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ABSTRACT

CHIP is a new logic language combining the
declarative aspects of logic programming with the ef-
ficiency of constraint solving techniques. It has been
designed to tackle real world constrained search prob-
lems. It extends usual Prolog-like logic languages by
introducing three new computation domains namely
finite domain restricted terms, boolean terms and
linear rational terms. For each of them CHIP uses
specialized consiraint solving technigues: consistency
techniques for finite domains, equation solving in
Boolean algebra and a symbolic simplex-like algo-
rithm for rationale. CHIP has been successiully ap-
plied to a large number of industrial problems espe-
cially in the areas of planning, scheduling and circuit
design. For all these problems the flexibility and the
efficiency of CHIP has been systematically deimon-
strated.

1 INTRODUCTION

Many real life problems like scheduling, allocation,
layout, fault diagnosis and hardware design verifica-
tion can be seen as constrained search problems.
Most of them belong to the class of NP-complete
problems [16]. The mest common approach for solv-
ing these problems consists in writing specialized pro-
grams in procedural languages. ‘This approach re-
quires substantial effort for program development,
and the resuliing programs are very hard to maintain,
modify and extend. CHIP (Constraint Handling In
Prolog) is an attempt to overcome these difficulties by
providing, besides the efficiency of conventional ap-
proaches, the main features of fifth-generation tools:
declarativeness and flexibility. It is a Prolog-like logic
programming language extended by symbolic and nu-
merical constraint solving techniques.

Logic programming is very appropriate to state
constrained search problems. Its relational form and
the logical varizbles are very adequate to formulate
such problems in a declarative way and its non-
deterministic computation liberates the user from the
tree-search programming. However, usual logi: lan-
guages like Prolog are too inefficient to tackle laige

search problems. CHIP differs from them by its ac-
tive use of constraints in order to reduce the search
space as much as possible. The adequacy of CHIP
to solve industrial problems has been shown during
the last two years on a very wide range of application
domains (see section 7).

(iven a computation domain, a comstraint ex-
presses a relationship between some objects of this do-
main. Constraint manipulation and propagation have
been studied in the Artificial Intelligence community
in the late 70's and ecarly 80's especially in the USA.
They provide very interesting problem solving tech-
nigues like local value propagation, data driven com-
putation, sophisticated search algorithms (e.g. for-
ward checking) and consistency checking [13] [14] [18]
[28] [30] [38] [39] [46]. The general idea behind these
technigues is the use of constraints to prune the search
space in an ‘a priori’ way, i.e. before the generation of
values, Some problem solvers (like ALICE [27]) were
developed using these techniques. But they were im-.
plemented as ‘black-boxes’ and suffered from the lack
of fAexibility. '

In the framework of logic and theorem proving,
3. Huet was first to introduce the concept of con-
straint in the early 70's. While working on the
mechanization of higher-order logic, he replaced the
problem of unification in the typed A-calculus by the
solving of equality constraints. He was talking about
constrained resolution and constrained clauses
[22].

The idea of introducing constraint solving tech-
niques in Logic Programming is rather recent. How-
ever extensive work has been conducted in this diree-
tion during the last three years especially in Europe
{Marseille, ECRC), USA (IBM Yorktown Heights),
Canada (Vancouver) and Australia (Monash Univ.).
The general idea behind the introduction of these ex-
tensions ingide logic programming is the use of some
mathematical tools (like simplex) to solve numerical
constraints and the use of consistency checking and
constraint propagation techniques to solve symbolic
constraints. Apart from CHIP, there are mainly three
systems which are currently in development: Pro-
log 111, CLP(R) and Trilogy. Prolog Il has been de-
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veloped by Colmeraurer and his team at the Univer-
sity of Marseille [5]. It uses a simplex-like zlgorithm
to solve linear equations and inequalities on rational
numbers for linear programming purpeses. It also
provides a saturation method to deal with boclean
terms. The work on CLP conducted by J.Jaffar and
J.L.Lassez at IBM-Yorktown Heights in collaboration
with the University of Monash in Australia aims at
giving a formal framework for a logic programming
scheme based on constraint solving [23]. An instance
of this scheme for handling linear equations and in-
equalities over real numbers has been implemented
in CLP(R) [24] [19]. Trilogy has been developed by
P.Voda and his team at the University of Vancouver
[45]. Unlike CHIP, Prolog III and CLP({®), it does
not provide the full power of Prolog. Indeed Trilogy
is based on the Veda's ewn ‘theory of pairs’. From
the constraint point of view, it provides a decision
procedure for the Presburger arithmetic.

In this paper we give an overview of CHIP. The
presentation will be rather informal. We first give
the motivations behind CHIF showing the necessity
to introduce new computation domains other than
the usual Herbrand universe. For each of the rew
computation domains (ie. finite domains, booleans
and rationals), we present the types of terms and
constraints manipulated by CHIP, and the constraint
solving techniques used for them. In the final sec-
tion we give a panorama of applications which have
already been solved in CHIP.

2 - COMPUTATION DOMAINS OF
CHIP

CHIP is a new logic language combining the declara-
tive aspect of logic programming with the efficiency of
constraint solving techniques, It is based on the con-
cept of active use of constraints [15] [43] [9]. It differs
from usual logic languages in two aspects: the compu-
tation domains on which it works, and the constraint
handling and improved search procedures it provides.

The power of a Prolog-like logic programming lan-
guage rests on three mechanizms: relational form,
unification and non-deterministic computation. Pro-
log carries out computations in the Herbrand uni-
verse. Unification is nsed to sclve equations in this
universe, Le. cn uninterpreted terms. Therefore
when meodeling a problem, one has to use a mapping
from its intended domain on the Herbrand universe.
This causes the loss of not only the naturalness of
the problem expression but also the efficiency of its
resclution. We can provide inside Prolog richer com-
putation domains than the Herbrand universe, and
handle more expressive terms than the uninterpreted
Herbrand terms. This entails to extend unification

in Prolog in order to take into account the intended
interpretations given to some functional symbols. On
the other hand, unification is used only to solve equa-
tions ie, just one kind of constraint. Other kinds
of constraints like disequations (~=}, inequalities on
numbers (<, >=, etc.} or range restriction for variables
can be imagined [10]. In Prolog these constraints are
used in a passive way through the well-known gener-
ate & test paradigm which causes its legendary inef-
ficieney on such problems. Another extension is then
the introduction of more general constraint solving
techniques developed in Artificial Intelligence, Math-
ematics and Operations Research for these specialized
computation domains.

The question that arises at this point is which
computation domains should be introduced into logic
programming with their corresponding constraint
solving techniques, Three major criteria for this
choice are: the expressive power of the computation
domain, the existence of efficient constraint solving
techniques for it and ibts interest for possible appli-
cations. Fellowing these criteria, we have chosen the
following three additional computation demains for
CHIP:

# Finite domain restrictive terma
« Boolean terms

¢ Linear rational terms

Frum our experience of studying and sclving prob-
lems in a wide range of application domains, we can
say that these extensions are enough to cover a large
variety of interesting problems. For each of these
new computation domains, CHIP uses specialized
algorithms. While consistency checking techniques
are used for finite domaing, more mathematical tools
(equation solving in boolean algebra and a symbolic
simplex-like algorithm) are used for booleans and ra-
tionals, More details about these technigues will be
given in the next sections. We can note that these
extensions do not change the declarative aspects of
logic programming.

3 FINITE DOMAINS

A large variety of problems can be viewed as discrete
combinatorial problems. Their general form can be
described as the search, in a discrete finite space, for
a particular point satisfying a given set of constraints.
In the present section, we discusz some features of
CHIP devised to solve efficiently problems from this
class,



3.1 Domain Variables

The basic feature of CHIP for solving discrete com-
binaterial problems is the ability to work on domain-
variables, ie. variables ranging over a finite domain
[43). CHIP differentiates between two different kinds
of such variables, those ranging over constants, and
those ranging over a finite set of natural numbera.
CHIP has also the ability to cope with arithmetic
terms over domain-variables, These terms are con-
structed from natural numbers, domain-variables over
natural numbers and the operators +, -, ¥ and /.

3.2 Constraints over Finite Domains

CHIP provides a large veriety of constraints on
domain-varizbles. It contains not only arithmetic
but alse symbolle and even user-defined con-
straints. In this subsection, we give a flavor of the
constraints on domain-variables available in CHIP,

£.2.1 Arithmetic constraints

As far as arithmetic constraints are concerned, CHIP
allows the usual relations on arithmetie terms over
domain-variables. For instance, for any such terms X
and ¥,

X>Y, X>=%Y, X<¥Y, X=<Y¥Y, X=Y, X°=Y

are well-formed constraints of CHIP.

3.2.2 Symbolic constraints

CHIP is not restricted to arithmetic constraints. It
also contains, and this is part of its originality, sym-
bolic constraints on domain-variables. Examples of
some symbolic constraints (besides X "= ¥) are

s element(Nb,List,Var) which holds if Var is
the Nb** element of Ligt; this constraint can be
used when Nb and Var are domain-variables or
constants, and List is a list of domain-variables
or constants.

e alldistinet(List) which holds if all elements
of the list List are different; this constraint can
be used if List iz a list whose elements are ei-
ther domain-variables or constants.

Constraints of these kinds are essential tocls for solv-
ing many discrete combinatorial problems. For in-
stance the element constraint can be used to enforce
a relationship between two variables. They often al-
low more natural problem statements and more effi-
cient problem-solving.

693

8.2.5 TUser-defined constraints

Not all constraints can be provided as primitives in a
constraint language. It is therefore important to allow
the programmer to define his/her own constraints. In
CHIP it is possible to specify that a particular predi-
cate is to be handled as a constraint using consistency
techniques. The only requirement for a predicate to
be handled as a constraint is that its ground instances
either succeed or finitely fails (see below for an exam-
ple). To our knowledge CHIP is the only constraint
logie language which allows user-defined constraints.

3.2.4 Higher-order extensions

CHIF also includes some higher-order extensions for
finding solutions optimizing (Le. minimizing or max-
imising) some evaluation funetion. These predicates
can be uged for solving combinatorial optimization
problems, For instance, the predicate

minimize(Boal,Function)

where Goal is a predicate and Punction is an arith-
mebie term over domain-variables can be used to find
the solution of Goal which minimises Function. It is
implemented using a branch & bound technique. '

3.3 Consistency Techniques

The previous subsections have discussed domain vari-
ables and constraints on domain variables. We now
turn attention to the way these constraints are solved,
All conatraints invelving domain-variables are solved.
through consistency techniques, a powerful paradigm
emerging from Al to solve diserete combinatorial
problems (e.g. [30] [28] [18]). The principle behind
these technigues is to use constraints to reduce the
domains of variables and thus the size of the search
space, Different kinds of pruning (i.e. reduction of
the domains) have been identified and efficient ways
to achieve them have been devised. Howewver, con-
sistency technigues are usually not able to solve the
constraints by their own. It follows that solving a
discrete combinatorial problem using them consists
in jterating the following two steps

» propagating the constraints as far as pessible
» making a choice

until a solution is reached. It is also worth mention-
ing that comstraints solved through consistency tech-
niques are scheduled in a data-driven way.

A computational framework to embed consistency
techniques inside logic programming has been defined
in [41] [42). It comsists in three inference rules, the
Forward Checking Inference Rule (the FCIR),
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the Looking Ahead Inference Rule (the LAIR)
and the Partial Looking Ahead Inference Rule
(the PLAIR), each one defining a particular way of
pruning.

All primitive constraints on domain-variables in
CHIP can be viewed as efficient specialization of these
inference rules. For instance, X ~= ¥ (X different
from Y) can be seen as a specialisation of the FCIR.
Other arithmetic relations on arithmetic terms over
domain-variables can be seen as specializations of the
PLAIR by means of a reasoning on variation intervals.
For instance, given the constraint,

R+E+1=10+T

with R € {0,1} and E and T € {0,2,3,4,5,6,7,8,9} it
will be inferred that T = 0 and E € {8,9}.

The inference rules are also the basis of general
control mechanisma for handling user-defined con-
straints. For instance, forward declarations [44] and
lookahead declarations [42] make possible to use
respectively the FCOIR and the LAIR for any user-
defined constraint. The following example give the
use of a loockahead declaration to define a constraint
fer a junction of type “arrow’ in 3-dimensional scene
analysis (d stands for domain-variable).

?- lookahead arrow(d,d,d).

arrow(convex, concave, conveax) .
arrow(concave,convex,concave) .
arrow{arrow-in,convex,arrow-out) .

3.4  Discussion

Domain-variables are a significant extension to logic
programming and consistency techniques provide a
uniform and efficient paradigm for selving constraints
on finite domains, whether the constraints are arith-
metic, symbolic or user-defined. The finite demain
extension iz used for constraint satisfaction, integer
programming and combinatorial optimization prob-
lems. Many large problems have been solved within
CHIP with an efficiency comparable to programs
written in procedural languages, showing the ade-
quacy of these techniques. See section T for more
details about these applications.

Of course, for some arithmetic constraints, other
technigques could have been considered, for instance
a decision procedure for the Presburger arithmetic as
done in Trilogy [45] or diophantine equation-solving
methods [21]. However these mathematical tools were
felt computationally too expensive and not adapted
to solve the real world problems we are looking at.
In addition they only apply to constraints on linear
arithmetic terms and they do not exploit the main
feature of the above class of problems: the fniteness

of domains.

4 BOOLEAN UNIFICATION

In this section we want to explain the implementation
and the use of boolean unification inside the CHIP
system. It can be used for many problems in digital
circuit design (verification, synthesis, simplification,
test generation) and as a theorem-prover for proposi-
tional calculus.

Beolean unification solves symbolically equations
over boolean terms. It forms a unitary theory [34] Le.
there is at most one most general unifier (mgu) for
every equation. Different unification algorithms for
ibooclean unification have been proposed [4] [20]. In
our implementation we use the variable elimination
algorithm of [4].

4.1 Boolean Terms

.Since boolean unification provides a decision pro-

cedure for propositional calculus and is therefore
NP-complete [16], the abovementioned algorithms all
have an exponential worst case complexity. It is
thus wery important to use a compact description of
boolean terms to achieve efficiency. Normal farms lik-
DNF or sum-of-products require exponential space for
the representation of many interesting functions.

In our implementation we distinguish between the
external and the internal representation of boolean
terms. In the external representation, boolean terms
are built from truth values (0 and 1), from con-
stants {atoms), from variables and from the boolean
operators & (and), ! (or), # (xor), mand, nor,
not. Constants vsually denote symbolic input val-
ues, variables denote intermediate or cutput values.
Internally, boolean terms are represented as directed
acyclic graphs (dags). We use routines similar to the
ones described in [3] to simplify terms and to per-
form boolean operations. The unification algorithm
has been extended to take advantage of this efficient
internal representation.

4.2 TUse of Boolean Unification

In order to tell the system for which arguments we
want to use boolean unification, we have to declare
bool-declarations for predicates. Stating a decla-

ration

?-declare and(h,h,bool,bool,bool).
lnd{": H |x| Yj x*T} -

for the predicate and, we use normal (Robinson’s)
unification on Herbrand terms [33] for the first two
arguments and boolean unification for the last three
arguments. The predicate states that the last argu-
ment must be equal to the logical-and of the third
and fourth argument.



Figure 1: Xor-gate Circuit Diagram
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As a simple example for the use of boolean uni-
fication in CHIP take the verification of an xor-gate
(see figure 1), The circuit description is explained in
more detail in [35][37]:

7-declere eqlbool,bool).
Eq (x E x] L

7-declare n_switeh({bool,bool,bool).
n_gwitchi{Drain, Bate, Source):-
eq(DrainkGate, GatedSource) .

7-declare p_switch{bool,bool,boal).
p_switch(Drain,Gate, Source) : -
eq{Drainknot(Gate),
not{Gate) &Source) .

7=-declare xor{boal,bool,bool).

sor(A,B,X):-
p-switch(1,A,T1),
n_switch(0,A,T1),
p-switch(B, A, X),
p_switch(®,T1,X),
p_ewitch(A,B,X),
n_switeh({T1,8,X).

If we want to compute symbolically the output of this
circuit, we have to solve the beslean equation of cach
gwitth. This instantiates the variables X and TI to
some boolean terms. We show the values of X aad T1
after each step. Variables beginning with an uiider-
score are free variables introduced by beelean unifi-
cation.

T_ xﬂr(arbl-}:] [

1) T1= 1 #a# _Aka
2y T1= 1#a
8) X = b # _Cka # akb
4) - X = b # _Cka # akb
B) X = a#b# _Dkakb
B) X = a#b

697

X=a#b

At the end of the computation, we see the value
X = a# basa result.

4.8 Discussion

Other systems [47] [20] use rewriting techniques to
simplify symbolic boolean equatioms. Terms are
rewritten into a sum-of-product normal form. These
normal forms often require exponential space, there-
fore they can be used only to describe rather small
problems. In Prolog III [5], a saturation method is
used to zolve boolean eguations. This method does
not compute a most general solution. Problems like
circuit verification cannet be sclved with this methed.
There exist several specialized programs for boolean
term simplification for circuit design purposes [3] [1].
CHIP is comparable in efficiency to these aystems,
but provides a more declarative framework.

5 RATIONAL ARITHMETIC

We now turn to the part of CHIP which handles con-
tinuous problems, i.e. problems where there is an in-
finite number of points in the search space to explore,
by medelling them through rational numbers.

5.1 Rational Terms

Rational terms are linear terms over rational numbers
and rational variables (Le. variables which take their
values in rational numbers).

5.2 Constraints on Rational Terms

Usual arithmetic relations can be defined over ratio-
nal terms. Given two rational terms X and Y, the
following constraints

X>Y, X»>=Y, X<¥Y, X=<Y, X=Y, X =Y

are all well-formed constraints of CHIP. Because of
the restriction imposed on rational terms, only linear
constraints are possible.

5.3 Solving Constraints on Linear
Rational Terms

We now turn to the way constraints over rational
terms are solved in our system. CHIP provides a
decision procedure for constraints on linear ratio-
nal terms. This means that for any set of constraints
(over rational terms) CHIP can decide if they are sat-
isfiable or not. This procedure is an adaptation of the
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gimplex algorithm [6] [17] based on variable elimina-
tion and not on matrix manipulation. Given a set
of constraints, the procedure will either fail {the con-
gtraints are not satisfiable) or will produce a set of
bindings for the variables and a set of constraints in
a simplified normal farm.

From an implementation point of view, this pro-
cedure has a certain number of desirable properties:
Full integration: the constraint solver is fully em-
bedded in the CHIP language and is not a separate

_ module to which constraints are transmitted and re-
gults are fetched. _
Mo fixed variable: the algorithm guarantees that
all variables appearing in rational terms can take an
infinite number of values. If a variable can only take
one value {in this case we say that the variable is
fixed), the procedure directly assigns this value to the
variable. This property allows in particular to decide
efficiently constraints of the form X ™= V.
Incrementality: the procedure is incremental If
we have already solved a set 5 of constraints, adding
a mew constraint C to 5 will not require solving from
gerateh the set 8 |J {C}. CHIP will transform the
solution of S into a solution of § [ J {C}, if it exits.
Thia property is of great importance since constraints
in CHIP are created dynamically.
Uniformity: equations and inequalities are solved
in 2 uniformm manner by the introduction of slack
variables. Contrary to the simplex algorithm, there
is no need to retransform equalities into inequalities
by introducing artificial variables.

... From the user point of view, the inclusion of this
procedure inside CHIP has a certain number of at-
tractive properties:

Symbolic solutions: the solutions returned by the
gystemn are always most general ones. Hence CHIP
can reprezent an infinite number of solutions in a fi-
nite way.

Strict inequalities: the user can express his/her
problem not only in terms of inequalities but also in
terms of striet inequalities (e.g. X > Y). Thiz addi-
tional expressive power comes directly from the abil-
ity of CHIP to decide constraints of the form X ~= V.
SatisBability and optimization: CHIP can be
used both for deciding if a set of constraints is satis-
fiable and for finding the most general solution to 2
set of constraints which optimizes (ie. minimizes or
maximizes) a linear evaluation function.

5.4 Discussion

The introduction of rational terms in CHIP offers a
variety of techniques ranging from simple equation-
solving to Linear Programming. Many problems from
fields ke Operations Research and electrical circuit

analysis fall into this framework, opening new appli-
cations areas for logic programming. In the following,
we discuss some basic design choices concerning the
rational arithmetic part of CHIP.

5.4.1 Simplex versus polynomial algorithmes

One may wonder why CHIP uses a simplex-based al-
govithm and not the (newly discovered) algorithms of
Khachian [26] and Karmarkar [25]. These more recent
algorithms have of course the interesting property to
be of polynomial complexity in the worst case con-
trary to the simplex algorithm. However experimen-
tal studies have shown that simplex behaves very well
in the average case (it is quasi linear), reinforcing its
position as one of the most important tool in Opera-
tions Research. Khachian's algorithm, which was the
first polynomial algorithm for Linear Progarmming,
induces an unacceptable overhead. Karmarkar's algo-
rithm seems to have great potential but it is not yet
clear how to make it incremental.

5.4.2 Rational versus real numbers

In CHIP we have chosen to include rational arithmetic
as in PROLOG III [5] and not real arithmetic repre-
sented by floating point numbers as in CLP(R) [24].
This choice has been made because, for linear con-
straints, rational arithmetic has the desirable prop-
erty of numerical stability,. Rational numbers can
be represented exactly on a compuber whereas real
numbers are normally represented by floating point
numnbers introducing rounding errors. It follows that
working with rational numbers preserves the sound-
ness of the system. This is not true if one works
with floating point numbers. The system might well
answer yes to a query when it is not a logical conse-
guence of the program and no if it is. This is espe-
cially likely to occur if redundant or disequality con-
straints are involved in the problem. Of course, work-
ing with rational numbers induces some drawbacks in
terms of time efficiency and memory consumption. It
is necessary to use infinite precision numbers and to
redefine the commoen arithmetic operations.

5.4.83 Linear versus non-linear terms

Non-linear constraints have not been included in
CHIP. The reason is that no general analytical
method is available for solving them. Iterative numer-
ical methods will be necessary in most cases. Hence
they suffer from numerical instability and thus they
do not it very well to the logic programming philas-
ophy.



6 DEMON CONSTRUCTS

Geveral of the abovemnentioned techniques make use of
a demon-driven computation. In the present section,
we present some additional demon constructs which
can be used for user-defined constraints, namely delay
declarations, local and conditional propagation.

6.1 Delay Declaration

OHIP contains a delay mechanism, the delay decla-
rations, which enables coroutining in 2 demon-driven
way. For instance, the following program defines a
atorage element of type latch used in simulation af
sequentizl circuits using a delay declaration. The
meaning of this definition is to delay the call of the
predicate latch until the first argument is nonvar.

7= delay latch(nonvar,any,any,any,any) .

latch([] [ E] i [] 1 [] 1—] s

latch( [CLK|CcLX1], [Ld|Ld1], [D|D1], [QiqQ1].8):-
lail(CLK,Ld4,D.0Q,8),
latch(CLK1,Ld1,D1,01.0).

7- delay lal{nonvar,nonvar,any,any, any) -
laifcLK,1,D,D,B).
1lail(CcLK,0,D,5,8).

6.2 Local Propagation

In local propagation, constraints are used to find the
values of uninstantiated variables from instantiated
variables. This technigue has been widely used in Al;
Sussman and Steele’s CONSTRAINTS language [39]
is based on this computational paradigm while many
algorithms in the area of hardware design and graph-
ical systems are based on similar principles [2] [8] [7].
Local propagation can be implemented through 2 de-
lay mechanism. However, this solution is neither el-
egant nor efficient. GHC [40] could also be used for
implementing local propagation.

In CHIP local propagation is achieved through a
general mechanism called demon declaration. The
following program illustrates its use for a logical and

gate.

7= demon and/3.

apnd(0,Y,Z) (= Z = 0.
and(Y,0,Z) - £ = 0.
and(1,Y,E) - Y= 2.
and(X,1,2) :- Y= 1L.
and(Y,Y,Z) := ¥ =1Z.
and{Y,2,1) :-¥Y=1, Z =1,
and(Y,Z,0) :- ome_zero(Y,Z).

?- demon one_zero/Z.
ene_zersl0, ).
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one_zerol_,0).
one_zero(X,1) :- X = 0.
one_zerof{i,X) :- X = 0.

Predicates submitted to a demon declaration are used
as rewrite rules. They are deterministic and a goal
can only be resolved against them when it matches
(in the sense of one-way unification) a head in one
of the definition clauses. For instance the goal ~—
and(1,0,Z) can be resolved against the second or
third clause. One and only one of these clauses will
be zolected and the goal will be rewritten as Z = 0.
Contrariwise the goal + and(X,Y,Y) does not match
any head and thus is delayed until further information
iz available.

Demons have multiple applications ranging from
qualitative reasoning to diagnestic from first princi-

ples [36] {35].

6.3 Conditional Propagation

Conditional propagation is a propagation technique
driven by the satisfiability or unsatisfiability of con-
straints, Declaratively, it is a simple if_then_else
construct..

if CONDITION then GOAL-1 else GOAL-2

Procedurally, it provides an efficient demon-driven
mechanism. It is an extension of the if_then_else of
Mu-Prolog [31] and is handled in the following way.
For any allowed condition, CHIP has at his disposal
a procedure able to decide if the condition is always
true or always false for all instances of the condition
or if the condition is true for some instances and false
for some others. Therefore facing such a constraint,
CHIP uses the adeguate procedure to evaluate the
CONDITION. If it always evaluates to true, GOAL-1 is
executed. If it always evaluates to false, GOAL-2 is
executed, Otherwise the if_then_else construct de-
lays, waiting for more information. Any constraint on
domain-variables, boolean terms and rational terms
can make up an allowed condition.

Clonditiona! propagation has beem an impor-
tant tool for the simulation of industrial electro-
mechanical circuits and applications in qualitative
reasoning.

¥ APPLICATIONS OF CHIP

In this section we describe very briefly different real
world problems solved in CHIP, Some of them were
previously solved in conventional languages requiring
a long development time and effort. CHIP drasti-
cally reduces this time while achieving a similar effi-
ciency. The wealth of applications show the flexibility
of CHIP to adapt to different problem areas. More
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about some of these problems ean be found in [36]
[35] [37] [42] [11] [12].

7.1 Applications in Scheduling and
Planning

Operations Research (O.R.} is an inexhaustible source
of interesting search problems. Many O.R. prob-
lems have been solved in CHIP, especially large-scale
scheduling and planning problems.

Disjunctive scheduling We have applied CHIP to
solve a disjunetive scheduling problem in civil engi-
neering. The problem is to minimize the total du-
ration of building a bridge with precedence and dis-
junctive constraints due to the limited availability of
resources. '

Graph colouring The problem is to find the mini-
mum number of colours to label the vertices of a graph
auch that no two adjacent vertices are assigned to the
same colour. Graphs containing one hundred nodes
and thousands of vertices are efficiently colored with
CHIP.

Car sequencing Thiz preblem occurs in the
scheduling for the assembly line of car manufactur-
ing. Each car may require a different set of opticns
and the assembly line has capacity constraints for the
options. The problem is to generate a sequence of
cars which satisfies the capacity constraintsa.

Optimal traffic assipnment for satellites This
problem concerns the scheduling of the on-board

switching systems in telecommunication “satellites.

The problem can be formulated as follows: given an
interstation traffic matrix, determine the successive
switching modes in order to switch all the traffic re-

quirements in minimum time.

Warehouse location The problem is, given a set

of possible warehouse locations, a set of customers,
and the costs of stocking and transportation from
warehouses to customers, to find an optimal configu-
ration of the warehouses (Le. their number and loca-
tions) which minimizes the total cost.

Cutting problems The problem consists in eut-
ting (two dimensicnal) shelves of various sizes accord-
ing to customer requirements from standard wood
boards in a furniture factory. The objective is to min-
imize the total waste. '

Imvestment planning The program chooses
among different investment types in order to mini-
mize or maximize a goal function over a given peried.
Thanks to the symbolic gimplex methed, the program
yields the most general solution and the user can then
interact with it to get the best scletion with regards
to his need.

Macro economics model The problem is the
qualitative analysis of a macro economics model. Re-
lations between factors in the models are given by
a three valued {increasing, decreasing, constant) sys-
tem.

7.2 Applications in Circuit Design

Another very promising application domain for CHIP
is Circuit Design. The extensions provided in CHIP
make it possible to solve large classes of problems for
big circuits.

Circuit simulation The demon and constraint
propagation mechanisms of CHIP allow the simu-
lation of large combinatorial and sequential circuits
{with several thousands of components).

Symbolic  wverification Symbelic  verification
means the formal comparison of an implementation
of the circuit with its functional specification (usu-
ally a set of boolean equations).

Circuit synthesis For combinatorial circuits, we
have developed in CHIP a program which automat-
ically generates a circuit at the transistor level [in
different technologies) from a truth-table or boolean
equation specification.

Fault diagnosis The problem is to locate a fanlty
component in a circuit from its input/output misbe-
haviour. We make a single fault assumption, the diag-
nosis is based on model reasoning, The fault finding
process uses a constraint relaxation method combined
with a consistent labeling technique.

Automatic t'nnt-i:at.tm generation We want to
generate a minimal number of test patterns to de-
tect all single stuck-at errors in combinational cir-
cuits, The CHIP program uses consistent labeling
techniques with fault insertion to generate test pat-
terns, -

Circuit speclalization and simplification The
problem is, from the description of z circuit which
performs a set of functions, to derive a more special-
ized one performing only a subset of the functicns.
The goal is to minimize the number of components in
the simplified circuit.

Channel routing This application comes from the
area of VLSI layout design. It consists in connecting
terminals on two sides of a rectangular channel in
presence of certain constraints. The objective is to
minimize the channel width.

Microcode label assignment The microcode la-
bel assignment problem comes from the area of com-
puter firmware development. The problem is to assign.
labels of symbolic microcode to addresses in a page
of microcode memory. Branch instructions generate
consiraints on certain bit patterns.



Simulation of electro-mechanical devices For
the analysiz of hybrid circuits, a guantitative simu-
lator using analog device models has been developed
in CHIP, The system has been successfully applied to
real world circuits coming from aerospace industry,

8 CONCLUSION

In this paper we have given an overview of the con-
straint logic programming language CHIP. It extends
usual Prolog-like logic languages by introducing three
new computation domains, finite domain restricted
terms, boolean terms and linear rational terms. For
each of them CHIP uses specialized constraint solving
techniques: consistency techniques for finite domains,
equation solving in Boolean algebra and a symbeolic
simplex-like algorithm for rationals. These exten-
gions are combined with a demon-driven computation
mechanism. Since these techniques are embedded in a
programming language, heuristics specific to different
problems ¢an be easily added when necessary.

CHIP is very well-suited to solve especially con-
strained search problems. Keeping the main featores
of fifth-generation tools, ie. declarativeness and fiex-
ibility, it brings into logic programming the efficiency
of special purpose programs written in imperative
languages. Several real life problems in the area of
scheduling, planning and circuit design have been al-
ready solved in CHIP as efficiently as with a con-
venticnal approach but with much less programming
effort and providing more flexibility in the solution.
Among these applications we will mention just two:
the so-called car-sequencing problem and the for-
mal verification of hardware. The firat problem
has been recently presented as a challenge for Al
technology [32]. The CHIP formulation of the prob-
lem is very elegant and large instances have been ef-
fciently sclved [12]. On the other hand, standard
examples of ALUs (from 8-bit to 64-bit) and a small
16-bit microprocessar have been formally verified in
CHIP [37].
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