PROCEEDINGS OF THE INTERMATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1988,
edited by [COT. € ICOT, 1988

703

Applications of a Canonical Form for Generalized
Linear Constraints

J.L. Lassez

IBM T.J. Watson Research Center

Abstract

Constraint methods are an important field
of research in Arlificial Inteltigence and Oper-
ptions Regearch. The integration of the con-
straint solving paradigm in logic programming
languages has raised a number of new issucs.
Forermost is the need for & nseful canonical form
for the representation of comstraints. I the
context of an extended class of linear arithmetic
copstraints we develop a nalueal canonical zap-
resentation and give procedures for compating
it. Important issues encounlered include noga-
tive constraints, the elimination of redundancy
and parallelism. Using the canonieal form, we
then address the problem of incremental con-
straint propagation.

1 Imntroduction

In [Jaffar and Lasscz] Jaffar and Lassez proposed a
formal framework for reasoning with and about con-
gtraints in the rule based context of logic programnming.
Within this framework, one can generate a class of
programming languages customized to deal with con-
straints over specific domains of computation. Exam-
ples include CLP(IL) by Jaffar and Michaylov [Jaffar
and Michaylov], which is designed for real arithmefic,
Colmeraner’s Prolog III which is designed for ralio-
nal linear arithmetic, CIL by Mukai [Mukai Joricnied
toward linguistic constraints and CAL by Aiba and
Sakai [Aiba and Sakai |which covers linear and non-
linear equality constraints over the complex numbers,

The technical results in the present paper will be
relevant to such languages and the motivations, aims
and methods may provide guidelines for other settings.

K. McAloon
CUNY Gradnate Center

Constraint selving also plays a major role in Artifi-
cial Intelligence work. Recent papers by Davis [Davis]
and Pearl [Pearl] provide further sources for current
work in this area and on connections between AL and
OR 'W'D!'k. c{}ﬂEIfIEI'hbl.ﬂ WDI']'I.' I'Iﬂﬁ H;ﬁl} IJI:}F_.]_'I.. dl:lnl: oIk thﬂ
design of programming languages to solve eonstraint
satisfaction problems [Borning], [Sussman and Steele).
The work of Dinchas and van Hentenryek [van Hen-
tenryck and Dinchas], on AL problem sclving in a
Logic Programming framework with constraints brings
several techniques together and has important appli-
cations in I'.'Jplﬁmtiuns Rescarch. Further interesting
work on parallel constraint solving is being carried ont
by Mizoguchi and his colleagues in the Intelligent Sys-
tems Lab al Tokyo Science University with applications
to qualitative reasoning and expert systems, There is
also a vast literature on mathematical programming,
Moreover, this fundamentally imporiant field is enr
rently the subject of dramatic developments ranging
from the work of Karmakar [Kormakar] and others on
interior point methods in Linear Programming to the
work on the complexity of the Theory of Real Closed
Fields by Ben-Or, Kozen, and Reif [Ben-Or of al] and
Kozen and Yap [Kozen and Yap]. To complete the pic-
ture, linear constraint solving has also beensed as tool
in programm verification work. Moreover, in this con-
text inequations as well as inequalities arise naturally
[Welson] and ihe constraint solving algorithms devel-
oped in this work are directly relevant to langnages
such as CLP(R) and Prolog IIL

It is clear that the design and usefnlness of lan-
guages from the CLT class will depend heavily on this
wealth of information from Mathematical Progeamming,
Operations Research and Ariificial Intelligence.

704

However, the critetia thet an arithmetic constraint
solver must satisly in order to perform effectively in an
Operations Research or Al context are not the same
a5 those that are required for a solver embedded in a
general purpose programming language. To use con-
siraints as a primitive data structure to represent ob.
Jjects in & programming lannguage is not the same prob-
lem as designing data structures to represent constraints
in an Al context. In short, designing languages to solve
constraint salisfaction problems or optimization prob-
lems is & fundamentally different issue from using the
constraint paradigm to design programming langnapges.

By way of example, a typical constraint solving al-
gorithm will take as input & set of constraints and a
function and preduce as ocutput the coordinates of a
point for which the function reaches an extremal valne
relative to an order or partial order. Bul in onr con-
text we are interested in programs thal reason abont
constraints as output as well as input: the clements
of our domain of computation are implicitly defined
as constraints. Problems of crucial importance for ns
such as the equivalence of sets of constraints do not
seem to have attracted considerable attention in Op-
erations Research or in Artificial Intelligence, althongh
the relevant mathematics are well understood, In this
respect, the ploneering work of Adler on equivalence of
linear programs is the exception [Adler]. So our first
reqitirement for a canonical form for sets of constraints
is to standardize output and to answer the equivalence
problem. However, going lurther, becanse of the e
quirements on & constraint solver for a CLT langnage,
we want more than & syntactic facility; for use in a gen-
eral purpose solver we would like the canonical form to
pléy a role similar to that of the meu in unification or
canonical solved forms in equation solving and to have
the requisite propertics of incrementality and efficiency.

The language of extended linear constraints is com-
prised of positive constraints which are equations az =
A and weak inequalities az < §. Here a denotes an
n-dimensional vector of real numbers, = denotes an a-
dimensional vector of variables, @ denotes a real num-
ber and juxtaposition denotes inner product.

A basic negafive constraint is a disjunction of in-
equations a;e $# 5,1 = l...n. Using DeMorgan’s Law
and matrix notation, a negative constraint can be writ-
ten {Ax = b} which denotes the set of points = which
lie in the complement of the sct defined by the equa-

tions Az = h. C-Dnjunr:f.iunﬁu‘l:‘nﬂgaﬁve constraints will
be written {d;=z = b}, j = 1,...,n. Conjunctions of
equality consiraints will be written in matrix notation
Ag = b and similarly conjunctions of weak ineqnality
constraints will be writlen Az < b,

We also admit strict inequality constraints ax < b
In matrix form conjunctions of strict inequality con-
straints are written 4z < b This is a form of hyhrid
constraint in that it can be redueed to the combined
positive and negative comstraints Az < b, {aiz = 4],
i=1,...,1n.)

Thus a set of pencralized linear consirainis consists
of positive constraints Ez = f and Az < b, negative
constraints {Cjz = d;}, and hybrid constraints Ge <
k.

By way of example, the constraints 2 > 0, z—y42 <
1z > 0y < I],-{_j;= 0,z = 0} define a wedge shaped
polytope with an edge and a facet removed.

We will define & notion of canonical form for sets
of extended linear constraints and describe algorithms
for computing the canonical form. These algorithms
yield efficient polynomial time algorithms for testing
the consistency of a set of generalized linear constraints
and for computing the canonical form. The prescnce
of negaltive constraints introduces new problems. The
point sets defined by the constraints are no longer con-
vex sets and so the methods of convex analysis and of
linear programming do not apply directly. Negative
constraints themselves are disjunefions of incgualitios
which enhances the expressive power of the eonsiraint
sets but which complicates the combinalories of the sit-
uation. The key to dealing with these problems is the
independence of negalive constrainis, a phenomenon
which is central to Logic Programming, see [Lasser and
McAloon |. In this paper we give the procedures for
computing the canonical form. In [Lasser and McAloon
|the mathematics necessary to verify the correctness of
our algorithms can be found. We also disenss possi-
ble appreaches to the implementation of the canenical
form algorithm and its uscfulness for dealing with prob-
lems such as incremental constraint propagation.

2 The Canonical
Form Algorithm

We reHuirE:Eume definitions. Suppose that Ez = f, 4=,
{C;z = d;} is a feasible set of generalized lincar con-
straints and that the positive constraints define a poly-
hedral set P; then a negative constraint {Cr = d} is
said to be relevani if {z : Cz = d} N P is not empty.
In other words, a negative constraint is relevant if it is
not already implied by the positive constraints.
Suppose that I is a polyhedral sel defined by a
system of positive constraints; a negabive constraint
{Crx =d} is said to be P-precise if {Cz = d} is rele-
vant and {z: Ce =d} = Aff(Pn{z:Cer=d}}. In
other words, a relevent negative constraint {Cz = d}
15 I:lrl:r_iﬁt: relative Lo the PuI]r].'uprIraI set P if the affine
space given as the complement of the negative con-
straint is equal to the affine closure of the intersection
of this complement with P. By abuse of language if the
positive constraints of a generalized system define the
polyhedral set P, then negative consiraints which are
FP-precise will be called precise with P left nnderstood,
A zet of linear equations

=0T ... 4 ﬂn_|tﬂ_ + [H]
¥m = OB+ o F BByt B

is said to be in solved form if the variables gy, .0 e
and 2y, ...,7, are all distinct, The variables i,..., U
are called. the eliminable- variables and the varialles
Eyyeony iy are called the perameters. By abuse of lan-
gonage, equality constraints Bz = § arc said to be in
solved form' il the matrix E is in row-echelon {or Gauss-
Jordan) form. Further, we will say that a negative
constraint {C'z = d} is in solved form if the equality
constraint {C'z = d} is given in solved form.

A set of generalized lincar constraints is in canoni-
cal form if it is non-redundant and consists of (1) a set
of equations in solved form with parameters = defining
the affine hull of the solution set {2) a set of inequal-
ity constraints Az < b which define a full dirnensional
polyhedral set F in the parameter space and {3) a sct
of P-precise negative constraints in solved form.

A system of generalized linear constraints in canon-
ical form is thus partitioned into three modules (E,1N)
where Eis a set of equality constenints, [is a sob of weak

105

inequality constraints and N is a set of negative con-
straints. What we shall develop is an algorithm that
maps generalized linear comstraints to triples of this
form in such a way that if two constraint sets define
ihe same point set then they are mapped to the same
triple (E,LN).

We consider an example. Consider the constrainis
in four variables z + #3 < @y, 3 b 23 € 10,z <
23,2y S Ty + g, 23 € 2 42,0 £ 35, {7y =0}, The
CanForm procedure will return

E={E| =ﬂ1;rg=$.|]-
I'={z, <10,2;— 22, <0,—z; < 0}
N={{ze =0,z =0}} °

The constraints thus define a bwo dimensional point
set, a triangle with a vertex removed.

In the definition of canonical from ne mention is
made of strict inequality constraints. As noted in the
introduction, each strict inequality consirainl e,z <
¢y can be replaced by the pair eyz < dy, opr = di}.
From the algorithmic point of view, we can supposc
that this transformation has been made thronghout;
we return to this point later and show how to restore
the strict inequality constraints at the end of the sim-
plification process.

In what follows we will use Linear Programming
and Ganssian Elimination procedures as part of deci-
sion algorithms. Hence, we require that arithmetical
operations be carried out in sufficient precision, The
necessary precision con be maintained within polyno-
mial time resource, see e.g. [Schrijver]. Note that this
problem does not arise in Prolog 111 or CHIP where
infinite precision arithmetic is nsed.

To start, for the important special case whete all the
constraints afe equality constraints, we have the Ganss-
Jordan procedure, denoted Galo{Ez = f), for com-
puting the equivalent solved form which is the canon-
ical form in this case. The next case is to determine
whether any of the weak fnequality consiraints in a
system are in fact implicit equalities. Determining
whether an equality a;z = & is implied by the con-
straints Az < b is a classic problem, c.g. [Luenherger)
and can be solved by means of & linear program. hMore
over, in this situation, the linear programs min{a;z :
Am £ b} can be run in parallel. The procedure AfiClo
to compute the affine closure will call upon linear pro-

706

gramming subroutines and we assume that these rou-
tines will determine feasibility of the given constraints
and return the optimum value of the ohjective funclion
if it exists and 400 or —oo if the objeclive funclion is
unbounded.

Procedure AffClo{Ax < b)
Input: 4z < b, a set of m posilive constraints
Output: Equoality constraints defining
Affl{z : Az < b}) in canonical form
Fari=1,...m
pardn
compute min{a;z 1 dr < b}
return INFEASIBLE if applicable
il opiimal value §; is returned set flag; =1
else set flag; =0
parend
Return Galol{gz = 8; : flog; = 1}).

As with the case of determining implicit equalities,
determining if an inequality constraint is redundant is o
classical problem in Linear Programming [Luenherger]
and can again be solved by means of a linear program.
Specifically, the constraint ayz < & is redundant in
the system Az < b if and only if the value returned by
the linear program mnz{a.m t ek S eyt < ﬂ,.}
is < 8,. Moreover, removing the redundant constraints
in the full dimensional case will lead to o system which
consists exactly of those constraints which define facets
of the polyhedral sct defined by the full eollection of
positive constraints. To facilitate our treatment of re-
dundaney, we shall need some definitions. A posi-
tive constraint is said to be frivial if it s of the [orm
€ = ¢y where ¢, ez are constants. We say that the con-
straint ;e < 3; is ayndactically redundant in the system
Az < bifit is trivial or il for some § # § the constraint
a;r < f; is a positive scalar multiple of o;z < 8. A
constraint is semantically redundant #f it is redundant
but not syntactically redundant. We note that elimi-
nating syntactic redundancy from a sct of constraints
can be done by steving or sorting and so there are offi-
cient sequential and parallel techniques for dving this.
In [Lassez and McAloon| there is an analysis of seman-
tically redundant conslraints into a finer classifiention
that is essential for verifying procedures which feature
highly decomposable parallelism. In fact this classifica-
tion i= central to the development and the correctness
of the canonical form algorithm.

These considerations lead to a nabural definition.
If the system of positive constraints Az < b defines a
full dimensional set, we say- tlie sysiem is incempress-
ible if for any system A'z < I which defines the same
polyhedral set, every constraint of Az < b or a posilive
gealar mmltiple of it appears in the system A'z < b,
We have a procedure for computing an equivalent in-
compressible system of positive constrainis in the full
dimensicnal case,

Procedure Inc(Az < &)
Input: Az < b, a feasible set of m positive
constraints which define a full
dimensional polyhedral set
Dutput: An equivalent incompressible system
Call a parallel sieve or sort routine
to remove syntactic redundancy
Fori=1,.,m
pardo
compute maz{a;z 1 a;z < by, § # i}
if value returned s < ; set flag, =1
else seb flag; =10
parend

Return {a;z < f : flag; = 0}).

Clearly, the procedure returns a system of non-
redundant consiraints. For correctness, it must also
be shown that the parallel elimination of semantically
redundant constraints yields a system equivaleaf to the
original one. This is done in [Lasser and MeAloon].

_As for the issue of redundancy and negative eon-
straints and the effect of the presence of negative con-
sirainte on redundancy among positive constraints and
vice-versa, the situation-can best be sommarized in
the following way: redundancy of positive constraints .
is independent of the presence of negative constraints
and redundancy of precise negative constraints can he
decided independently of the positive consiraiuts by
means of a parallel sicving procedure.

We now present a procedure for compnting the canon-
ical form in the general case.

Procedure CanForm(Ex = f, Az < b, Ciz = d;})
Input: Fo=fAdz <bCiz=d;,j=1,...,n
Output: An equivalent system in canonical form
Call AffClo[Ez = f, Az <) relurning

Affz = aff in canonical form;

eliminate varizbles throughout the
remaining constraints updating Az, Cijz = d;
Forj=1,.,n
pardo
If Cie = d; reduces to 0 = {l return INFEASIBLE
parend
Call Inc{Az < b) returning A'z < ¥
Forj=1,..,m
pardo
Call AfiClo(A'z < VF,C;z = d;) returning
Affz = aff;
parend
Sieve to eliminate redundancy among
the negative comstrainta
returning .ti_ff_;# = nf_f; :
Return Affz =aff, A'z <V, {Afflz = aff}

We have

Theorem 1 If fwo sels of constrainls define the same
point aet the procedure CanForm returna the same cqua-
tions to define the affine hull, the same inequality con-
siraints (zp to multiplication by positive scalars] and
the same aet uf u:guh'ﬂc constrainis,

At this point, if strict inequality constraints are to
be returned in the canonical form, let us note that a
strict inequality corresponds to a pair {ax < b, {cx = d})
where gz < b is a posilive_ weak inequality constraink
in the canonical form and {cz = d} s a negative con-
straint such that the vector e, d is a scalar multiple of
the vector a,b. This pair can then be replaced by the
strict inequality constraint az < b As is the use of lin-
ear programming and Gaussian elimination in the de-
cision procedures of the CanForm algorithm, here too
sufficient precision arithmetic is required. This vari-
ant on the canonical form algorithm is a natural one in
the context of symbolic processing of gencralized lin-
ear constraints and in the context of outpnt constraints
where strict inequality information can be significant.

If in the exampie sbove, the constraint 0 < = is
sharpened to 0 < 25, then after transforming this con-
siraint into the pair 0 < x4, [z; = 0}, the CanForm
procedure would return

E={z =0,25 = 24}
I= {E.ﬂ, 'E 1“,21—231 ": ﬂ,—ﬂg = “}

707
N = {{=z = 0}}

The negative constraint {2y = 0,4 = 0} has beon olim-
inated because it is mow redundant. Since the vector
{1,0,0) is a scalar multiple of (—1, 0,0} the constrainls
—zy = 0 and {::== IJ} can be replaced by the strict
inequality constraint —=y << 0.

3 Constraint Propagation and
Constraint Programming

We now consider applications of the canonical form al-
gorithm to constraint propagation. Linear arithmetic
constraints arise constanily in constraint programming
and Al situations, e.g. [Sussman and Steele], [Davis],
[Pearl]. When determining the solvability and/or the
solutions to a set of constraints the most nsual strat-
egy is to work forward in sn Incremental way by start-
ing with the ‘most constraining’ conditions and prop-
agating these constraints throughout the rest of the
computation. Typically a constraint snch as z = 0
is more constrainitig than a condition such as 2 = y
which is in turn more resirictive than = < y. In this
example & more constraining condition corresponds to
a set of smaller dimension in the solution space; the
successive sets are of dimension 0,1 and 2. As a bhy-
product the canonical form algorithm delermines the
dimension of the solution set - & 15 equal to the num-
ber of parameters of the system in canopical form -
and refurns a representation of the inequality and neg-
ative constraints in the smallest possible dimension. As
for the negative constraints, the canonical form returns
them in irredundant and precise form. By making the
negative constraints precise relative to the seb defined
by the positive constraints the negative constraints are
also reduced to their lowest dimension which enhances
their information content. This technigque also detects
when a wesk ineguality is in fact a strong incgnality
and when s negative condition reduces to excluding o
particular vertex or face of the polyhedral set in quos-
tion.

The canonical form method yiclds a ‘complelencss
theorem® in terms of the propagation of the cquality,
inequality and negative information contained in A sys-
tem & of generalized constraints.

708

Theorem 2 (Constraint Propagation Theorem)
Let 5 be g syslem of peneralized neer conafrainds with
cananical form (B, I,). Lel g be the elimineble vuri-
ables ‘and & the parameters of (E,I, N). Then we have
(1) Skay=tx if Fl=ay = ba
(8)Slaz<fiffTfar<p
(3)S{Cz=d} iff N = (Cz = d]

where {Cz = d} is a precise negative constraini,

The proof uses the arguments thal served to verify
the correctness of the CanForm algorithm.

One application to constraint prepagation of the
canonical form algorithm that motivates us dircetly is
its relevance to the constraint based logic program-
ming langnage CLP({R). When non-linear constraints
are introduced a delay mechanism is used to put consis.
tency testing on wait until forthcoming instantiations
of variables will make further parts of the constraint
set linear at which point the constraint solver can he
invoked, Thus il s important that maximnm informa-
tion from the linear constraints be propagated through
the non-linear constraints. What is to be aveided is
letting the system run on indefinitely or having it ont-
put a constraint system without providing a gnaran-
tee that it is solvable. By way of cxample, instead of
23>y sin(e=3)+(zxz),p = (z+rez)—18 as
output with no gnarantee that this svstem is solvable,
using the canonical form we would pet 2 = 3,5 = 0 ns
output.

Let us consider the compntation cost of maintaining
the canorical form. A number of possibilities shonld be
considered to allow cfficient implementations. That, is
implementations where either the overhead is negligi-
ble, or if it is not, it is compensated by the fact that
the added information obtained will help speed up the
remainder of the computalion. The most promising
solution is te nse parallelism in the way that has cs-
sentially been deseribed in the previons section. For
example, as all Inpits tested in parallel for solvability
and determination of the affine hull are very similar, we
can assume that we obtain at the same time the infor-
mation about solvability and about which inequalities
are implied equalities. If ihere are none we have not
incurred an overhead. If there are implicd equalilies,
we pay the price of putting them in canonical form,
but we may hope that this price will be offset by the
fact that these new equalitics will simplify and speed
up the remainder of the computation,

It is easy to find examples where the use of the
canonical form will lead to wery substantial gaing in
efficiency, following the previous discussion. However
it is also easy to find examples where it will be costly.
This wounld be the case, for example, if all systems of
constraints that we meet are already in canonical form!
Here we would pay for the overhead of brying to gen-
erate new equalities for instance, when none exists, Of
course at the end of the computation we will know that
we have a canonical form which is vseflul information.
But if for instance a lot of backtracking is involved the
overhead ean become prohibitive, and if the esmputa-
tion ends in failure, we have no added information to
compensate.

Incrementality is another crucial properly for con-
straint solvers used in programming langnages and in
applications which involve search and constraint prop-
agation. The canonical form that we have developed
here for generalized linear constraints has soveral ad-
vantages in Lhis regard that we discuss now. For exam-
ple, in contradistinction to unification and term mateh-

ing where the most-general-unifier progressively becomes
more and more complex, here the canonical form may
become far simpler as consbraints are added to the
gystem. To illustrate this, let us consider the provi-
ous example where the constraints in canonical form
are 2y = 0,25 = 24,2y < 10,2y — 22y € 0,—2; <
0,{{z2 = 0, 2, = 0}}; then if the constraint =y -+ =s =
30 is adjoined, the entire system now simplifies to 2, =
0,z = 20,23 = 10,24 = 10. .

To consider the case where a positive ineqguality
constraint er < § i3 introduced to the system, feasi-
bility must be tested. With simplex methods and with
interior point methods, feasibility will most naturally
be treated as an auxiliary lincar programming prob-
lem which will determine a vertex of the polyhedral
set defined by the constraints in the feasible case. IT
this verlex satisfies the strict inequalily ex < § or if
this vertex is non-degenerate, then festing for implicit
equality is immediate and docs not require an addi-
tional finear programming routine. Morcover, when a
new inequality constraint ez < § is adjoined to a sys-
tem in canonieal form, the following proposition shows
that if the new constraint s nod an implicit equality,
then there are ne implied inequalities in the new sys-
tem. Thus if the new inequalily constraint is consis-
tent and not an implicit inequality, the augmented sys-

tem is full dimensional and the canonical form can be
maintained by eliminating redundant constraints and
maintaining the negative constraints in precisc and ie-
redundant form. More importantly when a new in-
equality constraint proves to be an implicit cquality
of the augmented system, Lhen the theorem guaran-
tees that further checks for implicit cquality will prove
fruitful. This means that the original polyhedral solu-
tion set has collapeed onto one of its faces potentially
of arbitrarily small dimension.

Theorem -3 Suppose Az < b ia a el of constrainis
that defines o full dimensional polyhedral aed.

(1) If the constraint ez < d is not an implicil equal-
ity of the combined set of constraints Az < byex < d,
then the combined constrainis define a full dirmensional
polyphedral sef.

(2) If the eonstraind ez = d is an fmplicil cquality
of the combined sysiem Az < bez < §, then it i1 nol
fhe only implicil equalily of the combined sysicm.

Let us note that a result similar to Part 1 of the
above theorem and the strategy it suggests are used in
Proleg IIL

If constraints are maintained in canonical form, then
shaorbing an additional negative constraint {Cz = d}
is straightforward: consistency of the angmented set
reduces to a linear algebra problem, wiz checking that
Cr = d does not imply the carrent equality consteaints,
For after that consistency will be guaranteed by the
fact that the negative constraint corresponds to remnov-
ing 2 set of smaller dimension than that of the polyhe-
dral set defined by the constraints in canenical form,
So at this point the cost of maintaining the constraints
in canonical form is that of putting the new negative
constraint in precise form and checking for redundancy
among the augmented set of negative consiraints.

We have assumed the existence of a solver and used
it ag a hlack box. However there are many types of
solver, and we may exploit their particular proper-
ties in order to compute more efficiently the canonical
form. " The optimal strategics for using the canonical
form algorithm in CLP systems and other constraint
oriented applications will have to be developed empir-
ically and will depend crucially on the mathematical
tests msed for feasibility, For example, in Prolog I11
and in CLP{R), constraints are maintained in variants
of the standard form of the Simplex Algorithm. At the

709

data structure level this stralegy is orthogonal to the
canonical form approach developed in this paper which
closely follows the geometry of the constraint solution
set.

As a concluding note, in situations where o lot of
backiracking is involved, the overhead of constantly
maintaining a canonical form as opposed to a sim-
ple check for consistency could be prohibitive and at
each failed path the added information provided by the
canonical form is wasted. On the other hand, il con-
straint programming is added to a logic programming
language without backiracking such as GHC [Ueda |then
the situation is completely different. A propes, in [Ma-
her |, Maher has introduced a new class of coinmibbed
choice languages with constraints and defined their log-
ical and algebraic semanties. For such languages, the
rale played by a canonical form is an interesting topie
for further research.

Bibliography

| Adler |

I. Adler, The Care of a Linear Program, Technical Re-
port, Department of Operations Research, Berkeley
[Aiba and Sakai |

A. Aiba and K. Sakai, CAL: A Theoretical Background
of Constraint Logic Programming and its Applications,
to appear

[Ben-Or et &l |

M. Ben-Or, D. Kozen and J. Reif, The Complexity of
Elementary Algebra and Geometry, Proceedings of the
16th ACM Symposium on the Theory of Computing,
1984

[Borning |

A. Borning, The Programming Language Aspects of
THINGLAB - A Constraint Oriented Simulation Labo-
ratory, ACM Trarsactions on Programming Languages
and Systerna 3 (1081) 252-387

| Colmerauer | .

A. Colmerauner, Equations and Ineguations on Finite
and Infinite Trees, Proceedings of 1984 FGCS Confer-
ence, Tokyo

|Davis |

E. Davis, Constraint Propagation, Al Journal, 1988
[van Hentenryck and Dinchas |

P. van Hentenryck and M. Dinchas, Forward Checking
in Logic Programming, Procerdings of the 1987 Logic

T10

Programming Conference, Melbourne, MIT Press

[Jafar and Lassez |

J. Jaffar and J-L. Lassez, Constraint Logic Program-
ming, Proceedings of POPL 1987, Munich

| Jaffar and Michaylov |

J. Jaffar and S. Michaylov, Methodology and Imple-
mentation of a CLP System, Proceedings of the 1987
Lagic Programming Conference, Melbourne, M.LT. Press
[Karmakar |

N. Karmalar, A New Polynomial Time Algorithm for
Linear Programming, Combinatorica 4 (1084) 141-158
[Karwan et al. |

M.H. Karwan, V. Lofti, I. Telgen and S. Zionts, Redun-
dancy in Mathematical Programming, Lecture Notes in
Economics and Mathematical Systems 206, Springer-
Verlag 1983

[Kozen and Yap |

D. Kozen and C. Yap, Algebraic Cell Decompasition in
NC, Proceedings 19th ACM Symposium of the Theory
of Computing, 1987

[Lassez and McAloon |

I.L. Lassez and K. McAloon, Independence of Negative
Constraints, to appear

[Luenberger |

D. Luenberger, Linear and Non-Linear Programming,
Addison-Weslay, 1973

[Maher |

M. Maher, Logic Semantics for a Class of Conunitted
Choice Programs, Proceedings of the 1987 Lagic Pra-
gramming Conference, Melbourne, MIT Tress

[Mukai |

K. Mulzi, Situations in-Constraint, US-JAPAN Al Sym-
posium, 1987, Tokyo

[Nelson] G. Nelson, Techniques for Program Verifica-
tion, Xerox PARC Technical Report CSL-81-10, 1981
|Pearl | ,

J. Pearl, Constraints and Heuristics, AI Journal 1038
[Schrijver |

A. Schrijver, Theory of Linear and Inleger Progrom-
ming, Wiley 1886

[Steele and Sussman |

G. Steele and G. Sussman, CONSTRAINTS - a Con-
straint Based Programming Language, AT Journal, 1982
[Ueda |

K. Ueda, Guarded Horn Clavses, MIT Pross, to appear

