PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1988,
edited by ICOT, @ ICOT, 1988

285

A Software Environment for Research into
Discourse Understanding Systems

K6iti Hasida Kouji Akasalka Kézi Hatano Yukihiro Kubo
Toshiyuli Olkunishi
Institute for New Generation Computer Technology (ICOT)
Takashi Takizuka
KDD Kamifulcuoka R&D Laboratories

Ryéichi Sugimura

ABSTRACT

This paper describes z software environment for re-
search on discourse underatanding systems.

Discourse understanding systems based on logic pro-
gramming have been investigated since 1982 at TCOT.
The focus of the research has been mainly on the basic
mechanisms of discourse understanding, and the pamﬂef
algorithms for these mechanisms.

Experimental systems called DUALS-I and DUALS-
II were developed to verify the research results.

These results have been put together to form a gen-
eral purpose software environment for natural langnage
processing named the Language Tool Box LTB |

This paper presents an overview of the LTB and dis-
cusses its future research and development direction.

1 INTRODUCTION

A natural language understanding system (INLS) must
meet many kinds of demands.

As the interface system between computer systems and
their users, an NLS should be able to understand not
only what users say but also what they intend. An NLS
is expected to make the interface more comfortable.

An NLS for researchers of linguistics or computer lin-
guistics should be very flexible. It should enable re-
searchers to input their idess freely, such as gprammars
and lexical entries, so that it can be used to verify their
research ideas. There should alse be some debugging
tools to check how a grammar or a lexdcon works.

An NLS for software system development should have
modulerity, high performance, and compatibility with
other application software such as an expert system. Main-
tenance fools should be prepared in the NLS.

The Language Tool Box (LTB) has been developed to
mest these demands.

Since the foundation of ICOT in 1982, we have been re-
searching many fundamental issues of natural language.
Our basic starting point was logic. We have been focus-
ing our research on complicated phenomena of natural
language, nsing logic and logie programming.

Versions [and 1T of DUALS (Discourse Understand-
ing Aimed at Logic Based Systems) have been already

developed. Many ideas were poured into DUALS Iis
main goal has been to verify fundamental ideas that arise
from our basic research on natural language understand-
ing. In the course of the development of DIJALS, many
kinds of software were developed and evaluated.

The LTE is the NL3 developed from a collection of
these software systems. The latest version of DUALS,
DUALS-IIT, was developed on the LTE as shown in

Figure 1.
i
Learning 4‘
Problem —
Planning selver Plaaning
Constraints
Meaning on action Moaning
f |
Discourse Discourse Discourse
analysis constraints synthesis
rrrrr Sermantic 1111-rrrrr|'|'1111Er|:-!&!7§“r|-'-1'|'|'|------ Serpaniic |
infa. LTE info.
Syntm-q K Eyntuuc)‘1 5 ntactic
& semantic ucture
analym cnnat:amm s.ymtheaia
I I Lexical l
info.
Lexical I.mn.'.al
v structure
analysis Mcmslm:ﬂs)’lﬂ synthasis
Constraint solver

Input sentence Output sentence

Figure 1: DUALS configuration

Featurses of the LTE include the following.

o [t provides up-to-date logie-based tools for natural
langnage understanding research.

¢ It aceommodates many types of software environ-
ments such as debuggers and editors.

286

» All the tools aze written in ESP [§] so that they
have high modularity and compatibility with cach
other.

We believe that a variety of NLS could be developed
based on the LTB.

2 STRUCTURE OF LTB

As shown in Figure 2, the LTB is constructed from the
following component tools,

' LTB Shell ™

Figure 2: Configuration of the LTB

Shell: The LTB shell [40] facilitates the interaction with
tools in the LTB. The shell itself can alsc be exe-
cuted in & parallel logic programming language.

Database: The collection of Japanese lexicon, Japanese
morphological grammar and syntactic grammars
[41].

CIL: The basic programming language of the LTH. Ev-
ery tool in the LT has access to CIL and ils soft-
ware environments.

LAX: The morphological and semantic analyzer. The
morphological grammars which the LAX locks up
are written in a kind of extended regular expres-
sion. The LAX can execute analysis both in se
quential logic programming languages such as Pro-
log or ESP, and in parallsl logic programming lan-
puages such as GHC [44].

SAX: The syntactic and semantic analyzer. The gram-
mar is written in DCG [32]. The SAX [21] can
also execute analysis both in sequential and paral-
lel logic programming languages.

Generator: The Japanese sentence generator, whosein-
put iz a frame structure written in CIL, outpuis
Japanese surface sentences.

3 LTBE SHELL

The LTE shell has the following features.

o Ji manages all the communications in the TTH. It
controls all the infermation flow ameng the uvser
and application tools in the LTB.

¢ [t accommodates the notify function which informs

the shell of data communication among processes,
go that the shell can measure the sxecution interval
of a process in the LTB.

¢ [t controls all the processes in the LTH.

& [t provides a standard window. The window has a
multi-lingual menu so thal users can use LTH tools
in either English or Japanese,

¢ [t provides help instructions.

On paraliel machines like PIM, the shell will enable
each process to move simultaneonsly. Communications
among the parallel processes in the LTE are performed
as shown in figure 3.

(1)

O U0

(3)

OO

Figure 3: Redirection of stream data

In figure 3, graph (1) shows the data flow through a
pipe-line in which there is no need for the data sender to
specify the data receiver. Graph (2) enables communi-
cation between hierarchical processes in which the data
sender should specify the direction, right or left. Graph
{3) enables network communication betwesn processes
in which the data sender should specify the name of the
receiver. We think that these three ways of communi-
cation are enough to install natural language processing
systems on the LTB.

4 DATABASE

The LTB uses the following three databases for dis-
course understanding ressarch. See [42] for details.

Japanese Word Dictionary: It provides a master dic-
tlonary of 4000 word entries for morphelogical analy-
sis and synthesis, arid a Japanese thesaurus of 800
concepts.

Japanese Grammars: Grammar for morphelogical analy-

sis and syntactic analysis. Their features are as
follows.

Morphological Grammar

1. It is written in a regular grammar.

2. It is based on Moricka grarnmar [24] along
the line of struetural linguistics.

3. Is semantics is formulated in situation the-
ory [3] and situation semantics [2].

4. 2,000 lines/1,000 rules for derivations and
mflections.

5. 30,000 lines/10,000 rules for word stems.

Syntactic Grammar

1. Tt is written in DCG,
2. It is based on dependency grammar [45].

3. Itz semanties is formulated in situation the-
ory and situation semantics.

4. 1,000 lines/2,000 rules.

Japanese KWIC: A Japanese key word in context (KWIC)

has been under development, making it possible to
analyse Japanese grammatical features.

5 BASIC PROGREAMMING LANGUAGE

CIL [30], the basic programming language of the LTB,
is being developed to make it easy to describe natu-
ral language processing systems. An overview of CIL
ie given. See [25] [26] [27] [28] for further information.

CIL has two angmentations to Prolog (figure 4). One
is a record-like structure called a partially specified
term (PST). The other is the freeze mechanism, orig-
inating in Prologll [7]. A passive constraint solver is pro-
vided as a built-in predicate based on the [resze mecha-
nism.

Currently, CIL is implemented on P5I machines and
prepares the entire programming environment. [ts de-
bugging environment, which is & full-screen source im-
age tracer based on the extended procedure box model,
is customized for all LTE application tools.

287

Macro
Built-in predicates
'_ PST If Freeze

Figure 4: CIL language

5.1 PST

A PST is a record-like structure. [29] demonstrates
that a recoed structure s useful for complicated dafa
representation such as linguistic information, and that
many useful data structures can be seen as derived from
record structures,

A PST is a set of atfribute-value pairs in the form:

{a'l.lllphh"':l a'|'l|.|'|li:'ll]

where

nzl, x#a; (i#7)

The order of pairs whose label is a; and whose value
is b can be ignored. For instance, {a/1,b/{c/2,d4/3}}
and {b/{d/3,c/2},a/1} are identical. They represent a
tagged tree in Figure 5.

Figure 5: PST as a tagged tree

A wvalue may also be a P'ST. which may be the parent
PST, giving rise fo circular data. A PST is designed
to represent partial information. Unification of CIL has
been extended to deal with this aspect. Pairs of different
labels are merged with each other,

CIL» {a/{b/2}}={a/{b/3}}.
o

CIL> X={a/1},X={b/2}.
= {a/1,b/2}

A PST can simplify the representation of and oper-
ation on data structure. CIL provides various opera-
tion predicates for a PST. For example, role(L,P,V) ac-
cesses value V with label L in PST P. In t.subpat (P1,P2),
P1 is a bransitive subpattern of P2,

288

CIL» role(a,{a/1,b/2},V).
Vei
CIL> t_subpat({a/{b/Y}},{b/1,a/{c/2,0/3}}).

yes

5.2 Constraint Solver

Freeze can specify constraints thal variables must sat-
isfy. These constraints are solved on a lazy evaluation
basis. That is, they are executed when the connected
variables are instantialed. For instance,

CIL> freeze(X,X=2),print(ck), %=1,
ok .
ne

The freeze mechanism is one of the approaches to (pas-
give) constraint solving, CIL has the constr predicate
composed from freeze. Arithmetic and propositional
constraints can be written in constr. For example,

CIL» constr{{¥=1;Y=:=X+2)) ,constr{(X=3)).
X =3,
T=65

While only constraints {not values} are accumulated,
however, constr can only wait for a value and yields no
solution:

CIL» constr{(X=1;%=2}),constr{(X=2;%=3)).
yes % X is frozen.

For this reason, the constraint solver in CIL is pas-
sive. Intreduction of an active constraint solver such as
a Boolezn constraint is being considered.

5.3 DMaecro and Built-in Predicates

For effective programming with & PST and freeze, CIL
sipplies a macrs function and many built-in predicates,
such as role, t_subpat and constr. Users can define
their own macro with the following system macros.

p(X:C)
0y =
Y =
p(X7) =
ihp =

= solve(C),p(X)
Z: rola(Y, X, Z)
L:X=Y
freeza(X, p(X))
i:p(xh)

CIL expands the form of the left-hand side of = to
that of the right-hand side in-the program.

5.4 Progranuning Environment

Figure § shows the configuration of the CIL system.

CIL has extended unification, various extended nota-
tions and a2 freeze mechanism. Therefore, a standard
debugger for Prolog cannot give very useful information.
Dabug aid extends the ordinary procedure box model
and provides a full-screen source image tracer [1]. The
box model is modified for constraint and head unifica-
tion. The full-screen source image tracer enables the user
to debug visually programs executed on a lazy evaluation
basis. The inspector can inapect a nested PST. A CIL
edifor with a syntax checker is also available. Users can
invoke them interactively through the command infer-
preter during program debugging. The Compiler trans-
lates the CIL program, after debugging, to an ESF pro-
gram, which is executed efficiently.

CIL GDAL

CONSULT [~ fermreter
COMPILE =
_| Command

interpreter | DEBUG

INSFECT

EDIT

CIL editor

Debug aid

A

Figure 6: Configuration of the CIL system and user in-
terface

& APPLICATION TOOLS

This section describes the fundamental application tools
in the LTB. The application tools consist of analysis
tools and a synthesis tool. Currently, these tools process
only Japanese, but can be extended to process other lan-
guages by changing the grammars and dictionaries. All
application tools have programming environments with
multi-window interface facilities.

7T MORPHOLOGICAL AND SEMANTIC
ANALYSIS

The LAX is a software environment which enables us
to develop morphological analysis programs effectively.
These programs have an analysis engine and a dicticnary
which is compiled from a morphological dictionary (the
LAX dictionary).

Morphological analysis consists of two phases. The
first phase is to recognize morphemes from an input sen-
tence that consists of kanji (Chinese characters) and the
two kinds of Japanese phonograms, and put them into &
sequence of words. The second phase is to construet the
meaning of each word from semantic information writ-
ten in the LAX dictionary, and output segquences of non-
terminal symbols with semantic structures, This outpuf
is used as an input for syntactic analyzer SAX

The LAX system supports a sequential LAY analysis
algorithm and has two types of development tools called
the LAX inspeclor and LAX dictionary

7.1 Morphological Analysis Algorithm

This section briefly explaing the features of the LAX
analysis algorithm, For details, see [38]. In this method,
a morphological dictionary is transformed into sequen-
tial logic programming languages such as ESP or Pro-
log, or into parallel logic programming languages such
as GHO. These programs can analyze Japanese sentences
without backtracking and output all ambiguities at one
time. This algorithm is based on the layered stream tech-
nigue and can be regarded as a parallel to the methed
of Eardey’s algorithm or the bottom-up Chert parsing
algorithm applied to regular grammars.

7.2 Morphological Dictionary

Figure 7 shows the format of the LAX dictionary
Definitions of morphemes that belong to the same cat-
egory are written between begin(Category Name) and
end (Category Name). Three kinds of information are
declared for each morpheme. The first is & lefi-hand fea-
ture which is the identifier of the morpheme. The sec-
ond is a righl-hand feature which indicates what kinds
of morphemes can follow that morpheme. The third is a
semantic rule which is evaluated in the second phase of
analysis. These semantic rules are written in CIL, and
semantic structures are represented in terms of PSTs.
This dictionary describes a regular grammar so that the
analyzer can be regarded as a non-deterministic finite
state automaton.

begin{Category Name)

morpheme :: Lefthand Feature
& Righthand Feature
£% Semantie Rula

end(Category Hame)

Figure T: LAX dictionary format

289

—|
[

LAX dictionary
editor

Figure 5: Configuration of the LAX system

7.3 Configuration of LAX Software Environment

Figure 8 shows the configuration of the LAX system.
The dictionary translator transforms the LTH master
dictionary into the LAX dictionary. Using the LAX
translefor, the LAX dictionary is transformed mio an
intermediate date file. The analysiz program is gener-
afed by the LAX generator from this intermediate data
file. From the user’s point of view, this intermediate data
file is identical to the LAX dictionary.

To debug the LAY dictionary, the LAX inspector pro-
vides many pieces of useful information. It has two
modes: the analysis mode and the inspection meode. In
the analysis mode, you can check the results of analy-
sis, looking at the time and the number of ambiguities
for each inpuf sentence. If the analysis fails, you can
also see which morpheme cannot be connecied with its
adjoining morpheme. In the inspection mode, you can
examine the conlents of the dictionary of the merphemes
that belong to each adjoining point of input sentences.

We can easily modily the definitions of morphemes
and add new entries by using the LAX dictionary edifor.
To medify a definition of a morpheme, we only have to
rewrite the lef-thand er right-hand features or semantic
rile in the edit window after locating the definition. To
add new definitiens, we may pick up another definition,
copy it, and rewrite it.

T.4 Morphological Grammar

Using the LAX aystem, we have been developing a
Japanese morphological grammar [35]. We have defined
about 2000 morphemes and succeeded in analyzing about
200 sentemces. A Japanese morphological grammar can

200
be developed naturally _in the LAX system.

8 SYNTACTIC AND SEMANTIC ANALYSIS

This section describes the syntactic and semantic analy-
sis part of the LTB, called the SAX system. First, in sec-
tiom 8.1, the grammar syntax and SAX semantics are rep-
resented, Then, the SAX is outlined, mainly referring to
its relationship with other LTB components. Section 5.3
briefly explains the SAX parsing method. A restricted
Definite Clause Grammar is assumed as the grammar
deseription. See [21] for a detailed description. Finally,
section 8.4 introduces the debugging tools [46) provided
by our system.

8.1 SAX Grammar Rules

Figure 9 shows the SAX grammar rules. Basically,
they are rules extended from DCG [32].

head — bodyy, {estra;} (1)
i {prefrule}, (2)
.. (3)
body,, {extra, } (4}
i {pref ruleg}, (5)
&{delayed extra}, (6)
Lele{pref rule} (7}

Figure 9: SAX grammar rules

In figure 9, head at line (1) and body; in line {1} or (4)
represent, prammeatical categories. They are presented in
the form of Prolog terms which can have optional ar.
guments. .exirg; in line (1) or (4) is the extra condi-
tion in which an optional Prolog program can be writ-
ten. delayed_exira in line (B) is also dn extra condition
called the delayed extra condition, The optional Prelog
program in the delayed exira condition s evaluated after
completion of the parsing.

SAX executes parsing bottom-up and breadib-first so
that there is some limitation on the rules. Firsily, on
the left-hand side of body, in line (1), we cannot write
any extra conditions. Secondly, the Prolog variables in
extra; should be instantiated when exfra; is evaluated.

Hules in lines (2}, {5), and (7} never fail. They are
used to calculate lezical preference. Generally, a sen-
tence has more than one interpretation. Disambiguation
of the sentence interpretations has been one of the hard-
est problems in natural language processing. Therefore,
many kinds of approaches have beem studied, such as
disambiguation with local lexical constraints [13], or dis-
ambiguation with the discourse [37]. The rules in lines
(2), (5), and (7) enable us to calculate one of the local
lexical constraints.

The SAX system supplies several itemns of information
related to the calenlation of lexical preference as follows.

1. In {pref rule;} after

pref_cat In pref.fuie,:, preference for body; which
is calculated in the rule whose head is body;.

pref In pref_rule;, preference for body; in the rule.
2, In {pref rule} after &d&

pref . CAT Preference for the head.
prefs(i) prefin pref rule;.
3. In {prefrule} after o, or &&.

super-cat_set The set of grammatical categories
which includes the head as its partial tree.

next.pos The grammatical category ahead of the
right most leaf node of the tree whose root node
i5 head.

Another feature of the SAX is that Gapping Gram-
mar {G3E) [8][9] can be written. (GG is the grammar
formalism in which a discontinuous sequence of gram-
mar categories can be written. It is performed with the
expansion of the SAX parsing algorithm[20][22].

Generally, the grammar rules in GG are as follows.

g = ay,skip(Gy),

O, Sk G), 2.

In the rules, @ and o; are a sequence of grammatjcal
categories whose length is greater than 0. skip(G;) is
a special symbol in GG, # 15 & sequence of symbols in-
cluding some grammatical categories and skip(G;). In
B, every skip((7;) in the rule body should be included.
In the course of the parsing, skip(G;) can be matched to
any grammaiical cafegory, and a skip(G;) in § should
represent the same grammatical category of a skip{G;)
in the rule body.

In SAX, rules for GG are analyzed bottom-up so that
there are limitations and expansion for the GG rules in
the SAX aa follows.

* o should not be empty.
» GG rules sheuld not be applied recursively.
s skip; can be matched with grammatical categories.

» skip; is represented as follows.
skip(i) or skip(i, 5)
i is & natural mumber, and £ is the set of gram-
matical categories which skip matches or does not
match. Specifically, 5 is either of the following
+{ay,..., 8.} representing skip can be matched
only with @y, or, ..., or a,, or ={body,,. .., body.}
representing skip ceonot be matched with bediyy,
and, ..., and body,.

8.2 SAX System

Figure 10 shows the configuration of the SAX. Given
grammar rules are translated into a parsing pro-
gram written in ESP. In these grammar rules, CIL
notations are allowed in DCG% extra condition,
a0 that many CIL functions are available. We have
developed Japanese grammar rules, using CIL's built-
in predicate for describing syntactic and semantic
constraints, and for constructing semantic struc-
fure.

The (ranslated parsing program receives the re-
sults of morphological and semantic analysis and
parses at high speed. Semantic representation is
constructed simultaneously from the semantic n-
formation supplied by lexical semantic processing.

Some other tools, such as the grammar debugger,
and graphic display utility, are provided for effec-
tive development of the grammar.

O system
Results of morphological
.I\- analysis
BAX panier
FAX a
EAX debugges
Parsing trae Hemantic repressnistion

Figure 10: Configuration of the SAX system

8.3 Parsing Method

The SAX paming algorithm was devised for par-
rallel parsing [21]. However, it turned out to work
efficiently in sequential implementation as well [31}.
The system employs bottom-up parsing with top-
down predietion. The major advantages of our sys-
tem are that the system works bottom-up: there-
fore, the left-recursive rules do not cause problems,
and the parsing process does not involve backirack-
ing, which means that there is no redundant con-
struction of syntactic structures.

291
8.4 Debugging Environment

Grammar debugging tools are indispensable for the
de*.felcpmmt of pra.{:tica.] Eramimar rules. The SAX
provides twe types of debugging tools.

The first is an interactive tracer, which shows the
parsing process, displaying the rules currently be-
:i.l'.I.E appliud. Az with the Pm]ug tracer, the user
can control the trace by issuing commands such as
“gleip” and “leap”. However, this kind of debug-
ging tool is not very suitable for the SAX since it
is hard to follow the process of parsing breadth-
first, and in order to use the tracer, the nser needs
to koow the SAX parsing mechanism.

The second is an algorithmic debugger on DOG.
Using this tool, the user interacts with the system
and tries to construct the expecied parsing tree
from input words accerding te the grammar rules.
The user specifies the start point and end point of
the sequence of words, and the aystemn parses the
sequence. If the parsing succesds, the system dis-
plays the abtained root categories of the resultant
trees.

If the user does not find the expected cafegory in
them, an error is in the grammar rules that are to
be applisd when parsing that sequence of words.
In this way, the user can narrow the candidates for
the wrong rule.

9 JAPANESE GENERATTION

The Japanese geperation module provides a fune-
tion for generating sentences, and fools for cus-
tomizing the module itself. This section describes
the basic concept of sentence generation and kools
in the module.

9.1 Aim and Features of the Japanese Gen-
eration Module

The Japanese synthesis module generates sentences
from “intermediate representation”. The interme-
diate representation 18 basically a syntactic struc-
ture and contains all the information needed to
generate sentenses. The module does not reshape
ite sutput using contextual information.

One of the important goals of designing the mod-
ule 15 to enable it 1o be used 25 an NLS interface
in various systems such as expert systems, so the
rule definition such as grammar in it must be easy
to customize. We made customization easy by in-
troducing the following features.

— Most of the generating process is done by maero
eXpansion.

292

~ Tools for tracing the process and making data
are provided.

8.2 Sentence Generation as Macro Expan-
sion

Although the module does not process contextual
information, sometimes users may want to input
abstract information such as deep struclure (or a
thematic role). The module allows users to include
such information in the intermediate represents-
tion, and regards it as a macro expression in the
syntactic structure.

Figure 11 shows the sentence generation flow. Firal,
the macro expander expands macro expression in
the intermediate representation and mekes a pure
syntactic structure. In this phase, the macro ex-
pander uses several macro definitions and a lexicon,
Each macro definition is a rule for translating a
macre expression Lo part of the syntactic struc
ture. The lexicon gives lexical information such
as the correspondence between thematic roles and
case markers.. The next phase is to translate the
syntactic structure to the output sentence (char-
acter string). In this phase, the string synthesizer
picks up lexical information in the syntactic struc-
ture, applies a morphological rule to it, and inflects
each word.

Intermediate representation

/ Macro ﬂa:pand.cr
Macro definition

Macio definition
Macro definition ||

+~— Lexicon

Syntactic structure (binary tree)

- |

String synthesizer |- Morphological rules
L~

J

Ouiput sentence

Figure 11: Sentence generation

The advantages of this method are:

— Users can design the intermediate representation
that they want, by changing the macro definition.

— By defining macres on another definition, inter-
mediate representation can be constructed hier-
archically.

- Users can specify mformation roughly or pre-
cisely in intermediate representation. For exam-
ple, if they want to specify a strict word order,
they may write it in pure syntactic structure,
but if they do not need lo specily it as exactly,
they may write it in terms of a more abstract
expression.

It has been said that the syntactic structure of a
Japanese sentence is clearly represemted by a bi-
nary tree {12]. In the Japanese generation module,
the syntactic structure is represented in a binary
tres. Figure 12 shows a simplified example of the
Japanese phrase “Kodomo wo gakkd e ika seru (to
make a child go to school)” written in the form of
& binary tree,

THE T SR ~ 7 +5
child -ACGC school -DEST B9 CAUSE

Figure 12: Example of syntactic structure

Although users can define the syntax of intermedi-
ate representation, the slanderd mecros are already
defined in the module [11]. The definition includes
several rules, including the following,

= A mesning role may be expanded into a binary
tree with a case marker.

— Voice information may change case markers.

— Auxiliaries are added to the tree when aspect,
tense, or modality information ia given.

Figure 13 shows the intermediate representation of
the sentence shown in Figure 12 using standard
macros.

8.3 Tools

The configuration of the whole generation module,
including the tools, is shown in Figure 14. Thus,
the generation module includes the following two
parls besides the generation engine.

Debugger: Traces the execution of the generation
engine (macro expander and string synthesizer),
switches the rules (lexicon, macro definition, and
morphological rule), and reads the input data
(intermediate representation).

{HTH;LMH'T%}.

T ex go

w—n [{Fa# [{#E [(8% T},

rols agt comp lax child
e [{mam [(Wi [2})},
dest comp lex sachool

Fad A g}

volcae causative

Figure 13: Exa.m[:;]e of intermediate representation

L

Generation engine

t
Debugger Intermediate
representation

1 I
LEKML;W Morphological
g definiti
- | rlu ions r11|lc=
i

Editar

Figure 14: Configeration of the Japanese generation
module -

Editor: Edits the rules and input data.
These tools have the following features,

— The debugger is built on the CIL debugger. Tts
window, mounse and key manipulation are the
same as those of CIL.

= The editor is built on pmacs [17]. [ts key assign-
ments are the same as those of pmacs. It checks
and guides the syntax of the datd at the users
request.

10 CONCLUSION

Current ressarch subjects in the LTH are as follows.

= Filling up the more comfortable programming
environments such as debugger, inspector, and
pretiy printer. To improve the programming en-
vironments, they should be evaluated in terms of
performance and competence by users and devel-
opers.

— Building up more convenient linguistic databases
and interface facilities for them.

293

- Installation of the LTB on the parallel logic pro-
gramming language GHC which runs on the multi-
ESI [23] or PIM. Some LTB tocls have been in-
stalled on the multi-P3E for experiments.

— Supplements of built-in predicates such as con-
straint unification [13][14][15]/16], Boolean Griobner
base [34], type inference [4] [33], and finite do-
mains [10], which execute fundamental inferences
for discourse processing,

Current research and development in the LTB are
supported by & working group (WG-58ig2) at ICOT
which is chaired by Professor Hozumi Tanaka of the
Tekyo Institute of Technology.

There is much room for improvements in the LTH.
Improvements and evaluations of the LTE will be
carried out mainly by ICOT and WE-5ig2 researchers.

To supplement built-in predicates or functions, we
need to study implicit rules of discourse [5] [18]
[19] [36] [39] in more detail. In discourse analy-
ais, we have not yet found or created explicit rules,
which are exemplified by sufficient numbers of ex-
perimental results. We should be able to use some
general tools such as constraint unification and the
Boolean Geobner base solver, and experimental tools
guch as the KWIC. These tools will be mnstalled in
the LTB.

After finding some rules, we will research basic
core constraints and solution mechanizms for them.
These mechanisms will then be new tools for the
LTE.

ACKNOWLEDGEMENTS

We would like to thank Professor Hozumi Tanaka
at Tokyo Institute of Technology and the members
of working group Sig-2 for their nbensive discus-
gions and suggestions. We would also like to thank
Dr. PFuchi, the direclor of [COT Research Lab-
oratory, and Dr. Uchida, the chief of the Second
Research Laboratory at I0OT, for their encourage-
ment and support for this work.

References

1] T. Amanuma, T. Suzuki, T. Okunishi, and
K. Mukai. CIL Programming kankyd (CIL
Programming Environment (in Japanese)). In
Proceedings of the 2nd Annual Conference of
Jopanese Seciely for Artificial Intelligence,
pages 211-214, 1988,

i2] J. Barwise. Recent Developments in Situation
Semantics. In M. Nagao, editor, Language and
Artificial Intelligence, pages 387-399, Amster-
dam, 1987, North-Holland.

294

[3] J. Barwise and J. Perry. Situations and Aifi-
fudes. MIT Press, Cambridge, 1983.

[4] L. Cardelli. Typechecking Dependent Types
and Subtypes. Technical report, DEC Systems
Besearch Center, 1987,

[5] D. Carter. Inferpreting anaphors in natural
language tezts. Ellis Horwood Series in Artifi-
cial Intelligence. Elliz Horwood, 1987,

[6] T. Chikayama. ESP Reference Manual, Tech-
nical Report 044, ICOT, 1984,

[7] A. Colmeraner. FProlog-II: Reference Man-
uzl and Theoretical Model. Internal re-
port, Group Intelligence Artificielle, Univer-
sité dAlx-Marseille 1T, 1882.

[8] V. Dahl. More on Gapping Grammar. In Fro-
ceedings of the Mnternational Conference on
FGCS "84, pages 669-677, Tokyo, 1984,

[8] V. Dahl and H. Abramson. On Gapping
Grammar. In Proceedings of Znd [CLP, pages
T7—88, Sweden, 1084,

[10] M. Dincbas, H. Simonis, and P.V. Henlen-
tyek, Extending equation solving and con-

straint handling in logic programming, Inter-

nal Report IR-LP-2203, ECRC, 1587,

[11] T. Ikeda et al. Sentence generation in LTB (in
Japanese). In Sth Conference Proceedings of
Japan Softwere Science and Technology, 1988,

[12] T. Gunji. Japanese Phrase Strucfure Gram-
mar. Dordrecht D. Heidel, 1987,

[13] K. Hasida. Conditioned Unification for Nat-
ural Language Processing., In Proceedings of
the 11th COLING, pages 85-8T7, 1986.

[14] K. Hasida. Dependency Propagation: A Uni-
fied Theory of Sentence Comprehension and
Gleneration. In Proceedings of the 10th ITCAL
pages B64-670, 1987.

[15] K. Hasida. Izondenpa (Dependency Prop-

agation (in Jopanese)). In Proceedings of
the 20tk Programming Symposiun, pages 147-
158, 1988, _

[16] K. Hasida and H. Sirai. Zyokentsuki tan-itsa-
ka (Conditioned Unification (in Japanese)).
Computer Software, 3:28-38, 1586,

[17] ICOT. PSI/SIMPOS Editor Manual. 1988,

[18] M. Kameyama. Zero Anaphora @ The case
of Japanese. PhD thesis, Stanford University,
1984, ' :

[29] K. Kimura, R. Sugimura, T. Takizuka, and
K. Mukai. Danwa Rikai Jikken System DT-
ALS Dai 2-han no Sekkel to Jissd {Design
and Implementation of Discourse Understand-
ing System DUALS-v2 (in fapanese)). In Srd

- Conference Proceedings of Japan Sociely for
Software Science and Technology, pages 33—
36, Tokyo, 1956.

[20] Y. Matsumoto. Remri Bunpd no Heirefsu
Iobun Kaiseki (Parallel Analysis of Logic
Grammars (in Japanese)). TPSJ, 20(4):335-
341, 1988.

[21] Y. Matsumoto and R. Sugimura, A Parsing
System Based on Logic Programming. In Pro-
ceedings of LJCAT 87, 1987,

[22] ¥. Matsumoto and R. Sugimura. Kébun
Kaiseki System SAX no tameno Bunpd Ki-
jutsu Gengo [Grammar Description Language
for the SAX Parsing System (in Japanese)). [n
5th Conference Proceedings of Japan Society
for Software Science and Technology, pages
77-80, Tokyo, 1988,

23] T. Miyazaki and K. Taki. Multi-PSI ni okeru
Flat GHC no Jitsugen Hashiki (Installation of
Flat GHC on Multi-P5I (in Japanese)). Tech-
nical Report 190, ICOT, 1986.

[24] K. Moricka, Goi no Keisei (Formation of a Vo-
cabulary (in Japanese)), volume 1 of Gendai-
go Kenkyuu. Meiji Shoin, 1987,

[25] K. Mukai. Horn Clause Logic with Parameter-
iged Types for Situation Semantics Program-
ming. Technical Report 101, ICOT, 1085,

[26] K. Mukai. Unification over Complex Indtermi-
nates in. Prolog. Technical Report 113, ICOT,
15935, -

[27] K. Mukai. Anadic Tuples in Prolog. Technical
Report 239, ICOT, 1987,

[28] K. Mukai. A System of Logic Programming
for Linguistic Analysis based on Situation Se-
mantics. In Proceedings of the workshop on

. semantic issues in human and computer lan-
guages. CSLI, 1987,

[29] K. Mukai. Partially Specified Term in Logic
Programming for Linguistic Analysis. In Pro-
ceedings of the International Conference on
FGCS 88, 1988,

[30} K. Mukai and H. Yasulkawa. Compler Inde-
terminales in Prolog and ils Application fo
Discourse Models, volume 3, pages 441-466.
OHMUSHA, ltd. and Spring Verlag, 1985.

[31] T. Okunishi, R. Sugimura, Y. Malsumote,
N. Tamura, T. Kamiwaki, and H. Tanaka.
Comparison of Logic Programming Based Nal-
wral Language Parsing Systems, volume 2,
pages 1-14. North-Holland, v. dahl edition,
1988,

[32] F. Pereira and D.H.D. Warren. Definite clause
grammars for language analysis - a survey of

the formalism and a comparison with aug-
menfed transition networks. Artificial Tnfel-
figence, 13:231-278, 1980, ’

[33] J. Reynoolds. Three approaches to type struc-
tures. Lecture Note in Computer Scienece, vol-
ume 185, Springer Verlag, 1985,

[34] K. Sakai and Y. Sato. Boolean Grébner bases.
Technical Memo 488, ICOT, 1988,

[35] H. Sano, K. Akasaka, Y. Kubo, and R. Sug-
imura. Go-kdsei ni motoduku Keitaiso Kaiseki
(Morphelogical Analysis with Derivation and
Inflection {:'n Ja.paufnc}]. In ﬁwce;fmga 4;|_ir
the 38th Conference of Information Process-
ing Seciely of Japan, 1988,

[36] R. Sugimura. Japanese Honorifics and Stu-
ation Semantics. In Proceedings of the 11th
COLING, pages 507-510, 1986.

[37] R. Sugimura. FRonri-gata Bunpéd ni okeru
Seivaku Kaiseki (Constraint Analysis on Logic
Grammars (in Jepenese)). In Proceedings of
the 2nd Annual Conference of Japonese soci-
ety for Artificial Intelligence, pages 427—430.
Japanese Society for Artificial Intelligence,
1988. a prize-winning paper.

[38] R. Sugimura, K. Akasala, Y. Kube, H. Sano,
and Y. Matsumots. Renn-pate Ketaiso
Kaiseki LAX (Logic Based Lexical Analyzer
LAX (in Japanese)). In Proceedings of the
Logic Programming Conference ‘88, pages
213-222. ICOT, 1988, English version will ap-
pear in The Lecture Note on Computer Sci-
ence.

[39] K. Sugimura, I Miyoshi, and K K. Mukai.
Constraint Analysiz on Japanese Modifying
Relations, volume [1, pages 93-106. North-
Holland, 1958.

[40] T. Takizuka and R. Sugimura. Ltb Shell
no Kései [Configurationof LTE Shefl (in
Japanese)), In Proceedings of the 37th Con-
ference of Informafion Processing Seciety of
Japan, pages 1074-1075, 1988,

[41] T. Takizuka, Y. Tanaka, and R. Sugimura.
LTB Master Jisho ne Kései (Configuration of
LTB Master Dictionary (in Jopanese)). In
Froceedings of Legic end Natural Language
Conference. Japan Society for Software Sci-
ence and Technology, 1987,

[42] Y. Tanaka and T. Yoshioka. Overview of the
Dictionary and Lexical Knowledge Base Re
search. In Proceedings of the International
Conference on FGCS '88, 1COT, 1988,

[43] J. Tsujii. Bun-kaiseki system KGW+P
no seigyo hésiki (Controlling Methodology

295

af Sentence Analysis System KGWHP (in
Japanese)). In fth Conference Proceedings of
Japan Society for Software Science and Tech-
nology, pages B—4-3, 1987,

[44] K. Ueda. Guarded Horn Clauses. Technical
Report 103, ICOT, 1985.

[45] M. Watanabe. Kokuge kébun-ron (Syntax of
Japanese (in Jopanese)). Hakama Shobd,
1971,

46] S. Yamasaki, K. Sugimura, K. Akasaka, and
Y. Matsumoto. Kébun Kaiseki System SAX
na Debug Kankyou (Debugging Environment
of SAX System (in Jepanese)). In Proceedings
of the 2ad Annual Conference of Japanese So-
ciety for Artificial Intelligence, pages 411-414,
1988,

