PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
OM FIFTH GEMERATION COMPUTER SYSTEMS 1988,
edited by ICOT. © ICOT, 1984

163

Some directions in concurrency theory

(Statement for panel on “Theory and Practice in Concurrency”).

Robin Milner

Department of Computer Science, Edinburgh University
King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, U.K.

I want to comment on two aspects in which a theory
of concurrent computing is different from a theory of

sequential computing. In both aspects, we see the same,

difference: namely, thet the farmer is about the whale of
computation, while the latter is only about a slice of it.

The first aspect is to do with the computer-in-conbext,
as opposed to the computer by itself. There used to be,
and largely still is, a strong division among three types
of description. First, a sequential program was a high-
levirl description of what can occur in a computer loaded
in a certain way, (If you don™ like calling a program a
‘description’ then consider how else, other than just by
presenting the program, you could describe the pessible
sequences of memory transfers that a sequential program
cen perform.} Second, automata theory or engineers' di-
agrams described what can go on in the same machine at
a lower level, and this certainly isn't sequential. Third,
narrative prose = or any scientific notation suitable to
the applications - described what may ocour outside the
same machine between, or during, program executions;
this, too, is only rarely sequential. It tock some time
- thanks to von Newmann's bottleneck (which, how-
ever, got computing off the ground) — before we thought
that the same descriptive medium might serve all thres
purposes. Carl Petri is primarily responsible, via Net
Theory, for giving us hope for a unified theory in which
to describe and analyse all aspects of the computer-in-
context {computer + program + aircraft, or computer +
program + banking staff) rather than just the computer
itzelf, or just the program itself. This has to be a theory
of concurrency, because of the three ingredients al most
one — the program - is sequentiall

The subject matter for such & theory is vast — all
discrete dynamic systems - and it is natural to expect
specialised theories, with special notations, for particular
claszes of systern. Not all these theories are the concern
of the computer scientist; but there is a distinet chal-
lenge for eomputer scientists — namely that they must
contribute on two levels. At the lower level they must
build the specialised theory for those subsystems which

happen to be computers or programs. At the upper level
they must provide the global theory, the general theory
of concurrency into which all the specialist theories must
fit: there must be a theoretical framework which can em-
brace special theory of information-flow among banking
staff, the special theory of programs, and all the other
spectal theories. Buf it would be untidy and unforfunate
if these two levels were fundamentally different! Sinee a
significant part of the general theory must be a tractable
descriptive notation, and since we have already classified
programs as descriptions, one hopes that concurrent pro-
gramming languages will be nothing more than a part of
the descriptive machinery of a general theory of concur-
rency. My point iz that the bacrier to this unification
is removed as soon as programs are not forced to be se-
quential, and we must exploit this freedom.

The second aspect in which concurrency is about the
whole of computation is in its concern with structure.
A proper theory of concurrency must explain the struc-
ture (division into processes) of a program, as well as the
siructure (division into processors) of & computer, and
the relationship between the two. Sometimes — perhaps
in solving partial differential equations, or in some large
physics caleulations, or in weather-forecasting prograrms
- the process structure of the programs can be fixed and
simple (e.g. grid-like} and there can be a fixed allocation
of processes to processors. Other applications — much
more interesting to a computer scienbist — are not like
that; for example, an operating system program togsther
with all the programs it runs, or the description of archi-
tectures such as the ALICE machine which aim at par-
allel execution of declarative programs. For these appli-
cations, if we wish fo analyse them thoroughly, we have
to find tractable descriptive methods and in which both
the virtual (program) and the real (machine) processes
are written in the same terms, and in which two kinds of
maobility can be reflected: the changing population and
linkage of the virtual processes, and their shifting allo-
cation te the processors. It seems only with concurrency
that we arrive at, and wish to fackle, this very subtle

164

problem of relating two distinet ways of structuring the
behaviour of a complex system.

It is true that some people — including Hewitt, and
Kennaway and Sleep — have given notations in which a
significant amount of this mobility can be written down,
The big challenge, though, remains to find the right
mathematics in which to analyse these descriptions; [
think that thiz needs great innovation.)

In this second aspect, just as in the first, we can take
advantage of the idea that programs are descriptions.
When we have found a good mathematical means to de-
scribe the mobile structure among processes and their
changing association with processors, we shall almost
certainly find that we can enrich our concurrent pro-
gramming languages by absorbing the new descriptive
notations into them. [E is in this way that programming
has become richer in the past, by absorbing the descrip-
tive notations of logical and of functional processes, and
| see no reasom why it should not happen, even more
excitingly, with the notations of various aspecis of con-
current processes, [therefore see concurrency theory as a
means of coming to understand, through structure, pro-
cesses (both built by us and naturally existing) which
have previously been beyond our grasp.

