
programming paradigms.

Figure 1 shows the relationships between these languages
and their logica.

1t iz widely recognized that pure Horn clause logic is not
an adequate basis for practical programming, and Prolog, for
example, has added imperative features like 18, assert and

quite misteading name), while the second and third update
Prolog’s databass. Howewver, this does not mean that log-
ical progranmuming languages are a bad idea, but only that
some logic more powerful than Horn clause logic is needed
in order to make pure logical programming practical. Subse-
quent sections of this paper discusa languages that are based
on reflective (order sorted) equational logic, and on (order
sorted) Horn clause logic with equality; these languages are
FOOPS and Eqlog, respectively. Prior to this, we discuss
OBJ, which is based on [order sorted) equational legie. Or-
der sorted logic provides a rigorous foundation for multiple
inheritance. All these langoages have initial model se-
mantics, which formalizes the idea that one wants to pro-
gram over a “stendard model® or “closed world” in which
questions have dsterminate answers.

1.2 Mulii-Grain Concurrency

Conecurrent execution may be roughly classified as either
fine-grain or coarse-grain. Fine-grain SIMD concurrency
(broadcasting a Single Instruction stream te Multiple Data
gites) achieves efficient performance at the cost of generality,
fexibility, and programmability. Coarse-grain MIMD (Mul-
tiple Instruction streams at Multiple Data sites) execution
is more broadly applicable, but cannot achieve maximuam
concurrency because of high communication costs. It i an
important research problem to escape this fateful dichotomy.

Experience shows that many computations are locally fo-
mogencous, in the sense that many instances of one instrue-
tion can be applied simultanecusly at many different data
sites. For example, sorking, searching, matrix inversion, the
fast Fourier tzansfform, and arbitrary precision arithmetic,
all have this character. For such computations, SIMD archi-
tecture is advantagecus at the VLST level.

On the other band, complez problems tend to have many
different subproblems with little or no everlap among their
instructions — that is, complex problems tend to involve
glebally dnhomogeneous computation. SIMD computation
can be very inefficient for such problems. We say that com-
putations that are locally SIMD but globally MIMD exhibit
maulli-grain conesrrency. Architecturally, this suggests many
processors, each running ita own SIMD program, indepen-
dently of what is running on other precessors. Such an ar-
chitecture is natorally realized by a network of VLSI chipa,
each a SIMD processor,

Thus, progress in VLSI and communication has created
a technological opportunity, answering a real need for large,
complex computations. Unfortunately, there are serious con-
ceptual and linguistic obatructions to exploiting this appor-
tunity. In fact, no well known programming language or
computational model is adequate for multi-grain concurrent
computation. In particular, the von Neumann languages
and model of computation are inadequate, beeause they are
inherently sequential. However, concurrent term rewriting
geerns tdeally suited for multi-grain concurrency.

1.2 Models of Computation

A model of computation defines the major interface between
the hardware and the software aspects of a computing sys-
tem. This interface specifies what the hardware team must
implement, and what the software team can rely upen, and
thus plays a basic role in “Fifth Generation™ projects. The

629

cnly justification for continued interest in the von Neumann
medel of computation is that it connects current gemera-
tion (efficient) von Neumann machines with current gener-
ation {ugly but very widely used) von Neumann languages.
This model is characterized by enormously long streams of
fetch /eompute fwrite cycles, and is inherently sequential.

By contrast, in comeurrent term rewriting, data has a

graph structure, and programs are sets of rewrite rules. A
rewrite rule consists of two templates, one describing sub-
structures to be modified, and the other describing what
they should be replaced by. In principle, all possible rewrites
can be executed simultaneously, at all possible data sites (see
Section 2 for more detail); however, in practice, we will im-
plement some form of multi-grain concurrency. This model
of computation supports the functional, object oriented and
relational paradigms, as well as their combinations, and can
effectively explolt any inherent program concurrency, For
example, in object oriented programming, data accesses are
ueqtlentia.lise:] only when required for correct behavior; oth-
erwise concurrent execution iz allowed.

The RRM and its model of computation also suppork pro-
grams in conventional imperative languages, but this ssems
less desirable, because these languages have many inherently
sequential features that restrict opportunities for coneur-
rency; also, their tendency to encourage the undiseiplined
use of global variables and obscure side effects makes their
programs harder to write, read, debug and modify. Conven-
ticnal concurrent programming languages fare better, but
their programs remain difficult to write, read, debug, and
(especizlly) to modify and port to new machines. However,
we should net forget that an enormous amount of software
has already been written in conventional languages,

1.4 RRM Architecture

The REM is & massively concurrent machine that realizes
concurrent term rewriting in silicon, using revolutionary ar--
chitecture but conventional electronic technology. The de-
#ign avoids the so-called von Neumann bottleneck by using
a custom VLSI chip that processes data where it is stored.
The cells in & given ensemble share a single eontroller, so
that execution is SIMD for each chip. Local eommunication
predominates, since rewrites require only local connectivity.
The following sketches our current prototype RRM design:

1. a cell holds one data node and its structural links, and
also provides basic processing power;

2. a Rewrite Ensemble {RE) is a regular array of cells on
a single VLSI chip, with wiring for local data exchange;
one RE might hold about a thousand eells plus a shared
controller and some interface circuitry;

3. a board might contain about a hundred REs, some
bachup memory, and an interface microcomputer;

4. a complete RREM prototype might have about ten
boards, with a general connection network and a con-
ventienal minicomputer for storing rules, balancing
load, and remobe communication.

A single RE yiclds very fast fine-grain SIMD rewriting, but
REM execution i coarse-grain at the board level, since each
RE independently executes its own rewrites on its own data,

630
<N\
ZO

fibe fiba

J

|
<] 8

Figure 2: The Tree of a Term

gccasionally communicating with other ensembles. This re-
alization of multi-grain concurrency yields high performance
without sacrificing programmability. Our simulations of the
REM architecture at various levels of detail have been ex-
tremely encouraging. Our companion paper on REM archti-
tecture [16] gives much more detail.

The RRM is intended as a gensral purpose computational
engine, and its fexibility is one of its strong peints. But,
like any machine, it is more auitable for some applications
than for others, Certainly, symbolic computations are very
suitable, especially when there iz much parallelism. Hard-
ware simulation falls well within this class; natural langnage
procezsing, “intelligent” databases, theorem proving, and ex-
pert systems are other examples. Originally, we thonght the
ERM would not be especially impressive for numerical comn-
putatien, but recent ressarch has shown that certain redun-
dant representation data structures for numbers can very
efficiently exploit ERM capabilities, for example, with arbi-
trary precision arithmetic [22].

2 Concurrent Term Rewriting

In the concurrent term rewriting model of computation,
data are terms, constructed from a given set of operation
and constant symbols, and programa are sets of equations
that are interpreted as left-to-right rewrite rules. The left-
and right-hand sides of an equation are both terms com-
structed from variables as well as operation symbels and
constants. A variable can be instantiated with any term of
appropriate sort, and a set of instantiations for variables is
called a substitution,

Term rewriting (or reduction) has two phases: first,
matehing, which finds a substitution, called a match, that
¥ields a subterm of the given term when applied to the left-
hand side of the rule; and second replacing that subterm
by the corresponding substitution instance of the righthand
side of the rule. For example, matching the lefthand side of
the conditional rewrite rule (from a program for Fibonacei
numbers)

(+) fibo(W) = fibo(N-1) + fibo(N-2) if 2 <= N
to fibe{@) in the term (fibo(B) + f£ibo(5)) + 0 (which
is represented by the tree shown in Figure 2) succesds with
the variable ¥instantiated to the constant 8, Since the condi-
tion 2 <= @ i3 satisfied, the subterm where the match cccurs
(called the redex, which is £ibo(8) in this case) is replaced
by the corresponding substitution instance of the righthand
gide. In this case, the original term is rewritten to

({fiba(B-1) + fibo(B-2)) + fibo(E)) + O .

Rewriting at only one location at a time is called sequen-
tlal term rewriting. If the rewrite rule (+) had been ap-
plied to fibo(B) instead, ane step of sequential rewriting

N U

tibo iTw Tibo fibe

Figure 3: Result of Some Concurrent Rewriting

would have yielded

(fibo(6) + (fibo(6-1) + Fiba(5-2))) + O
but the rule {(*) could also have been applied simultanecusly
to beth fibo(6) and fibo(B), yielding

({fibo(6-1) + fibo(B-2)) + (fibe(5-1) +

fibo(5-21)) + O
in just one skep. This is called paralle]l term rewriting,
where just one rule is applied several places at once, and it
ia what a single Rewrite Ensemble realizes. More generally,
true comcurrent term rewriting allows the application of
several different rules at several different sites at ance; this
is what a multi-ensemble REM reatizes. For example, first
applying the rule (+), and then concurrently applying both
therule + 0 -> W and a rule for subtracting 1, transforms
the original tree into the tree shown in Figure 3, in two steps
of concurrent rewriting.

It is worth remarking that with concurrent term rewriting,
the number of steps required to compute £ib{n) with the
rule (#) ig linear in n, whereas it is exponential for sequen-
tial rewriting. This simple example illustrates that concur-
rency i inherent in concurrent term rewriting, and that no
explicit concurrency constructs are required at the language
level te achieve it or to describe it. However, sometimes a
clever choice of data structure or of rewrite rules is needed
to achieve optimal performance.

[7] and [5] show that a certain second order equational
logic is a natural extension of standard first order equational
logic. It is exciting that there is a corresponding natural ex-
tension of term rewriting, called extended rewriting, that
can be realized on the RREM just as easily and efficiently as
standard rewriting. This is the most significant new idea in
this paper, since extended rewriting has important applica-
tions to implementing object oriented programming (Section
4.2) and unification {Section 5.2). The idea iz simply to allow
variables that can match operation symbals. For example,

o{X{a(a),b(B)) D} = X{alh + D) ,b{(B + D}}
is similar to a rule in Section 4.2, with ¥ matching operation
symbols of appropriate anty, with A B, DI matching subtrees-
as usual, and with a,b unary operation symhbols. Note that
this is not the most general form of second order rewriting,
since (as far as we know) only special cases can be imple-
mented very efficiently in VLEL

Two additicnal topics deserve mention. The first is shar-
ing, which permits & common substructure of two or more
given structures to be ahared between them, rather than re-
quiring that it be duplicated. This leads to dag's [directed
acyclic graphs) rather than just trees. The second topic is
evalnation strategies, which are annotations that impose
restrictions on concurrent execution; these can be used to
improve the performance of parallel computations. Under
relatively mild assumptions, such strategies do not change

the semantics of functional computations. However, for ap-
plications where concurrency is essential, evaluation atrate-
gies can be used for concurency control. For example, some
further extensions to this concept support aystems program-

ming (9.

3 Functional Programming

Thia section gives a brief overview of the OBJ functicnal
programming language, and then indicatez how it ia imple-
mented on the REM.

3.1 OBJ

OBJ [14,2,3] ia a declarative functional programming lan-
guage with semantics based upon equational fopic. Tt is
well known that initial algebra semantics is correctly imple-
mented by term rewriting under cerbain simple assumptions
(this was first proved in [6]), and [6] shows that concurrent
term rewriting is also correct under the same assumptions.
OBEJ has no explicit constructs for creating or synchroniz-
ing parallel processes. Rather, the parallelism of an OBJ
program is inhereat in the program itself. OBJ was also
designed to directly embody varions modern software engi-
neering techniquea, rather than provide them indirectly in
an associated environment having separate conventions and
notations. These features include:

1. User-definable abstract data types, not limited to
constructors, as in most functional languages.

2. Parameterized programming, to support software
rense and wide spectrum integration of design, docu-
mentation, rapid prototyping, and specification, with

« powerful “tunable™ generde modules that go far be-
voud Ada’s generica or mere functional composi-
tion, and are powerful enough to give the power of
higher order programming without its difficulties
in understandability and verification [5],

» theories, which describe semantic as well as syntac-
tic properties of modules and module interfaces,

wiews, which assert semantic properties of modules,
and

« module expresstons, which support programming-
in-the-large, by describing how to build complex
subsystems from previously defined modules, and
then actually build them when evaluated.

3. Subsorts, which support multiple inheritance, excep-
tion handling, partial functions, and operation overload-
ing in an elegant way.

4. Pattern matching modelo equations, including
the associative, commutative, and identity laws, which
greatly increases the power of matching, and hence the
expressiveness of the language.

5. Module hierarchies, whereby old modules may ba im-
ported into new modules.

6. Evaluation strategies, which avoid enslavement to
any fixed evaluation strategy, such as sager or lazy, and
thus allow greater efficiency in both {ime and space.

631

obj FIBD ie protecting NAT

op fibo : Hat -> Hat .

var H : Hat .

cq fibo(N) = N if N < 2 .

eq fibo(W) = fibo(W - 1} +
fibo(W - 2) if 2 <= W .

enda

Figure 4: Fibonacci Code in OBJ

| token | lpir | rptr | flags |

Figure 5: The Logical Structure of a Cell

7. Very simple denotational semantica, given by the
initial algebra of the equations in a program.

OBJ has been rather extensively studied from both theo-
retical and practical viewpoints [14,2,3,3], and there are now
several implementaticns besides OBJ2 at SRI International,
including one from the Washington State University, three
in Great Britain, cne in Italy, and one in Japan. The British
project at UMIST (University of Manchester Institute of Sci-
ence and Technology) was supported by Alvey, and involved
a rather extensive set of experiments, which clearly demon-
strated the value of OBJ for practical software engineering
applications; a version of UMIST-OBJ is now available as a
commercial product in Britain, and another is being devel-
oped by Hewlett-Packard in Brisiol, England.

3.2 A Simple Example

We use the simple program for Fibonacei numbers given
in Figpure 4 to illustrate some basic features of OBJ. The
most basic OBJ entity is the object, a modale encapsulat-
ing executable code. The keywords obj ... endo delimit
the text of an chject. Immediately after the initial keyword
obj comes the object name, in this case FIBD; then comes
& declaration indicating that the built-in cbject HAT is im-
ported. This is followed by declarations for the new socts of
data (in this case there are none) and the new operations (in
this case, fibo), with information about the sorts of argu-
ments and results (here, both are Nat). Finally, a variable
of sort Hat ia declared, and two equations are given; the
keyword cq indicates that thess are conditional equations
[unconditional equations use the keyword eq). < is the “less
than™ predicate, and <= is the "less than or equal” predi-
cate; theze are imported from WAT slong with the additicn
and subtraction operations.

3.3 Implementation on the REM

Before describing how to implement OBJ on the RRM, we
need more information about the RRM design. The REM
has been designed Aierarchically, that is, as a series of mod-
els, each more concrete than the one above. The highest
levels are actually semantic rather than architectural; for
OBJ, these models are equational logic and term rewriting,
the former providing a denotational semantics, and the latter
an operaticnal semantics. We now discuss the most abstract
architectural model for the RRM, the cell machine, con-
sisting of an arbitrary number of cells, each with three major

i]_—}—"iu [——]
L+ lil—l—-—-lﬁbolil--"'“i
i [—1—1

L [[—] s

Figure & The Cell Representation of a Term

obj FIED is =ort Mat .
op O @ -> Hat .
op & : Nat =-> Nat .
op _*_ : Nat Nat -> Nat .
op fibo : Kat -»> Nat .
wvars N M : Hat .
eq 0+ H=s)N,
eq s(M) + N = a(M + H).
eq fibe(0) = 0 .
eq fibe(s(0)) = a(0} .
eq Tibele(s(N))) = fiba(s{N}) + fiba(H) .
ando

Figure 7: Peano Fibonacei Code in OB

registers and an arbitrary number of “ags,” which can be
“zet” or “unset” (i.e., *up® or “down"}. The token regis-
ter stores the “content™ of a cell, while its left and right
pointer registers each give the locaticn of ansther cell {or
else are empty)!. The flags are used to store local status
information during matching and rewriting. Figure 5 shows
the logical structure of a cell; of course, the physical struc-
ture is more complex, but our subsequent diagrama actually
gimplify further and omit the flags. This model azsumes that
each cell can communicate directly with any other cefl; [16]
explains how the actual RRM realizes the same logical power
using only local connectiviky. ’

It is evident how to represent a binary tree [or dag) in
such a cell machine; for example, Figure 6 shows the tree
of Figure 2. We now consider how to implement rewriting
with SIMD streams of micreinstructions that are broadcast
simultaneously to all cells from the central controller. The
following are some typical microinstructions: set a certain
flag if the token has a certain value; fetch a token (or pointer)
from ancther cell whose location is known; and set the token
to a certain value if a certain flag is set. In this model, every
instroction is interpreted and (if applicable) executed in each
cell using only information that is locel to that cell.

A given rewrite rule is implemented by first identifying
instances of its lefthand side in & matching phaze, and
then replacing each matched pattern by the corresponding
righthand side. Although arithmetic for the natural numbers
is provided by the REM hardware, the following discussion
will use a basic Peano representation, with constructors the
constant O and the unary successor operation g, as shown in
Figure 7. Then the rewrite rule

fibo(a(a(N))) = fiba(a(M)) + fiba(N)
fram Figure 7 can be implemented by firat identifying each
cell that contains the tokén fibe, and then checking that

iAn neary source level operation symbels is translated into n — 2
bimary operations for m > 2, 80 that binary eells are sufBelsnt.

the cell indicated by its left pointer containg a successor that
points to another successor (in practice, this check could be
done bottem-up).

Opee the instances of the pattern #ibe(a(a(x))) are iden-
tified, then replacement can begin; for example, we may re-
place the token fibo al the root of the pattern by +, replace
ita left pointer by a pointer to its a(x) cell, and set its right
pointer to the x cell. See Figure 8. Notice that there is
now one less pointer to the first & cell, so that it should
be collected 2a garbage if there are no other pointers to it.
Aleo notice that a dag structure has been created from what
might previously have been just a tree structure. The follow-
ing eopy rule expresses an important restriction on modifying
cells during term rewriting:

If there iz more than cme active pointer to a cell,
then it cannot be modified, and must instead be
copied, unless it is the root of the redes.

Many questions might occur to the reader whe has fol-
lowed this discussion closely. In general, these fall into one
of the following classes:

1. Architectural guestions, such as “How to realize ar-
bitrary logical connections between cells that are only
locally connected physically™ or "How are the microin-
structions implemented? Such questions are discussed
in [18].

2. Model of computatiom questions, such as “What
happens if two instances of the same rule want to modify
the same cell?™ or “What happens if more than one
ensemble must cooperate on a rewrite?™ Such guestions
are anewered in [9],

#. Detailed programming questions, such as “How to
compute fibe with optimal efficiency on the RRMT
Some such questicns are answered in [20], while others
must be deferred to a foturae paper.

4 Object Oriented Programming

The recent history of programming langeages can be seen
a3 an attempt to obtain the advantages of imperative pro-
gramming without its disadvantages, while adding new fea-
tures to encourage better programming styles and better sup-
port for programming-in-the-large, program maintenanca,
etc. A major problem with traditional imperative program-
ming style is its obeessive and obscure use of globally shared
structures, particularly global variables; this not only makes
programs difficult to understand and maintain, but is also
z particular disadvantage for distributed computing, since
global variables cannot reflect and exploit distributed mem-
ory. In our view, the essence of object oriented programming
is not inheritance (multiple or otherwize), nor i= it message
passing (which is after all just a metaphor for procedure call-
ing), but rather it is the organization of memory into local
persistent objects, as opposed to a single global store. Such
& programming style makea programs easier to understand
and to modify, as well as more appropriate for distributed
camputing. It is significant that object oriented program-
ming arese in a language designed for simulation, so that
its concepts are motivated by the physical world, with its
natural intuitions of hierarchical and distributed structure.

633

(5|] G [—lm]]
* I |
: | | [, I—1 | .14 11
[|
i *,.-"" >

S

Figure 8: Rewriting & Cell Representation

4.1 FOOPS

FOOPS [13] was designed to be a simple, yet expressive and
efficient general purpose chject oriented language that em-
bodies the various modern software engineering techniques
developed for OBJ. We chose to combine object oriented
programming with OBJ-style functional pregramming rather
than with imperative programming, because we wanted to
reatrict featurea that change memaory to methods that only
update local properties of cbjects. By contrast, Common
Loops builda on Lisp, which has many imperative features
with global side effects, such as setq, rplaca, and their ilk,
that encourage an undisciplined programming style.

In FOOPS, objects, abstract data types, methods and at-
tributes are all defined in a declarative functional style. This
gives FOOPS a simple syntax and semantics, and makes it
comparatively easy to read, write and learn, FOOPS is also
relatively easy to reason about, sinee it is bassd on a formal
logical system; indeed, [13] gives what seems to be the first
ever rigorous semantics for object oriented programming.
Moreover, we have designed a graphical programming inter-
face with which the user can directly manipulate icona that
represent objecta, using & mouse; this leads to a program-
ming style that is almost “physical® in its intuitive impact
[-l], . .

OBJ is a proper sublanguage of FOOPS, used to define
the abstract data types that provide values and the fune-
tions that manipulate these values, [n addition, FOOPS
allows declarations for clasaes, attributes and methods;
for added clarity, classes and methods are written in italics,
and keywords are underlined. Each ohject of a given clasa
has a unique namse, and also has values for certain attributes;
these valuea are usually from abstract data types, but may
also be from other classes (|13] gives details of FOOPS’ pow-
erful object-valued attribute facility). FOOPS distinguishes
between ok axioms and error axioms, which respectively de-
seribe normal and excepticnal behavior; the basis for this
distinction in crder sorted algebra is given in [13].

We illustrate FOOPS with the following simple module
for bank aceounts. Objects in this example are bank ac-
eounts with two attributes., The first, bal gives the balance
of an account as & Money value, assuming that a representa-
tion for money (with a positive or negative sign) has already
been given in the module BONEY, and that the sort Money
has a subsort Pmoney for positive amounts of money. The
second attribute hist is a history of the transactions per-
formed on the account since its creation, represented as a
list of money amounts. This list data type is imported into
the ACCT module by applying the generic LIST module to
the data sort Money and renaming its sort List to Hist.
Two methods can modify accounts, eredit and debit, with
the cffect of incresing or decreasing the balance, and of ap-

pending the corresponding amount {with appropriate sign)
to the history list. There are also error axioms to handle
overdraw exceptions.

pnod ACCT is class Aect
protecting LIST[Momeyl=*(sort List to Hist)
attrae bal : Acct -> Money
hist : Acel -> Hist
error overdraw : Money -> H:msr]r
nethods eredit, debit : Acet PMoney -> Acef
bal(new{4)) = 0 .
hist{new(4)) = nil .
bal(eredit(A,M)) = bal(d) + M .
hist(eredit(A,M)) = applhist(A) M) .
bal (debif(A,M}) = bal(d) - M if bal(h) <=M .
hist(debit(A,M)) = applhist(4),-M)
if bal(h) <= N .
SXr-axions
bal(debt(A,M)) = overdraw(M) if bal(A) < M .
hist{debit(4 M))= app(hist{A) ,overdraw(¥)]
if bal(A) < M .
endo ACCT

The first two axioms can actually be omitted by invoking
the FOOPS *principal constant” convention, which saya that
the initial value of an attribute iz the “principal® constant
of its abstract data type, if there is one.

4.2 Implementation on the RRM

We now discuss the implementation of FOOPS objects, at-
tributes and methods by (extended) rewrite rules, using the
above bank account example. An object, such as Jehnsen-
Acct, is internally represented as a term

Johnson-Acet(bal: (500),

hist: {200 -100 300 -100 2001

with top cperation symbol the name of the object, and with
as many subterms as atiributes. For an attribute a the cor-
responding subterm i3 of the form a: ¢ with ¢: a unary
operation symbel having t as its argument. In general, am
object O in a class with attributes ay, ..., an has the form

Ofax: {t1); s 8w {a))
and the value a;{0) of the attribute a; for an object O ia
obtained by applying the rewrite rule

0:(O(as: (1), -t (2a))) = 5.
For example, this gives bal{Johnson-Acct) = BOO for an
account in the state described above.

Method application iz only slightly more complex. The
axioms for a FOOPS method declare the efects on each of
the ohiect’s attributes®. For example, the axiom

3 Although this paper only dlscusaes basiz methods whode axloma have

634

bal{ecredit{A,M}) = bal(i) + M
declares that the new balance is the old balance plus the
amount being credited. In general, a method m with axioms
of the form

u.[m[ﬂ, ﬂ} L ‘1{“1 {G}h -1--"&[‘:’}! ﬂ.}
translates into a single rewrite rule of the form

m{x[al: (=1}, oot (2a)), 0=

X[“I: {tl [Iir v5s3 Ey !_ﬂ}- eny gl I.'In[:lt veny Ty m]}*

This rule is second order, involving a variable X that ranges
over the operation saymbaols that correspond to the names of
the objects in the given class, For the credit method, the
corresponding rewrite rule is)

eredit(X(bal: (B) ,hist: (L)), M) = X(bal:(B + M),

hiet: (app(L,M))),

Iii is forbunate that the same style of broadcasting microin-
structions to RRM cells that is used for ardinery first order
rewriting will also implement this restricted form of second
order rewriting. Thus, it is straightforward to implement
FOOPS or the RRM. The following points summarize the
differences between implementing objects and implementing
values:

1. Objects persist, and can only be destroyed by appli-
cation of & delete command.

2, Objects are locked for method application, to en-
sure object integrity. This is realized by allowing only
one match attempt to mreceed when several instances of
a method refer to the same object. [There is no prob-
lem when instances of differant methods refer to the
same object, because the RRM executes in SIMD mode
locally.)

3. Copying of ohjects is forbidden, to ensure ochject
uniqueness,

It is remarkable that these restrictions actually simplify
ordinary term rewriting; for example, the third condition
says that we don's need to enforce the “copy rule™ of Section
8.2 for ohjects. To enhance efficiency, each object may be
kept in a fixed location, with a global addreas that includes
the ensemble and the specific cell where the (root of the) ob-
ject resides; such an address can also be used as the internal
name of the object. Also, sll ohjects of the same class should
be kept together in cne or more ensembles which store the
rules for the methods and attributes of the corresponding
class, For the purposes of implementation on the RRM, im-
perative programming can be considered & degenerate case
of ohject oriented programming.

5 Relational Programming

It iz widely recognized that the relational paradigm is espe-
cially suitable for proklems that involve search and for dedue-
tion; typical application areas are natural language process-
ing and expert systems. Since pure Horn clause logic is not
powerful enough to support truly practical programming, the
RRM project hias chosen fo investigate more powerful logics,
rather than to graft extralogical features into Horn clanse
syntax. The results of our explorations include designe for
tihe languagea Eqlog and FOOPlog and some initial ideas on
how to implement them, as discussed below.

the form stated, scioms for so-called derived methods may nvelve other
methods in thelr righthand siden [13].

5.1 Eqlog

Eqlog combines the functional and relational programming
paradigms, and also providea the same parameterization and
wide spectrum capahilities as OBJ and FOOPS. Like these
languages, BEqlog is based on a rigorous order sorted logic
that provides multiple inheritance and a precise initial mode]
semantics. Like FOOPS, Eqlog is a proper extension of
OBJ. However, instead of adding classes, methods, and so
on, Eqlog adds cnly one basic thing to the syntax of OBJ,
namely predicafes. To achieve ssmantic consistency, equality
ia now regarded as a rather special predicate that is always
interpreted in models as actual identity. The logic for this is
quite well known; it is Horn clanse logic with equality, and
there are rules of deduction with completeness and initiality
theorems [12). In this regard, the contribution of our eriginal
{1984) Egleg paper has been rather widely misinterpreted:
the main point was not so much the suggestion to use nar-
rowing in the operational semantics of Eqleg, but rather the
suggestion to use the initial model semantics of Horn clanse
logic with equality as a criterion for the correctness of any
proposed implementation, and to wse initislity alse for the
semantics of built in types (Le., for what iz now called Con-
straint Logic Programming), as further developed in [1Z].
From this viewpoint, the narrowing algorithm merely pro-
vides an existence proof that certain classes of programs can
be implernented. The problem of finding an efficient imple-
mentation for some sufficiently rich subelass of Eqlog pro-
grams remains the subject of much current research. How-
ever, the initial model semantics of Horn clanse logic with
equality remains the right criferion for correctness of pro-
posed algorithms, For practical porposes, one might choose
to implement Eqlog with the restiction that only syntactic
equality between terms involving constructors is allowed in
Horn clauses and in queries invelving predicates, but with
arbitrary user definable equations for defining functions and
doing functional computation; such an implementation could
also provide powerful built in types, making it a modular
Constraint Logic Programrming Language. Of course, the
abstract data types defined by constructors can be sesn as
another built in type.

The operational semanties of Eqlog divides naturally into
two algorithms, one for solving systems of equations, and
the cther for searching. The first algorithm generalizes stan-
dard, syntactic unification, the extreme case being wniversal
or semantic unification, while the second differa little from
the nsual Proleg-style implementation of search for SLD-
resolution, except that it exploits the opportunities for con-
currency which the RRM provides. These algorithms are
discussed in Sections 5.2 and 5.3 below, respectively.

5.2 TUnification

Unifieation and term rewriting are closely related; in par-
ticular, the matching phase of rewriting i= a special case of
unification. What may be more surprising is that unifica-
tion can be naturally implemented by rewriting, so as ta
exploit parallelism in a natural way. As in the Martelli-
Montanari unification algorithm [18], we represent both uni-
fication problems and their solutions as sets of equations,
and we give rules that transform the former into the latter®;

*Herbrand® original work en unification can alio be seen as an al-
gorithm of kind.

in fact, the solutions are reduced forma under the given rulea.
This subsection illustrates the approach with a very simple
algorithm without the oceur check. Some other unification
algorithmas are briefly discuased at the end of the subsection.

We can consider an equation between ferms # and # to be
another term ¢ = ¢/, with the binary infix operation = as-
surmed commutative®. Next, we can group several equations
together into a syetem of equations, represented by a term
of the form

=t oat,=0)

Then solving a system of equations corresponds to evaluating
a term of the form :

solvefey =t} A .. A ta=11}
using the rewrite rule

solve{ L} = {elira(L)}
where elim is an auxiliary operator for variable elimination
whoze meaning is defined below. Our rewrite rules for unifi-
cafion use associative pattern matching on lists of equations
to ease the exposition, and sometimea leave the sorts of the
varizbles implicit, for example, L above ranges over lists of
equations, and the variables I, I' below will range over iden-
tifiers, of sort Id.

We firat give rulea for “decomposing® equations, using the
power of second order rewriting. Assume that each operator
name has a fixed arity (zero for constants) and that arities
are bounded by a small number {although these azsumptions
are realistic, they are used here only fo simplify the exposi-
tmn} Then the decomposition rules are

x[mll ---rz:l] Ex{ml'"l?n] = E‘l = !J':I.} A

(20 = 1)

XA =Y =fail f X £V,
where the variables X and ¥ are second order and match
operation symbols, and where fail is a constant obeying the
rule

{L A Jail A L'} = {fail}.

Before explaining the rules for variable elimination, we
briefly discuss the operation of replacing a variable by a term.

We regard replacement as a ternary operation let [be ¢ in &'
with [an identifier and ¢ and #' terms. Then the replacement
rules are

let ThetinI' =4f {I = P} then t else I' fi.

let FBetin X(zy, .y Za) =

X{let I betin zy,...,let I betin z,).
where == denotes syntactic identity. Replacement extends
to equations (by applying the replacement to both sides) and
to lists of equations in an obvious way., New the variable
eliminalion rules are

elim(nil) = nil.

elim(fail) = fail.

{L A elim(L' & (T=t) A L")} =

if (I==1)then {L n elim(L' » L")} else

{(I=¢) A (let Ibetin L) A

elim(let I betin (L' A I"))} fi.
Finally, to aveid trivial equations in the solved form, we add
the equation

{LAa(I=a}y={L s L'}

Other unifieation algorithms can be implemented on the

4Commutative operations can be implemented on the RRM without
any special difficulty.

635

ERM with similar techniques. In particular, the ocour check
(which Eqlog needs) can easily be added to the above unifi-
cation algorithm®. Eqlog also needs order-sorted unification,
which can actually be significantly more efficdent than un-
sorted unification, due to earlier failure detection. A quasi-
linear arder-sorted Martelli-Montanari style unification al-
gorithm is given in [18]. Eqlog also needs unification mod-
ulo equations. The narrowing algorithm [15] ehows that
this is possible, but is known to be inefficient. However,
the RRM's parallelism can be effectively exploited for this
problem, since narrowing combines rewriting and unifica-
tion. The wark of Martelli ef al, [17] treating narrowing as
a transformation of a set of equations seems suggestive in
this regard.

5.3 Search

Searching for sclutions te an Eqlog query should exploit
REM concurrency to explore many parts of the search space
in paraliel. Selving a given query @ for a particular Eglog
program can be conceptualized functionally rather than non-
deterministically. To find the firsl n solutions of the query
Q we reduce the term show Q) upto n to a =et of substitu-
tions, represented as a digjunction #; v 83 v ...V 8. One
approach to implementing Eqlog in the REM may be based
up on idess similar to those of J.A, Fobinson [21] and K.
Berkling [1]. However, our context is broader since it in-
clodes Horn clause logic with equality, and our functicnal
basis is equational logic rather than lambda ealeulus. The
key observations are:

1. A sentence of the form '#E'Vﬂ-fd{a?}l += B(&, 7)) is logically
equivalent to one of the form VF#{A(Z) <= 37B(7, 7)).

2. In the initial {or Herbrand) model Ip defined by a set C
of Hern clauses (possibly involving equality) [10,12), if
a predicate symbal P is defined by Horn clanses of the
form

P(t:(57)) <= Bu(#1, §i), ... P(a(25)) <= Bal5,)
where the B;'s are conjunctions of positive atoms, then
Ie £ P(2) & ((£=t1(#) A i Bals, 51)) v ..V
(£= ta() A n Bal 5, 10)))
where £ = #{7) is compact notation for a conjunction of
equations equating the first variable with the first term,
the second with the second, etc.

3. Since the < symbol in the last formula ean be inter-
preted as equality of terms, we can view such a formula
as a rewrite rule for SLD resclution in Horn clause logic
with equality.

For example, a program to compute the transitive closure
T'C of & binary relation R having clauses
TC[x,y) + Rz, v)
TO(z,y) 4= TC(z, 2} ATC(z2,y)
is transformed into a functional program involving the
rewrite rule®

BTt might even be peasible to perform such a check "by need® ao that,
sy, when exploring a search tree the cost is only incurred on successful
patha,

EThis rule 2cts in a sense like a closure; its implementation ahould
create new instsnces of the existentially quantified wariables for each
rowrite. It can thus be implemented a8 a (special kind of) obfect, in the
sense of Bection 4.1,

636

ecpand(TC(z,¥)) = Rz, ¥) v L2(TC(z, z) A TC(=,4))
where the meaning of Lthe function expand is clarified below.
Rewrite rules like the above for T'C' produce complex formu-
los built up from systems of equations and atomic formulas
like R(z,v), by repeated application of v, A and 3. The
ariginal expression show @ upto n is reduced to a disjune-
tion of n solutions, i.e., to n systems of equations in solved
form, each solving the query @. Sclutions are extracted one
by one using the rule

(1) show 5 v F upto n = 5V show F uplo p{n)
where p is the predecessor function, 5 ranges over systems
of equations, and F over formulas. In general, an expres-
gion corresponding to a logical formula ia reduced by certain
anxiliary rules {in addition to those already discussed for
unification), including:

L FA(F'VE") = (FaF)v(FaP
(distributivity)

2 A{En(z=t)n B}y ={EA EY}
{existential quantifier elimination)

3. {E}A{E'} = solve[E A E'}
(solving the conjunction of two systema of equations)

The parallel model of computation underlying the REM sup-
porta search with “or” parallelism so that the logical com-
pleteness of Eglog is not sacrificed, However, the exponential
explosion of the search tree must be controlled, even when
ample paralle! resources are available. For this purpose, the
ezpand function expands an atomic formula Pt;, ..., 8,) into
a disjunction of formulas, one for each clause having P in its
head, as in the TC example above, This permits a lazy
breadth first strategy, exploring deeper levels of the search
tree only when no more solutions are available at higher lev-
els; then, the rule (1) above does not match, and further
expansion is initiated by rules such as;

1. show Fv F'upton =
show expand(F} v ezpand(F') uptan,

2. show F o F'upton=
show expand(F) A expand(F') upto n.

3. show J= F upte n = show Jz expand(F) upto n.

4. show Py, ...,In) upto n =
show ezpand{ F(ly, ...,ta)) upto n.

5. expand(F v F') = expand(F) V expand(F'}.
6. expand(F A F') = expand(F) A expand{F').

7. ezpand(3z F) = 3z expand(F).

This seems a reasonable and simple wey to explore the search
tree, but many other strategies are possible. The REM sup-
ports very flexible and general evaluation strategies [9] that
can be applied to this problem. Also, creating an object
with twe attributes, one the solutions already found, and
the other for the remaining search tree, and with methods
for requesting additional solutiona would support very nat-
ural user interactions.

i.4 FOOPlog

There is not space here for more than a few remarks about
FOOPlog [13], which combines all three major emerging pro-
gramming paradigms, the functicnal, object oriented, and
relational. It appears that techmiques similar to those de-

scribed above will support the efficient implementation of

FOOPIog on the RRM, Moreover, we belicve that FOOPlog
is an especially suitable language for knowledge processing,
and in particular, for natural language processing [13,11).

Acknowledgements

Mr. Timothy Winkler deserves special thanks for extensive
discussione and many very valuable suggestions on the ideas
presented in this paper, especially on the implementation of
Eqlog, and also for help with the figures. We also thank
the other members of the Rewrite Rule Machine Project,
Dr. Sany Leinwand, Prof. Hitoshi Aida and Prof. Ugo Mon-
tanari, with whom we have had extensive discussions of these
ideas, and the other members of the OBJ team, Dr. Ko-
kichi Futatsugi and Prof, Jean-Pierre Jouannaud, as well as
Drs. Claude and Héléne Kirchner and Mr. Aristide Megrelis.

References

[1] Klans Berkling. Epsilon-Reduction: dnother View of
Unification. Technical Report, Syracuse University,
1984,

[2] Kokichi Futatsugi, Joseph Goguen, Jean-Pierre Jouan-
naud, and José Meseguer., Principles of OBJZ. In Brian
Reid, editor, Proceedings of 18th ACM Symposium on
Principles of Programming Languages, pages 52-66, As-
sociation for Computing Machinery, 1985.

[4] Kokichi Futatsugi, Joseph Goguen, José Meseguer, and
Koji Okada, Parameterized programming in OBJ2.
In Robert Balzer, editor, Proceedings, Ninth Interna-
tional Conference on Software Engineering, pages 51—
80, IEEE Computer Society Press, March 1087,

[4] Joseph Goguen. Graphical programming by generic ex-
ample. In Steven Kartashev and Svetlana Kartashev,
edifors, Proceedings, Second International Supercom-
pubing Conference, Volume I, pages 209-216, Interna-
tional Supercomputing Institute, Ine. (St. Petersburg
FL), 1987.)

Joseph Gogeen. Higher-order functions considered un-
necessary for higher-order programming. In David
Turner, editor, Proceedings, Pniveristy of Texas Year
af Programming, Institute on Declarative Programming,
Addison-Wealey, 1988, To appear; preliminary version
as SRI Technical Report SRI-CSL-88-1, January 1988,

[5

Joseph Goguen, How to prove algebraic inductive hy-
potheses without induction: with applications to the
correctness of data type representations. In Wollgang
Bibel and Robert Kowalski, editors, Proceedings, Fifth
Conference on Automated Deduction, pages 356-373,
Bpringer-Verlag, 1980. Lecture Notes in Computer Sci-
ence, Volume 87,

&

[T] Joseph Goguen. OBJ as & thecrem prover, with appli-

: caticn to hardware verification. In V.P. Subramanyan,

editor, Proceedings.of Second Benff Herdware Verifico-

tion Workshop, Springer-Verlag, Computer Science Se-

rieg, o appear. Preliminary version is Technical Re-

port SRI-CSL-88-4, SRI International, Computer Sci-
ence Lab, April, 1988,

[8] Joseph Goguen. Parameterized programming. Transoe-
tions on Software Engineering, SE-10(5):528-543, Sep-
tember 1984,

|o

Joseph Goguen, Claude Kirchner, and José Meseguer.
Concurrent term rewriting a8 a model of computation.
In Robert Heller and Joseph Fasel, editors, Proceedings,
Groph Redection Workshop, pages 53-03, Springer-
Yerlag, 1987, Lecture Notes in Computer Science, Yol-
ume 279,

[10] Joseph Goguen and José Meseguer. Fglog: equal-
ity, types, and generic modules for logic program-
ming. In Douglas DeGroot and Gary Lindstrom, ed-
itors, Legie Frogramming: Functions, Relations and
Equations, pages 295-363, Prentice-Hall, 1586. An ear-
lier version appears in Jeurnal of Logic Programiming,
Volume 1, Number 2, pages 179-210, September 1984,

[11] Joseph Geguen and José Meseguer. Logical Program-
ming for Situation Semantics. In Mack Gawron, David
Irael, José Meseguer, and Stanley Peters, editors,
Semantics of Natural and Computer Languages, MIT
Press, 1988, To appear.

[1Z] Joseph Goguen and José Meseguer. Models and equal-
ity for logical programming. In Hartmut Ehrig, Cior-
gio Levi, Robert Kowalski, and Ugo Montanari, editors,
Proceedings, 1987 TAPSOFT, pages 1-22, Springer-
Verlag, 1987, Lecture Notes in Computer Science, Val-
ume 250; also, Technical Repart CSLE-87-01, Center for
the Study of Language and Information, Stanford Uni-
versity, March 1987,

[13] Joseph Goguen and José Meseguer. Unifying object-
oriented and relational programming, with logical se-
mantics. In Broce Shriver and Peter Wegner, editors,
Research Directions in Olject-Oriented Programming,
pages 417477, MIT Press, 1987, Preliminary version
in SIGPLAN Notices, Volume 21, Number 10, pages
153-162, October 1988; alao, Technical Report CSLL-87-
63, Center for the Study of Language and Information,
Stanford University, March 1987,

637

(14] Joseph Goguen and Joseph Tarde. An introduction to
OBJ: a language for writing and testing software Spec-
ifications. In Marvin Zelkowitz, editor, Specification
of Reliable Software, pages 170-180, IEEE Press, 1979,
Reprinted in Software Specification Techniques, Nehan
Gehani and Andrew McGettrick, Eds., Addison-Wesley,
1985, pages 391-420,

[15] Jean-Marie Hullot. Canonical forms and unification, In
Proceedings, 5th Conference on Auntomated Deduetion,

pages 318-334, Springer-Verlag, 1580, Lecture Notes in
Cemputer Science, Volume 87,

[16] Sany Leinwand, Joseph Goguen, and Timothy Win-
kler. Cell and ensemble architecture.of the rewrite rule
machine. In Proceedings, Internolionsl Conference on
Fifth Generation Compuler Syatems, ICOT, 1588, To
appear.

[17] Alberto Martelli, C. Moiso, and G.F. Rossi, Lazy unifi-
cation algorithma for canonical rewrite sytems. In Mau-
rice Nivat and Hassan Ait-Kaci, editors, Resolution of
Eyguations in Algebraic Structures, Academic Press, to
appear 1988, Preliminary version in Proceddings, Col-
lequium on the Resolution of Equations in Algebraic
Structures, held in Lakewsay TX, May 1087,

(18] Alberto Martelli and Ugo Montanari. An efficient unifi-
cation algorithm., 4CM Transactions on Programming
Languages and Syatems, 4:258-282, 1983,

(18] José Meseguer, Joseph Goguen, and Gert Smolka.
Order-Serted Unification. Technical Report CSLI-87-
86, Center for the Study of Language and Information,
Stanford University, March 1987. To be submitted for
publication.

[20] Ugo Montanari and Joseph Goguen. Am Abstract
Machine for Fost Parcllel Matching of Linear Pat-
terna. Technical Report SRI-CSL-87-3, Computer Sci-
ence Lab, SRI International, May 1987,

[21] J. Alan Rebinsen. A ‘Fifth Ceneration’ Pragramming
System Bosed on o Highly Parallel Reduction Machine.
Technical Report, School of Computer and Information
Science, Syracuse University, 1984

[22] Timothy Winkler. Numerical Computation on the
RAEM. Technical Report, SRI International, Computer
Science Lab, 1088, To appear, Technical Memorandum

