PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
OM FIFTH GENERATION COMPUTER SYSTEMS 1988,
edited by ICOT, © ICOT, 1963

OVERVIEW OF THE KNOWLEDGE BASE MANAGEMENT SYSTEM
(KAPPA)

Kazumasa Yokota? Moto Kawamura, Atsushi Kanaegami

Institute for New Generation Computer Technology (ICOT)
4-28, Mita 1-chome, Minato-lku, Tokyo 108, Japan

ABSTRACT

This is an overview of the knowledge base manapge-
ment system called Kappa, one of the research and de-
velopment activities performed at 00T on databases
and knowledge bases. The underlying data medel is
& nested relational model, and some complex data
maodels are constructed and under consideration on the
model. Deductive databases are construcled as one of
knowledge base mechanizms and further extensions are
planned within the framework of deductive and object-
oriented databases. In this paper, we overview not only
the current status of the system and the project but
also their conception and activities related to them,
and discuss the framework of deductive and object-
oriented databases.

1 INTRODUCTION

Many knowledze information processing systems
(KIPSs) have been developed and planned for the tar-
get of the Fifth Generation Computer System (FGCS)
project. Most of them presuppose smaller or larger
databases or knowledge bases, reflecting their own re-
quirements, which are not usually based on traditional
data models but on more complex and higher lewel
data (knowledge) models. The term ‘knowledge bases’
generally means convenient black bexes with some
kind of intelligence in each application, but that are
located centrally, Unlike ‘database’, whose meaning is
specific, 'knowledge base’ is & very general term whose
meaning ranges from naive databases to emulation of
the human brain, and furthermore tends to depend on
specific domains. At ICOT, under the various require-
ments of KIPSs and their environments, many kinds
of research and development on database and knowl-
edge base machines (DBMs and KBMs) and database
and knowledge base management systems (DBMSs and
KBMSs) have been done from different perspectives
[Itoh86, Ttoh*88] and will be integrated during the fi-
nal stage of the FGCS project.

*s-mail: {enea.intia kddlab,mit-sddie ukeHicotkyoketa:
kyokotafhicot jp@relay.ce.net

Generally speaking, in cur environment, an approach
for knowledge-bases should be based on database, logic
programming and artificial intelligence technologies,
and should ~work towards their integration, regard-
ing efficient performance, modeling power, clear and
formal semantics, deductive mcchmiam. abstraction
mechanism and parvallel processing. In other words,
the approach is a way of direct or declarative rep-
resenlalion of eobjects in each domain of KIPSs and
efficient processing of those objects on that level, with-
out translation into the lower level language. As long
a5 there is a problem of guantity, whether knowledge
bases are stored in main memory or secondary mem-
ory, knowledge bases are not different from databases
but are a developed or extended form of them.

The Kappr (Knowledge APPlication-oriented Ad-
vanced Database and Knowledge Base Management
System) project started om September, 1985 as ome
of the KBMS projects at [COT. The project was ded-
icated to the following envircmments: & personal se-
quentizal inference machine (PSI), its programming and
operating system (SIMPOS), and a logic programming
language (ESP) with ‘cbject’ concept; and multi-PSI
and parallel inference machine (PIM) [Goto*88], its
operating system (PIMOS) [Chik*88] and a parallel
language (KL1} based on GHC. Under the first en-
vironment, the prototype system called Kappe-1 has
already worked not only as an experiment of research
and development on KBMSs but also as tools for vari-
ous applications.

This paper is an overview of the activilies on
KBMS, focesing on the Kappa project. Section 2
explaine typical applications at ICOT, the basic pol-

Cicy for the KBMS, reflecting them, and the over-

all configuration. Section 3 describes some features
of the database layer underlying the Kappa system,
and briefly explains the architecture and some exten-
sions under consideration. The knowledge base layer
of Kappa is being constructed and designed on the
database layer in the framework of deductive and
object-oriented databases. Section 4 overviews the de-
ductive features and Section 5 discusses the framework
of deductive and object-oriented databases. Section 6

outlines the Kappa project and its related projects on
the knowledge base systems at 1COT,

2 KNOWLEDGE BASES AT ICOT

EKnowledge base facilities play an important rele in
meny KIPSs, and are expected to make each knowl
cdge base easy to create and utilize. From ancther
point of view, it is very difficult to discriminate be-
tween data and knowledge, so free access is required
for both data and knowledge from knowledge bases.
For such purposes, Kappa project was planned to
provide experimental environments of databases and
knowledge bases for many applications. In thai sense,
the underlying frameworks or constraints are not inde-
pendent of KIPS: developed or planned at ICOT, and
are also not merely for basic research. In this section,
we explain some requirements of KIPSs and the design
principles of Kappa based on them.

2.1 Typical Applications

As Kappa presupposes conditions required by some
applications, its wniversality, which reserves the in-
dependence of the applications’ specific domains, de-
pends on selection of applications from the viewpoints
of importance, relevance, prospects and requisition of
knowledge bases used by KIPSs. We analyzed many
KIFSs in our environments and considered two appli-
cations, which are expected to be kernel systems in
FGOS project, as typical and decided to address their
requirements in the design of Kappa.

The first application is a proof checking sys-
tem called computer aided proof [C4F) [Hirose™87,
SakaiB8], which requires various kinds of mathematical
knowledge bases. The system has functions of theorem
prover, term rewriting systemn and proof compiler (re-
alizer), and iz not only an artificial intelligence system
but also expected to be one of the kernels of -vari-
ous problem selving systems. The system s based on
Gentzen’s natural deduction system (NK) with addi-
tional inference rules, and ifs proofl description lan-
guage {PDL) reflects the inference mechanism. Math-
ematical knowledge is classified into the form of texts
(axioms, definitions, theorems and proofs) written in
PDL, and the form of terms (prool trees during proof
checking, and inference rules extracted from checked or
assumed theorems). The unit of mathematical knowl-
edge is a theory and the knowledge base constitutes a
directed acyclic graph by reference relation between
theories, There are various kinds of databases and
knowledge bases in the system. In particular the infer-
ence mechanism, for a forward and backward reasoning
mechanist during filling the gap between lines in a
proof text, corresponds to query processing in dedue-
tive databases.

Another -application is natural language processing

253

systems, which play an important role in many KIPSs.
These systems require many large electronic dictionar-
ies as indispensable parts [Ishit85, TaYofs]. These dic-
lionaries are under construction and are a big step to-
wards building huge knowledge bases. There are three
kinds of dictionary:

Electronic word dictionaries, each of which has
a few hundred thousand words. Rach dictionary
constitubes a typical nested relation.

s A concept dictionary, which is & classification hier-
* archy of IS_A relations with several hundred thon-
sand concepts.

® A thesaurus in the form of a semantic network,
which is also an intermediate form between a word
dictionary and a concept dictionary.

Furthermore, as many natural language processing sys-
tems are written in a logic programming language
called CIL based on situation semanties [Mukaig7], fa-
miliarity with CIL is also expected. In this domain, we
face a problem of quantity as well as one of complex
data structure.

2.2 Design Policy for the Kappa System

Congidering the above requirements, a policy for the
design of the Kappa system was st up:

o In our environment, knowledge bases should
contain databases, and be considered as the
database's extension. '

o The system consists of three layers: database,
knowledge base and user interface layers. Users can
define each interface of the layers for their own
applications and access any of them, that is, each
layer should be extensible.

¢ The underlying data model of the database layer
is a nested relational model, and some structured
models such as semantic nefwork and classification
hierarchy are supported on nested relations in the
layer. Terms expressing rules or struetured data
should be treated as a data type and be retrieved
by unification and pattern matching,

» At least in the database layer, efficient perfor-
mance for processing a large quantity of data is
necessaty to provide experimental environments
for many KIPSs. Furthermore, as one of our en-
vironments consists of many personal workstations
{P51s) connected by a network, the systam should
be a distributed DBMS and KBMS, which fea-
tures are different from some features of tradi-
tional centralized DBMSs.

254

* The knowledge base layver consists of some knowl-
edge representation languages and various kinds
of experimental modules based on them, such
as deductive mechanism and object management
in the framework of deductive and object-oriented

databases.

The user interface layer provides convenient inter-
faces and experimental features with graphie facil-
ities, a structured editor (shared with CAP), and
semi-antomatic design tools for various kinds of
structured data.

s For soltware development, we employ object con-
cept in the physical and logical design, such as
database object, relation object, tuple object and
schema object, This is very different from conven-
tional designs of DEMSs,

2.3 Configuration of the KBMS

According to the above policy, the first version of the
prototype system (Kappa-I) was implemented in Au-
gust 1987 The second version called Kappa-II is now
being built and will be widely released next April (see
Section 6, for details). Furthermore the Kappa system
and other systems for DBMS and KBMS will be inte-
grated into one system at the final stage of the FGCS
project. The current overall configuration is shown in
the following picture:

([Jser Tnterface Layer B
[Fncwledge Base Layer

DD(Prolog,CRL) || Semantic Net|| DD+00D |
Database Layer

Class. H"I'-’-I‘ﬂtﬂh}’l Semantic Net || Other Models
l Mested Helations
I{appaFileSystemJ

In the picture ‘DI and ‘000" mean deductive
databases and object-oriented databases respectively,
In the following sections, we explain the database layer
and deductive database in the knowledge base layer,
and discuss the conception of deductive and object-
oricnted databases. :

3 DATABASES FOR KNOWLEDGE BASES

The database layer is eupected to manage various
kinds of structured data and to process them effi-
clently. To cope with such requirements, we employ
some data models in the layer. The underlying one is
a nested relational model, and some other modelz are
supported on the model,

3.1 Nested Relations

The advantages of a nested relational model over an
ordinary relational model are that it offers more effi-
cient representation and processing, In the ten years
since the advantages were pointed out in [MakiT7),
there have been many works but few implementations
[Verso86, Dadam®86, ScWeB6, ScSc87, DeGuss). It is
also widely known that a nested relational model is
better than a relational model for new applications
such as engineering, office and geographical databases;
and many commercial DBMSs also employ the idea
from a practical point of view. However, as there
are some varianis of the name, the formal semantics
ghould be made clear.

A nested tuple is defined as a subclass of ohjects,
which notation is according to CRL [Yokota®8]: as-
sume a set (0 of atomic objects, a sef A of attribute
names, a tuple constructor [, |, and a set constructor
{, }. O may contain a special object w to represent ex-
plicitly a void or null object, which is used for partial
information of a tuple object. An object is defined as
followrs:

(1) Any atomic ohject is an object.

(2) If 04,---,0n are objects, then {og, -+, 0.} is an
object, which i3 called a set pbject.

(3) If ay,-+-,a are different attribute names and
01, -, 0y are objects, [e1/er,---,a./04] is an ob-
ject, which is called a tuple object. a;/o; is called a

tuple element,

If a set object has only one element, ihe set brackets
are omitted. A tuple ebhject is called a nested tuple, if
all elements of each set object contained in the tuple
object are compatible mutually and the structure of
attribute names of a tuple object comstitutes a finite
tree domain without duplication of attribute names,
In the case, an atomic object is rather called an in-
dividual. A nested relation is a sel object consisting
of nested tuples, each of which has struciure compat-
ible with other tuples, and the schema is defined as a-
type (abstract structure) defined in Section 5.2. And a
nested relational dalabase is & tuple object consisting of
pairs of a relation (attribute) name and a nested rela-
tion. It is sasy to see that these definitions correspond
with those of ordinary nested relations.

In this formwulalion, we can give two kinds of se-
mantics to a set constructor, especially connected with
row-nest and row-unnest operations. Assume there
are two tuples: [a/e;,bf{es,5)] and [afe, b/ {es, e}]
There are two postible tuples after application of a

‘tow-mest operation to the given tuples:

lafes, bf{es,en,ea}], or
[a/e1, b/{{e2, ea}, {eas cqtH.

Each tuple is resulted by a set union or a set-of (set
grouping) operation respectively. While an (extended)
NF? model [Dadam*86, ScWeB6] employs the second
semantics, Verso model [Verso86)] employs the first.
LDL [Beeri*37] is also considered as the second case.
We take the first, and give the semantics of a nested
tuple as a set of only column-nested tuples, which is
independent of row-nest and row-unnest operation, Un-
der the semantics, users do not need to be conscious
of the structure when they query a database. For ex-
ample, according to the semantics, all of the following
relations

Ri: {lafe, bfes), [af ez, bfes), [afea, bfea)},
Ra: {[a/{er, c2}, b/ e, [afes, bfes]}, and
Ra: {[afer. bfes], [afea, b/ {es, cs}]}

have the sarne meaning, and [a/{cy, 2}, b/cq] is implied
by each of them. A nested relational model based on
such semantics is a natural extension of a relational
model, and its characteristics are more efficient repre-
sentation and more efficient processing p-erfi:-rmance.
The extended relational algebra including nest and
unnest operations is reconstructed according to the se-
mantics.

Strictly spesking, such relafions are classified into
unnormalized relations and nested relations from a
structural point of view, depending on whether the
relations can be reversible by row-unnest and row-nest
operations, and also classified inte value-oriented rela-
tions and expression-oriented relations from an opera-
tional point of view, depending on whether sets have
intrinsic meaning or not [Miura87]. Although in this
context we do not discriminate the differences explic-
itly, the system supporis the both, From an opera-
tional point of view, the extended algebra suppresses
treatment of subtuples for selection, set operations,
nest and unnest operations if the relations are value-
oriented; the algebra manipulates subluples according
to the above semantics if the relations are expression-
oriented. From a structural point of view, for nested
relations in the strict sense, the system should support
some autormnatic transformation from a given relation
to the corresponding ‘normal form' by using seman-
tic constraints such as multi-value dependency; this is
under consideration.

The actual model has some additional features for
practical use: list and bag constructors, term as a data
type and its retrieval by unification or pattern match-
ing, and use of a constraint logic programming lan-
guage CAL [Aibat88] as generation or integrity rules
for algebraic constraints. The extended relational al-
gebra corresponds to such features, and furthermore
supports some convenient operators: For example, let
R be a nested relation, 5 be the schema and 4 be the
subschema. In an intuitive notation of the algebra, the

255
following operation

{Wﬁu Frond| 1)) gy R

is frequently used for some condition Cond that in-
cludes a subset of A. The processing of this operation
does not need to read tuples if 5% 4 has a key prop-
erly. Such an operation is supported as one algebraic
operator for efficient processing,

Further extensions for nested relations are now un-
der consideration: introduction of set grouping seman-
tics and its corresponding operations, semi-automatic
design support by using semantic constraints, paral-
lel processing for Kappa-P (see Section 6), and some
motre built-in functions both for practical use and for
efficient processing,

3.2 For More Structured Data

While & nested relational model is flexible and efficient
for structured data uwsed by many KIPSs, it fails to
represent semantic relations between entities (objects
or tuples). In practice, for the purpose, two data mod-
els are supported on nested relations. The first one is a
elassification hierarchy connected by a single link such
as I5_A or HAS-A, and the second one is a semantic
network, They are very useful for a concept dictio-
nary and a thesaurus in natural language processing,
This layer gives operations only for data manipulation
(including simple inheritance) of nodes and links in
hierarchies or networks, although such structures usu-
ally need more semantic manipulation along the linke.
More semantic operations will be supparted on the up-
per knowledge base layer.

Other extensions on nested relations are being con-
sidered to provide an integrated envirenment, espe-
cially for a workstation environment: text as a data
type and combination with interface facililics such as
editors, and interfaces including a usual file interface.
In such an environment, a DBMS should confain a
usual file inteeface and provide a common interface to
secondary memory. A (nested) term relation [Itch86] is
also considered using terms as a data type. Terms are
convenient representations even with complex struc-
ture, but the semantics iz cutside the DBMS and the
operations are expensive, so only the restricted form
can be considered. In this layer, some more data mod:
els would be added, both to be practical and in order
to support the above knowledge base layer.

3.3 Some Features of the DBMS

We overview some features of the system of the
database layer. The prototype system called Kappa-I
already works for various KTPSs and the second wver-
sion called Kappa-II is under construction. In this aub-
section, we explain Kappa-IL

256

The database for nested relations resides in both
main and secondary memories. Main memory is l_.wea:l.
as a cache and as a main memory database accompa-
oying the delayed update process, For access to sec-
ondary memery, a new file system was itnplemented
in order to make it possible to assign physical disk
pages effectively and schedule physical accesses fo
them. Briefly, secondary memory for a database is
divided physically into control, index, record, tempo-
ravy, buffer-swap and log areas. The control area has
information of database identity and the physical lay-
out of the database. Fach nested tuple is encoded into
one string and stored in the record area. Data that
relate to one relation are put as close together as pos-
sible in each of index and record areas. The temporary
area is used for storing and manipulating intermediate
relations.

One of the unigue features of our system is a tu-
ple identifier (TID), which identifies with one nested
tuple. As the extended relational algebra can manipu-
late subtuples in the narrower sense of nested relations,
according to the above semantics, a real TID consists
of a set of sequences of the original TID and sub-
TIDs identifying to subtuples. Indexes contain such
sequences and support such mechanism. Intermediate
relations as subsets of the original relation are in the
form of & set of such TIDs. While unnest and nest
operations are required during set operations to reserve
the nest sequence of the schema, it is possible not
by reading the corresponding values but by using only
subTIDs. For example, assume the following relation
with one nested tuple:

{a/ky, b/ {d1,da}, f (das da}]}-

For queries & = d; and ¢ = dy, the resulting relations
are as follows:

{[a/ky, b/d1, e/ {ds,ds}]}, and
{[ﬂ:.'llkls b.l'r{dhd'i}'s E:jrlia.]]'

I a union cperation is applied to these relations, ac-
cording to the above semantics, the result is

{la/k1, b/ dy,cf {da,da}), [@f ku, bfdy,cfds]}, or
{la/ky, b/ {dy,ds}, ¢/ da), [af by, b/ dz, c/dy] }s

where ek is not a tuple’s key but a key of a set
of tuples, whereas Verso generates the original rela-
tion to reserve the property of a tuple's key. Which
relation should be taken depends on the nesting ordes
between a and b and the processing does not need
to read tuples. Such use of identifiers is similar with
ANDA [DeGu88], but the index structure is different:
in our system, indexes are separate for each atiribute,
and each index entry contains a set of homogeneous
sequences of a TID and subTIDs.

Familiar database facilities such as resource manage-
ment, concurrency control and user management are

of course equipped. For distributed facility, a server
DBMS is assigned in cach domain in PSl-network and
contrals all databases in the domain. Features of a dis-
tributed DBMS such as two phase commit and replica-
tion are not supported because they are not required
s0 much in a personal workstation environment.

As the system is written in ESP, its object concept
is used in the design and the development, and make
the system simpler. Various logical elements such as a
database, relations, scts, tuples;, schematla and so on
are all in the form of objects, and are thrown mutu-
ally between modules, which are alse in the form of
objects. An interface between user programs and the
system s defined as methods of objects. There are
two kinds of methods: system built-in methods such as
extended relational algebra, and user-defined methods,
Users can define any interface in the form of meth-
ods of an object for their applications and register the
ohject to the system.

4 DEDUCTIVE DATABASES

The knowledge base layer consists of some subsystems
such as deductive mechanism based on some languages,
and inference mechanism of more structured data.
Each deductive and inference mechanism is provided
according to each knowledge representation language.
We focus on the dednctive database (D) mechanism
in this section and discuss structured data in next sec-
tion.

A DD iz an extension of a relational database
in the light of logic. In other words a DD is the
proof-theoretic reconstruction of a relational database
[GMN&4]. We consider DDs as a first step towards
knowledge bases. As mentioned in Section 2, CAP sys-
temn is one of the applications that needs deductive
mechanism during proof checking. We have developed
the prototype system based on definite clauses which
correspond to relations without a set constructor as a
proper subelass of nested relations, and we are now de-
veloping query processing based on CRL for a subclass
of nested relaticns. '

In the first step, we implemented query processing
mechanism based on definite clavses: sideways in-
formation passing [Mlman83), generalired magic sefs
[BeRaBT] and semi-naive evalvation [Ban86). We plan
to combine it with the CAP system. Some exten-
sions are mow under consideration: query optimiza-
tion called Horn clauses transformation by resirictor
{HCT/R) [Miya*88] in less restricted form than gen-
eralized magic sels, query processing by using seman-
tic relations such as equivalence relation [SakamaS8),
query evaluation for stratified databases onder the
standard model semantics [Seki88], indefinite answer
as a get of constraints combined with CAL [Aiba*88],
and integrity constraint for update of DD,

The next step aims at deductive mechanism on
nested -relations, for which we proposed a logic pro-
gramming language called CRL [Yokotad). It uses an
attribute-valued notation instead of a predicate nota-
tion, Assume a set of variables besides the symbols of
the nested tuples, the term is defined as follows:

(1) An atomic object ¢ is a term,
(1"} A variable X 5 a term,

{2) H #y,- -8, are terms, then {{1,---,8.} is a term,
which is called a zef ferm,

(3) If ay,- - -, &, are atiribute names and #;, -+, &, are
terms, then lay/f), -+, a./t.} is 2 term, which is
called & duple ferm,

This atiribute-valued notation s an extension of a
usual predicate notation by introducing & set of some
attribute names.:

Pt 1) = [30/p. 81/t - S/t

where 30,%1,-.-.%n are newly intraduced attribute
names. The advantages are flexibility in the position
and the number of arguments, and natural representa-
tion of colurnn and row nesting tuples by set and tuple
construetars. The same restrictions as nested tuples
are also imposed on the terms for nested relations. Fur-
thermore the notation can be used for more structured
data (see Section 5.2).

For the semantics of the term, corresponding to the
semantics of nested tuples, a term is mapped inte a
set of partially tagged trees (PTTs), each of which is
defined as a partial function from a set of leaves of
a tree domain of attribute names to a set of atomic
objects without a void object: for & set M of PTTs, a
variable assignment 7 and a tuple t,

Mgl et e tpe M.

While a PTT i given for the semantics of CIL
[Mukai 7}, the term in this case is interpreted as a set
of PTTs because of the set constructor, The semantics
of the terms reserves the semantics of nested tuples.
According to the semantics, row-nesl and row-unnest
operations correspond to a distributive law under an
algebraic structure with tuple and set constructors:

{lafer. b/ {ca, ea}]} # {la/cr, bfeal, [a/c1, b/ cs]}-

Hence the syntax of terms is restricted to a multi-
valued level so that unification can be made decid-
able and a logic programming lanpuage constructed,
although the database with only ground terms [nested
tuples) may have more deeply mested tuples. Unifica-
tion hetween the terms are defined by merge (overlap-
ping) of tree domains of aliribule pames, sel inlersec-
tion between subterms of set type, which reduced to
non-empty set, and atomie object identity.

257

A program clense s a pair of 2 tuple term ¢ and a
seb {ty,- -, 1.} of tuple terms. A pair (£, {{y,--+,1,}) is
written as follows:

t— !11"'1-!:?\&-

A CRL program is a set of clauses. And a goal is
a set of tuple terms g¢,++,{n, which is written as
= gy, 0w, and a database guery is a query with
one term, which does not mean loss of generality. For
example,

[par/{“mary™}, chi/{“john", “lisa™ }],
[par{{“paul”, “kate" }, chi/ { “mary™ }],

[ancf X, des/ Y] — [par/X,chi/¥],
[anc/X,des/ Y] — [par/X, chi/Z], [anc/E, des/ Y]

is a CRL program. A CRL database is a CRL program
and is divided into an intensional and an extensional
databases (an IDB and an EDB), just like a definite
clause based DD. An EDB is a set of nested tuples,

For a program or a database P, a non-empty set M
of PTTs, which is constructed by PTTs included in P,
is called a model of P when M satisfies the following
condition:

Vgepupa EPIMERA-- Apa DM E=q)
The definition shows the following properties:

‘2"—1?11"‘@:
Eq ‘_Pla"':.Fl'--l:lpﬂsu'!Piﬂ!pi-!-l!“'1pl1
S Pu PN APy P,

where i, -, Pim and gy, -, g are ‘unnested’ results
of p; and g, respectively. The relation guarantees to
reserve the declarative and procedural semantics of
Prolog. As the extended SLD resolution for the CRL
program, set unification (intersection) is applied for an
EDE term without being vonesting, and the new goal
corresponding to the set difference is generated for an
IDE. For example, consider the following goal:

= Gh [“ l'r‘-':J'|I'S1 v ']'rG!'r

where 5 is a set term. If the subgoal |--,a/85, -
can be unified with an EDB term [--,a/5",--] by a
unifier &, the new goal is generated as follows:

= (G [0l (SN 5, -], Ga)b,

if &4 8" is not an empty set.

As for bottom-up evaluation, the least fixpoint
semantics like Prolog is also defined, and similar
optimization strategies can be applied. For exam-
ple, for a query «— [anc/{“paul”, “kate” }, des/X| [~

[ancf“payf",df.&;")f],[ancr’“kuta“,d’ean]-], the above

258

CRL database (program) can be transformed into the
following form:

(par/{" mary"}, chi/{*john", “liza" }].
(par/{*paul®, *kate”), chif{ “mary™ }].
laric/ X, des(Y] += |ane™[X], [par/ X, chi/¥].
[anc/ X, des/Y] — |anc™ [X, [par) X, chi/Z],
|ane/Z, des/).
[anc® “paul™].
[anc® /" kate"].
lanc® (2] «— [ane™(X], [par/ X, chi/Z].
This iz an example of HCT/R [Miya*88] for a CRL
database,

Current CRL (intensional} databases are restricted
to multi-valued nested relations, although the database
layer supports unlimited nesting logically. Under the
same semantics, looser restrictions are required. Some
extensions are considered in addition to the case of
definite clauses, The first extension is the introduction
of set grouping semantics like LDL [Beeri*87], which
corresponds to an extension of the database layer. Ap-
other extension is the creation of an atiribute sys-
tem that can compose aliribule names, introduced in
[Tanaka87], where an initial set of attributes, simply
called a vocabulary dictionary, is exitended by repeat-
ing both compesition of aitribute names and label-
ing the result. The introduction of such a dictionary
also makes it possible to introduce ‘constraints’ by at-
tribute composition.

5 TOWARDS DEDUCTIVE AND
OBRJECT-ORIENTED DATABASES

5.1 Deductive vs. Object-Oriented

In order to cope with wider applications including
KIPSs, more complex data models which extend from
flat relations to (nearly) direct representation of ob-
jects of the real world are required and proposed
[BaKh85, MaierS6, AbGrSS, Lecluse™88, Beeri*8s,
BeeriBB). These data models includes variouns elements:
data modeling in the database area; data abstraction,
type disciplines and object concepl in programming
language; and type inheritance in knowledge represen-
tation language. We set up the direction of knowl-
edge bases in our environment as representation of ‘ob-
jects' and their processing in the framework of DD,
{ag integration of DDs and object-oriented databases
(00Ds)).

The formalization of nested relations as one of
‘objects’ is tried or pointed out in wvarious com-
texts: type inheritance [Ait86], complex objects
[BaKhas, AbGr8S8), objects [Maier86] and logic pro-
gramming with sets [Beeri¥87]. These ways show a
framework of formulation common fo - that of more
structured data such as nested relations, complex ob-
jects and objects, although each specific object has ita

intrinsic operations, such as row-nest and row-unnest
operations in nested relations. Such formulation is also
related to other areas such as representation of situa-
tion in natural language processing [Mukaif7]. We gen-
erally call such structured data ‘ohjects’, which include
nested relations and complex objects.

Q0Ds are proposed by stimulation of the success of
object-oriented programming languages (00Ps). They
are more appropriate for representation of ‘objects’ of
the real world and have many possibilities such as pro-
viding the framework of multi-media databases, serv-
ing as dissolution of ‘impedance mismatch’, (filling
gaps in data structure and data operation between
database and programming languages), or helping to
create classification hierarchy, However most of the ap-
proaches are rather practical and is not based on logic
or mathematics. The coneept is still vapue and there is
no consensus [Ban88].

An OOP iz not the same as an 00D even though it
would support data persistence, because 00Ds shounld
support intrinsic objects in a database area, including
nested relations and complex objects, and have tra-
ditional features of DBMSs as a management systemn.
The term ‘object-oriented’ has two kinds of meanings:
the structural aspect (static objects) such as complex
structure, object identity, data abstraction and classi-
fication hierarchy; and behavioral aspects (active ob-
jecks) such as methods, message passing and infor-
mation encapsulation. 00Dz except Smalltalk-based
databases focus mainly on the first aspect, whereas
0P focus on the second aspect.

In a database area, an approach for DDs gives
logical foundations and perspectives of extensions to-
wards knowledge bases, whereas an approach for 00Dz
gives the framework of ‘object’ modeling of the real
world. Most of advanced applications including KIPSs
require new databases (or knowledge bases) which sup-
port both powerful inference mechanism and high-level
modeling capability. If O0Ds could be treated based
on such formulation as an approach for DDs has pro-
poses, they would serve many KIPSs even without the
behavioral aspect, and more with the aspect.

For such purposes, many approaches for integration
of DDs and OO0Ds, ie., a framework called deductive
and object-ariented dolabases {DOODs) can be consid-
ered. We set up a DOOD as a framework of knowledge
bases in our target. We started to take such an ap-
proach for a subclass of ‘objects’ (nested relations),
which is also appropriate for many applications in our
environments, and being developed a deductive mecha-
nism hased on CRL as & first step.

5.2 The Framewaork of DOOD

As mentioned above, the predicate notation like Prolog
lacks fAexibility for more structured data. Although it

is considered to embed new expression into the pred-
icate notation, it is only convenient but not essential;
there seems to be no reason to persist in it We use
objects defined in Section 3.1. Such an object might be
called a nested tuple or & complex object with some
resirictions according to each domain,

In order to r:]nﬁaif:,r nhject.31 a fype 15 defined as fol-
lows:

(1) A void ohject w belongs to a type T and all other
atomic objects belong to a same type atom,

(2) If &y,---,0, belong to types, 7,---,T, respec-
tively, then & set ohject o = {oy,-++,0,} belongs
to a set type {r, -, 1.}.

(3} If each of oy,---,0, belongs to a type, m, - Ty
then a tuple object o = [ay /0oy, -+, 8, /0,] belongs
o a tuple type [ay /7, - 1.).

MNote that atomic ebjects excepl w de not necessarily
belong 1o one type, and might be divided into some
atomic types such as string and integer.

We add another type L to a set of types and define
a partial order = between types as follows:

{1) For any type v, L <7 and v < T,

(2) For set types m = {my. -, 7n} and 7 =
{TII:' ’ '+T'2rr|.}~ if W, 31‘1}[‘-‘1.‘ = T‘.ij]s then m = .

(3) For a tuple type v = [ay/m, - nf7a], let
v be a type, obtained by r, which excludes
a; /v such that w, = T. For tuple types =
and 73, let 7 = [ayfry, - 810/ 7) and 7 =
(a1 /721, -+ s G2 [Tom). If there exists { such that
i = L, or {an, - am} 2 {@n, ' 02} and
Y3, Felaw: = agy ATy = Toy), then m = .

According to the definition, we can obtain the follow-

ing equivalence relation =

{ri'urlt"'frrt} = ‘[rit"'1fn}: if T -_"11'-!,
{Tﬁr2+"'+rﬁ} s {T}!
‘[-L\Tlt”'rfn} = {ﬁi"'!rﬂ-}!
lo1/ T aafma,- - saafma] = [‘l'llf"r‘l:"'rﬂna'r"'n]l:
laa/Lyazfrs,--- oafra] = [a;fLl], for any i.

MNote that elements in a set object or & tuple object are
commmtative. Without loss of generality, we consider
an equivalence class module = and assume that each
tuple element of a tuple object does not contain T or
L1, and each elernent of a set object is not ordered with
others. A type 1y is compafible with a type ™ if there
exists & type T such that 7 £ T, iy 2 7 and mp = 1.
According to the definition, we exclude incompatible
{heterogeneous) set objects, some elements of which
belong to incompatible types. A type might be called

259

a schema for nested relations. A set of types including
T and L constitutes a lattice, where glb. and Lu.b.
between set {ypes correspond to set intersection and
union respectively, and g.l.b. and Lub. between a set
type and a tuple type result in L and T respectively.

We can redefine objects by combining objects and
types:
{1) For a null object w, w:T is an object.

(2} For any atemic chject o except w, o:atom is an
ohject.

[3_] I oy im,-
compatible, then {oy:m, - onim}i{m, - ™} s
& sel abject.

e 8, i Ty are objects and 7, -0, T, are

(4) If aq,-+-,8, ave different atiribute names and o :
Tyyr oy 0n i Ty are objects, (o foy i1y, v dnfont)t
[21/r, o+ an /7] is 2 tuple object.

(5) fo:m is an object and 7y < 3, then o : 73 is an
object. '

Even if types are not attached explicitly, they can be
inferred from the innermost.

New type symbols are introduced to define struc-

‘tured types and reserve the original ordering. A set

type 7, or a tuple type 7 15 can be redefined as follows:
T=Ty,, OF T=T

where + iz a newly introdueed type name. Furthee
more, & type can be defined recursively and represent
infinite structure, like tags in [Ait86]. For example,

v = [id/integer, name [string, age finteger, - - - des/{+}].

Corresponding to the fype, an object can be repre-
sented by introducing object identities. For example,

[id/10,
name/ “tarae”,
ugefﬂl}, Tt

des/{[id/20], [id/30]}: {7 }]:T,

where obvious fypes are omitted and ‘id' is an at-
teibute name of an object identity.

In such formulation, wvarious structured data such
nested relations, complex objects and classification hi-
erarchy can be developed. For the purpose, specific
operations such as row-nest and row-unnest for nested
relations, or specific orderings such as HAS_A rela-
tion in complex objects [BaKh85] and IS_A relation
for classification hierarchy or nested relations with in-
heritance [NakanoB88] should be introduced. We can
consider such formulation as a general framework of
DOOD, which is independent of specific domains, and
construct various structured objects as an instance of

260

the framework by introducing each intrinsic meaning
and specific restrictions,

Some of them can be resolved into conjunction of
simple forms, pointed out in [Beerisg]:

0= [ﬂl.l'rdju.-.duj"ﬂ'n] Som =0 M Ao, = 0.

Such translation makes the semantics clear but goes
far from our intention such as rlca.rl_"r direct representa-
tion of ‘objects’ of the real world and its inference at
the level. -

In the above construction, further considerations re-
rmain: '

Mathematical structure for a set of objects with
each specific domein,-and the formal semantics. If
their objects constitute a lattice such as [AitB6,
BaKh85, Nakano88], the treatment would become
easjer.

¢ Restrictions to make up a logic programming lan-
guage or an IDB in a DD based on such ob-
jects, for example, limitation for decidability of
unification. Not only a fixpoint semantics such as

- [Beerit87, AbGr33] but also a procedural seman-
tics should be given.

o How to relate such objects to more general knowl-
edge representation such as semantic networks and
frames. Although knowledge is represented in the
form of a rule from a viewpoint of DDs based on
definite clauses, it might be represented in another
form such as a set of orderings in DOOD. This is
also a problem for integration of Kappa and ETA.

¢ An object itsell and & relation between objects
can be considered as constraints, and a logic pro-
gramming language based on them can be within
the framework of a conatraint |u5"u: Prugram:miug
scheme CLP(X) [JaLa87). K we could consider
the scheme of DOOTD such as the above formula-
tion, each specific meaning and operation could be
given as a constraint solver in each domain.

¢ Even in the structural aspetts of objects, an up-
date problem [Maier86, Beeri88] should be solved
for a ‘real” extension of traditional databases.

Although we have not discussed the behavioral as-
pects of objects, there are already some researches such
as [Beeri*88, Lecluse*88]. Such aspects can be con-
sidered from two viewpoints: uniferm framework of
interface including dissolution of impedance mismatch;
datz manipulation depending cn kinds of objects such
as text, picture or geographical data. There remain
problems about how such an aspect fits a framework
of DDs ar O0Ps. This apprua,ch also will contnibute to
many new applications.

& OVERVIEW OF THE FROJECTS

We have overviewed the knowledge base management
system, Kappa, and in this section explain the outline
of the project and the other related projects: ETA
and PHI projects. Kappa project started in September,
1983, and is divided into two-year subprojects.

The first subproject called, Koppe-I, started in
September, 1985 and ended in August, 1987. It in-
tended to make a DBMS that would reflect some re-
quirements of CAP and electronic langnage dictionar-
ies in its design, provide experimental environments
for other KIPSs, and form the grounds for knowledge
bases. The underlying data model of the DBMS is a
nested relational model in the above sense, and has
some advanced features such as terms as a data type.
Classification hierarchy is also supported on nested. re-
lations, The size of the system consists of about 60,000
lines in ESP. The evaluation test shows that the sys-
tem worls efficiently, and some KIPSs alveady use the
gystem as the underlying database.

The second subproject called, Kappe-If, started in
April, 1987, overlapping with Kappa-l, and will end
in March, 1989, The targets of the system are fur-
ther improvement of Kappa-I, especially in processing
performance and in management of main memory, in-
troduction of semantic network as one of the basic
objects, implementation of various interfaces, and im-
plementation of the prototype of DDs both in definite
clauses and CRL. We are now constructing the system;
it will be released next April for users who engage in
knowledge information processing systems on PSL

The third subproject, Kappae-I1], and the fourth sub-
praject, Kappa-P, will start in December, 1988, also
overlapping with Kappa-Il. In Kappa-III, object fla-
vors are added to all layers of Kappa-Il, as mentioned
in Section 5. More structured data than nested rela-
tiong are supported, and knowledge bases are consid-
ered in the framework of deductive and object-oriented
databases. Kappa-P iz intended to do research and
development on parallel processing of Kappa-II and
providing experimental environments of databases and
knowledge bases on Multi-PSI and PIM. These sub-
projects are mutually related: some parallel algorithms
devised in the former will be also implemented in the
latter.

The ETA iz a knowledge object management sys-
tem, devoted to knowledge representation in the form
of semantic network and its intelligence information re-
trieval mechanism based on abstractive layers of the
objects [Koguchi*38]. The prototype system was im-
plemented on PSI, and shows such an approach to be
very useful for structured knowledge such as text data.
The language for structured data is being refined to-
wards having clear semantics, and realizing deductive

and inference mechanisms. The system is being de-
signed to work on Kappa system.

The PHI project is intended to investigate the mech-
anism of a distributed DD system based on a rela-
tional database in PSIs and PSFnetwork environment
[Ttoh*88, Miya*88]. The prototype system was imple-
mented on P5I, focusing on the superimposed code
scheme for term access, recursive query optimization
(HCT), and its distributed processing. Query optimiza-
tion of stratified databases is under further considera-
tiomn.

At the final stage of the FGCS project, these sys-
tems and various ideas for knowledge base manage-
ment systems will be integrated, and will provide an
experimental environment for many knowledge infor-
mation processing systems.

7 CONCLUSIONS

Kappa is a software project among the knowledge
base projects in ICOT. As the middle-range target of
the knowledge base management system, we set up a
framework of deductive and object-oriented databases,
Although the two approaches for deductive databases
and object-oriented databases have been taken almost
independently, some work towards their integration has
begun recently, and we are working towards integra-
tion. Among them the characteristics of our research
and development can be summarized as follows:

s Iinowledge bases in our environment are taken as
an extended form of databases, especially for a
deductive approach te structured data including
terms, in the framework of deductive and object-
ariented datahases.

¢ The underlying datz medel of our system is a
nested relational model because of the efficient in-
ternal reprezentation and the efficient processing
of structured data; more complex data models are
constructed on the nested relational model.

s A deductive approach is taken first for nested rela-
tions as a subclass of ‘objects’, and being further
considered for more structured data such as clas
sification hierarchy, complex objects and semantic
networlk,

» Some projects for databases and knowledge bases,
such as Kappa, ETA and PHI are in cooperation
with each other, and will be integrated with other
systemns such as PIM, PIMOS and KBM at the
final stage of the FGCS project for the target.

Acknowledgments

The research and development described in this article
is being done mainly by the members of the KBMS

261

groups both in ICOT and the participating companies.
The authors are grateful to Dr. Kazuhiro Fuchi and
Dir. Shunichi Uchida for encouraging the projects and
providing useful suggestion.

Refertnces

[AbGr88] 5. Abiteboul and 5. Grumbach, “COL: A
Logic-Based language for Complex Objects”,
EDBT, in LNCS, 303, Springer, 1958

1ba™ . Aldba, K. , Y. sato,). Hawley an

Aiba*88] Z. Aiba, K. Sakai, Y. § D. Hawley and
R. Hasegawa, “Constraint Logic Programming
Language CAL", FI7CS, 1988

[Aitd36] H. Ait-Kaei, “An Algebraic Semantics Ap-
proach to the Effective Resolution of Type Equa-
tions”, TCE, vol.45, 1986

_ [BaKh85] F. Bancilhon and §. Khoshahian, “A Calcu-

lus for Complex Objects™, ACM PODS, 1985

[Ban86] F. Bancilhon, “Naive Evaluation of Recur
sively Defined Relations”, in On Knowledge Base
Management Systems, M.L. Brodie, et al, eds.,

Springer, 1986

[Bang8] F. Bancilhon, “Object-Oriented Database Sys-
tems”, ACM PODS, 1988

[Beeri88) C. Beeri, “Dlata Models and Languages for
Databases™, IODT, 1988

[Beeri*87] C. Beeri, 5. Nagvi, Q. Shoueli and 5. Tsur,
“Sets and Megation in a Logic Database Lan-
guage (LDL)", ACM PODS, 1987

[Beerit88] C. Deeri, R. Masr and 5. Tsur, “Embed-
ding y-term in a Horn-clause Logic”, in Proc. of
Third Int1 Conf. on Data and Knowledge Bases,
Je:rsa.lr.:'rrll, 1988

[BeRa87) C. Beeri and R. Ramakrishnam, "On the
Power of Magic”, ACM PODS, 1087

[Chik*88] T. Chikayama, H. Sato and T. Miyazaki,
“Owverview of the Parallel Inference Machine Op-
erating Systemn (PIMOS)", FGCS, 1988

[Dadam*86] P. Dadam, et al, “A DBMS Prototype
to Support Extended NF? BRelations: An Inte-
grated View on Flat Tables and Hisrarchies”,
ACM SIGMOD, 1986

[DeGuas] A. Deshpande and D. Van Gueht, “An Im-
plementation for Mested Relational Databases”,
VLDE, 19838

[GMN84] H. Gallaire, J. Minker and L.-M. Nicolas,
“logic and Databases: A Deductive Approach”,
ACM Computing Surveys, vol.16, no.2, 1984

262

[Gotot88] A. Goto, M. Sato, K. Nakajima, K. Taki
and A. Matsumoto, “Overview of the Parallel
Inference Machine Architecture (PIM)", FGGS,
1988

|[Hirose*87] K. Hirose, K. Yokota and K. Sakai, “An
Approach to Proof Checker”, [COT-TH, 224,
1987

[Ishitgh) T. Ishikawa, H. Tenaka, et al, “Basic Spec-
ifications of the Machine-leadable Dictionary®,
TCOT-TR, 100, 1985

[ltoh86] H. Itoh, *“Research and Development on
Knowledge Base Systems at ICOT", VLDE, 1986

[Ttoh*83] H. Itok, H. Monoi et al, *Outline of the
Knowledge Base Subsystem™, FGCS, 1988

[JaLaB7] J. Jaffer and J.-L Lasses, “Constraint Logic
Programming”, IEEFE SLP, 1987

[Koguchi™88] T. Koguchi, H. Kondo, M. Oba and
H. lioh, “Knowledge Representation with Ab-
stractive Layers for Information Retrieval”,
FGCS, 1988

[Lecluse*88] C. Lecluse, P. Richard and F. Veles,
%0y, an Object-Oriented Data Model”, EDBT,
in LNCS, 303, Spﬁng_nr, 14088

[Maier36] D). Maier, “A Logic for Objects”, in Preprint
of the Workshop on Foundafions of Deductive
Databases and Logic Programming, 1936

[Maki7T7] A. Makinouchi, *A Consideration on Normal
Form of Mot-WNecessarily-Normalized Relation in
the Relational Data Model”, VLDE, 1977

[Miural?] T. Miora, “Theory of MNon First Normal
Form Relational Databases — A Survey”, in FProc,
of Advanced Datebuse Symposium, IPSJ, Tokyo,
Dec., 1987 {in Japanese)

Miya+88] N. Miyazaki, K. Yokota, H. Haniuda and
ya ¥
H. Itoh, “Horn Clause Transformation by HRe-
strictor in Deductive Databases”, JCOT-TR, 407,
1988

[Mukai87] K. Mukai, “Anadic Tuples in Prolog”,
ICOT-TR, 239, 1987

[Nakano88] R. Nakano, “Frame Lattice Model”, in
Special Interest Group Notes of IPSJ, Sep., 1988

(in Japanese)

[Sakaifid] K. Salkai, “Towards Mechanization of Math-
ematics — Proof Checker and Term Rewriting
System”, in Programming of Future Generation
Compuiers, K. Fuchi and M. Nivat, eds., Else-
vier, 1988

[SakamaB8 C. Sakama and H. Iteh, “Handling Knowl-
edge by its Representative”, EDS, 1988

[SeSc87) M.H. Scholl and H.-J. Schek, (eds.), Theory
end Applications of Nested Relations and Com-
plex Objects — An International Workshop, Work-
shop Materiad, 1987

[BcWett] H-J. Schek and G. Weikum, *DASDBS:
Concepts and Architecture of & Database Sys-
tem for Advanced Applications", Tech. Univ. of
Darmstadt, TR, DVSI-1986-T1, 1986

[SekiB8] H. Seki and II. Iteh, “A Query Evaluation
Method for Stratified Programs under the Ex-

tended CWA", LP, 1988

[TanakaB7] ¥. Tanaka, “Reles of a Vecabulary in
Knowledge-Based Systems”, [FIF WG 101
Workshop, Gotenba, 1987

[TaYo88] V. Tanalka and Y. Yoshioka, “Overview of
the Dictionary and Lexical Knowledge Base Re-
search”, FGCS, 1988

Ullman85] J.D. Ullman, “Im; lementation of Logical
P £l
Query languages for Databases”, ACM TODS,
vol.10, no.3, 1985

[Verso%6] J. Verso, “VERSO: A Data Base Machine’
Based on Non LNF Relations”, INEIA-TH, 523,
1986

[Yokota88] K. Yokota, “Deductive Approach for
Nested Relations”, IOOT-TH, 1988

