PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GEMERATION COMPUTER SYSTEMS 1988,
edited by ICOT. © ICOT, 1988

OVERVIEW OF THE PARALLEL INFERENCE MACHINE
OPERATING SYSTEM (PIMOS)

Takashi Chikayama

428, Mita l-chome, Minato-ku,
Tokyo 108, Japan

ABSTRACT

The parailel inference machines are being developed in
the Japanese FGCS project to provide the computa-
tional power required for constructing high performance
knowledge information processing systems. To fully ex-
ploit the power of paralle]l inference machines, an oper-
ating system tuned to contrel highly parallel programs
effectivelv is inevitable. The parallel inference machine
operating systern, PIMOS, is designed for this purpose.
This paper describes an overview of the design of the
PIMOS.

The description language of the PIMOS, KL1, is based
on a cencurrent logic programming language, Flat GHC.
To obtain the functionality required for writing a com-
plicated systern such as an operating system, the KL1
language made numercus extensions to the original GHC
langnage, mainly for efficient meta-control.

Based on the features provided by the KL1 language,
the PIMOS is designed to be an efficient, robust and
flexible operating system tuned to the pafallel inference
systerns, Through its development, implementing an op-
erating system in & concurrent logic programming lan-
guage has been proved to be not only feasible but also
advantageous.

1 INTRODUCTION

1.1 Objective

The parallel inference machines, PIM's (Goto et al.
1988), are being developed in the Japanese FGCS
project to provide the computational power required for
high performance knowledge inlormation processing sys-
fems. A prototype paralle] inference machine, Multi-P51
[(Takeda ef al. 1988) has also been developed to promote
parallel software research and development. These ays-
tems consist of multiple (up to arcund 1000} processors
for attaining the required processing power.

To fully exploit the power of such parallel inference
machines, an operating system tuned to control highly
parallel programs effectively is inevitable. The svstem
should also be user-friendly and robust enough te be
used practically and extensively in parallel software re-

Hiroyuki Sato
Institute for New Generation Computer Technology

Toshihiko Miyazaki
Oki Electric Industry Corporation

11-22, Shibaura 4-chome, Minato-ku,
Tokyo, 108, Japan

search, The parallel inference machine operating system,
PIMOS, is designed to fulfill this requirement.

1.2 Related Works

The possibility and advantages of writing a complete op-
erating system in a concurrent logic programming lan-
guage arc suggested by Shapire (1984), Based on this
principle but with much imprevements in various as-
pecis, several experimental systems such as the Logix
system (Hircsh ef al. 1987) and the Parlog Programming
System (PP5) (Foster 1987) are actually implemented.

The PIMOS resembles PPS in many aspects. This re-
semblance is partly due to the resemblance of the imple-
mentation languages (KLl and Parlog) and partly due
to intimate cooperation of two research groups.

A notable difference between the PIMOS and other
above-mentioned systems is in the underlying language
implementations. The PIMOS is designed for hardware
specially devised for parallel inference systemns with very
high performance, while other systems are built upon
commercially available software and hardware. Thiz af-
fects the execution efficiency of various language primi-
tives differently, changing design trade-offs considerably.

1.3 Characterictics of the Hardware Systems

The hardware systems for which the PIMOS is designed
have the following charaeteristics in common.

Stand-Alone Systems: The parallel inference ma-
chines are designed to be stand-alone systems; not
as back-end processors of established host systems.

Multiple Processors: The parallel inference machines
have many processors that can execufe different
programs in parallel. All processors have the same
functions; any processor can take any part of the
systern. Job allocation is left to the software.

Loosely Coupled Processors: In the Multi-PSI sys-
tem, all the processors are conaected loosely via a
specially devised comununication network., In cer-
tain PIM systems, several processors are connected
tightly, sharing a commen bus and memery, forming

a cluster. Clusters, however, are interconnected via
a communication network. As the inference mecha-
nism itself is highly optimized, communication: be-
tween processors (or clusters) through the netweork
15 relatively costly, and the software must take more
care of keeping locality of computation. Especially,
the highest cost is in the fixed per communication
overhead.

Changing Parameters: We do not have much experi-
ence with highly paralle! inference systems yet, Al-
though all the parallel inference machines are based
on the same design principles, various parameters
of the systems may differ depending on our knowl-
edge on such systems available at the time of their
design. Also, even for one model, parameters may
change in time as the system is gradually tuned up.
The same applies to the implementation technique

~ of the KL] language. Such parameters may consid-
erably affect trade-offs in the software design.

The PIMOS is designed keeping these characteristics of
the hardware in mind.

1.4 Requirements

The following items are required for an operating system
for systems built upon the hardware with the character
istics described abave.

Robustness: As the PIMOS is a stand-alone system,
the robustness of the system is more important than

in .systemns based and depending upon another es-

tablished system.

Parallelisin: The ultimate objective of the PIMOS is,
as stated above, to provide features that fully ex-
ploits the power of parallel inference hardware. Var-
ious computations required in such an operating
system should also be executed in -parallel. Oth-
erwise, Lhe operating system will be the bottleneek
of the whole system.

Low Communication Frequency: As the processors
or clusters are loosely connecied, communication
between them are much more costly compared
with communication within one processor. Thus,
frequency of communication between processors

thould be kept as low as possible.

Flexibility: As the hardware parameters are expected
to change, the system should have encugh flexibility
fo be tuned to the given parameters. When tuning
by changing parameters of the operating system be-
comes insufficient, non-trivial re-design of the sys-
tem may be required. Thus, a system is desirable
on which improvement of the system itself is easy.
Features enabling construction of so-called wirfual
machine operating systems are required from this
viewpoint. :

231

1.5 Organization of the Paper

The rest of this paper iz organized as follows.

Section 2 describes the implementation language of
the system, KL1. Many of the features of the oper-
ating systern PIMOS is based upon the primitives of
the KL1 language provided as its meta-level control fea-
tures. Thus the design of the KL1 language, especially
extensions made to its base language GIIC, should be
considered to be a part of the design of the PIMOS.

Section 3 describes how physical input and output de-
vices are modeled in KL, what kind of logical interface
it provided to the user, and how they are realized.

Section 4 describes how executable programs of the
KL1 language are stored and used for execution in the
PIMOS.

Section 5 describes how various resources are con-
trolled in the PIMOS,

Section 6 describes how the user programs and the
PIMOS can communicate to each other, and how the
communication is made in a fail-safe way to protect the
PIMOS from accidental or intentional errors of user pro-
Erams.

Jection T describes the environment prepared for the
development of the PIMOS and other parallel applica-

tion software.

Finally, in the last section 8, a conclusion and plans for
future research and development directions are stated.

2 THE KL1 LANGUAGE

The implementation language of the PIMOS is calied
KL, the common kemnel language for paralle] inference
systems in the FGCS project, based on the GHC lan-
guage (Ueda 19868), GHC is a concurrent logic program-
ming language akin to Concurrent Prolog (Shapiro 1983)
or Parlog (Clark and Gregory 1986).

The merit of using a concurrent logic programming
language is in its implicit concurrency and synchroniza-
tion feature. Without explicitly specifying in the pro-
gram, concurrency of the program is exploited and data-
fow synchronization is made antomatically in and under
the language implementation level. Especially advan-
tageous is the implicit data-flow synchrenization mech-
anism which eliminates almost all the synchronization
errors. In a procedural language, required data-flow
synchronization must be converted to control-flow syn-
chronization by the system prograrm, which is one of the
largest sources of programming errors in operating sys-
tems.

KLl is actually based on & subset of GHC called Flat
GHC, or FGHC in short. The difference of flat version of
GHC and its full version is that only unification and calls
to certain built-in predicates are allowed in the guard

232

part of a clause. This makes efficient implementation
considerably easier, without losing essential descriplive

power of the langusge.

However, the GHC language itselfl does not have
enough power for efficient implementation of operating
systems or application programs that require sophisti-
cated control mechanism. Thus, several extensions are
made to the language, mainly for enabling mefa-level
exacution control. This section describes why such ex-
tensions are required, what sort of extensions are made,
and how they are supposed to be used.

2.1 Requirerments

lor describing large scale programs requiring compli-
cated execution coniral, a reasonable structure should
be introduced to the program. One of the reasons of the
requirement of such a structure is to keep each level of
the steueture small encugh to be comprehended easily
at a time, Another reason is to map the structure of the
problem divectly to the the structure of the program,
which also helps easier comprehension.

One way to introduce such a structure Lo programs is
by dividing the program inte modules statically. De-
velopment of the languages such as Valean (Kahn el
al. 1986) or A'UM [Yoshida and Chikayama 1988) are
to build modular programming languages based on the
object-oriented notion .upon concurrent logic program-
ming languages. This approach is known to be effective
for solving many problems and the KL1 language does
provide a simple modular program structure alse, but
unfortunately it is not enough by itself for describing an
operating system.

In operating systems, not all objects are created equal.
The operating system should be able to control the ex-
ecution of the application programs, and the reverse
should not hold. The program that controls the ex-
ecution of a program is called its mela-program; an
operating system is a meta-program of the application
programs. This metafobject structure is not a struc-
ture straightforwardly expressed in modular program-
ming languages.

The simplest and probably the most elegant way
to implement the meta-programming feature may be
providing an interpreter of a programming language
{Shapiro 1984). If the operating system should inter-
pret the application programs under its supervision, any
kind of meta-control could have been implemented eas-
ily. Such an implementation, however, has an obvious
drawback in execution efficiency.

The same sort of meta-control feature required in op-
erating systems is also required for certain kinds of ap-
plication programs. For example, the command inter-
preter shell is the meta-program of programs run under
it. Programs controlling several solvers with different
algorithms for the same problem is the meta-program

of the solvers. The operaling system is no more than
an instance of programs requiring meta/object program
structures.

Thus, the layers of meta-control can be nested arbi-
trarily many times. If the execution efficiency should be
reduced to 1/r by using the interpreter scheme, the effi-
ciency of & program within n levels of meta-control layers
will be r* times as slow as when it is executed directly by
the machine. The partial evaluation technique can solve
the problem patily, lowering the overhead of interpre-
tation considerably. Nevertheless, it can only lower the
constant factor r and cannot (with currently available
technology, at least) make it very close to 1 either when
powerful meta-control is required [Hiresh ef al. 1987).
Thus, to encourage meta-level contrel, a mechanism al-
lowing object-level and meta-level programs to run on
the same basis with the same efficiency is required.

The following features should be available in such a
meta-programming mechanism.

Preventing Propagation of Failure: In FGHC, all
the goals in the system form one large logical con-
junction. Thus, failure of one goal in the system
means the failure of the whole system. If the meta-
leve] program and supervised chject-level programs
are to be run this way, failure in an object-level
program will cause failure of the whole system in-
cluding the meta-level program, which is never ac-
ceptable. Thus, propagation of the failure should
be limited somehow to the object-level, to prevent
the failure of the meta-level program.

Meta-Control: The meta-level progeam should be able
to control the execution of the object-level pre-
grams. For example, a user should be able to stop
his job from the command interpreter shell, when
one of his jobs went into a meaningless infinite iter-
ation.

Monitoring: The meta-level program should be noti-
fied of exceptional events {arithmetical overflow, for
example) raised in the object-level and be able to
determine what to do with such events. In general,
the meta-level program should be able to monitor
the execution of the object-level programs at any
time, to be able to control object-level programs
based on the monitered information.

2.2 The “Shoen"” Feature

Far introducing the meta-programming feature, an ap-
propriate program structure should be introduced to the
FGHC language to distinguish the meta-level and the
object-level, The feature of Shaen?, similar fo the meta-
call primitive in Parlog {Clark and Gregory 1984), is
introduced for this purpese as a language primitive.

"I'he word "sh@en" (or “HH ") s & Japenese word that means
“manat” in English.

control =
5
“== report g
\\ L~ &
T i
¥
shared
variable
Figure 1: Shaen

The shoen mechanism can be considered to be an in-
terpreter of the KL1 language. Although it is not ac-
- tually written in KL1 but is implemented by lower level
primitives, its semantics is designed 5o as to preserve the
nature of a meta-level interpreter.

2.2.1 Creation of Shoen

A shden is created by the following primitive.
execute{Goal, Control, Report)

This can be considered to be a call of the top-level pred-
icate of the interpreter. Here, each argument means the
following.

Goal: The goal to be executed in the shien?

Control: A stream from outside of the shien to the
shden interpreter, through which commands for
controlling ithe execution of the interpreter are sent.

Report: A stream from the shden interpreter to outside
of the shoen, through which various messages are
sent from the shien interpreter to report status of
the computation. '

Here, the word sfream actually means a list structure
used for stream-like comenunication between processes
(Shapiro and Takeuchi 1983). Each argument will be
described further in detail below.?

The goals derived from the original goal given to a
shien on its creation form a logical conjunction inde-
pendent of the goals outside the shéen. Once a shden is
created, its execution is controlled through the control
stream. Status of the execution of the shien is notified
from the repor! stream. Thus, as far as execution con-
trol is concerned, a shien is a blackbox with one input
stream and one output strearm.

*Tn the actusl implementation, it is represented by 2 arguments:
a pointer to the executable code and an argument vector, See 2.6.2
for this design choice.

3 hctually, the erecwle primitive has several more arguments,
which also will be described below.

233

The original goal given at the creation of a shden,
however, can have variables shared with goals cutside of
ghien as its arguments. Goals in the shien can instan-
tiate such variables, thus sending information out; goals
out of the shden may also instantiate such variables, thus
sending information info the shden. In terms of virtual
interpreter assumption, this means that the variables in
the interpreted program is represented by the varizbles
of the langrage in which the interpreter is written, as is
usually the case with Prolog interpreters.t

2.2.2 Controlling the Execution

Execution of a shéen virtusl interpreter can be controlled
by sending the following messages to the confrol stream
of the shen.

Start: Start (or restart) the execution of the shoen. Af-
ter its creation, the execution of the shden is sus-
pended until this message is Arst received. The
same message resumes the execution of the shden
suspended by a stop message deseribed below.

Stop: Stop the execution of the shien. The execution
is suspended until a stert message is received. To
allow efficient implementation, the language allows
arbitrarily long (but finite) delay until the execution
is actually stopped.

Abort: Abort the execution of the shien. The execu-
tion is aborted and (unlike in the case of the stop
message) can never be resumed aflerwards. Again,
arbitrary finite delay is allowed here.

In addition to those listed above, commands for resource
management are also sent through the same stream (see
2.5).

2.2.3 Heporting Status

The status of the shien are reported through the report
stream by the following messages.

Started: Reports the reception of & sfart command.
Stopped: Reports the reception of a stop command.
Aborted: Reports the reception of & abort command,

Terminated: Reports the termination of the execution.
The termination takes place when all the goals in
the shden are reduced, Alternatively, the shien may
have been forced to terminate by an abort message.

Wsing this efficient but simple mechanism, however, unex-
pecied instantiation of variables in the object-level may cause fail-
ure in the meta-level. In the PIMOGS, it is solved by the protection
filter technique desceibed in 6.4 with the help of the wnification ar-
der rules deseribed in 2.2.5.

234

The first three in the above list are used for deciding the
order of commands reception and other inlernal evenls.
Fer example, when a lerminaled report iz made after
an abort message is sent to a shien, there may be twa
cazes: when the execution is aborted by the command,
and, when all goals in the shoen has been reduced suc-
cesstully before receiving the abord message. These two
cases can be distinguished by the order of the aboried
and terminated messages in the report stream.

In addition to those listed above, messages to report
exceptions and resource consumption status are also sent
to the the report stream (see 2.3 and 2.5).

Note that foilure iz not included in the above list.
In KL1, failure is treated as a kind of exception (sim-
ilar to arithmetical overflow)., The meta-level program
decides whether to.abort the execution (by sending an
abort message) or try to meake it recover from the failure
(see 2.3).

2.2.4 Nested Shiens

To allow flexdble meta-programming, shiens can nest by
arbitrarily many levels.

As the semantic model of a shéen is a wvirtual in-
terpreter, the semantics of nested shiens is the same
as when an interpreter is interpreted by ancther inter-
preter. It may be naturally understood that suspending
the outer shaen a]an Hl]apcnda the inner nhacn; H-I.DPF-;.IIE
the outer shBen is stopping the interpreter that inter-
pretively execites the inner interprefer. Resuming the
outer shien will also resume the inner shéen. Similarly,
aborting the execution of one shien also aborts the ex-
ecution of ifs offspring shoens.

With this semantics, the meta-level program can su-
pervise object-level programs without being aware of any
lower meta/object layers.

2.2.5 Order of Unifications

Mo arder between distinet unifications is defined in the
original GHC language. For example, consider the fol-
lowing KL1 program.

p = glal.
gl¥) - X = b.

Maively considering, when the predicate p is called, the
unification X = b in the predicate g will fail. However,
The first clanse is considered to be equivalent to the
follewmg clause in the definition of eriginal GHC.

p:-X=a, g{X).

The order of the unification “X = a" and the invocation
of the predicate q is not defined. Thus, the unification
“Y = b" may be executed prior fo the unification X =
a" in the predicate p, which will fail if this is the case.

This theoretically clean semantics brings in a problem
in protecting the meta-level using the shoen mechanism,
The same failure may occur even when the predicate
q is called wrapped up in a shen construct as in the
following clause.

p :- executelqla}, ...},

To avoid the above and similar problems, the following
order of unification is assumed in the KL1 language.

o When there are iwo or more occurrences of the same
variable, for example, several aceorrences of a vari-
able X, in one clause, they are unified before the
body goals are invoked.

¢ What are passed as arguments to a body goal are
the arguments as written in the program, rather
than variables which will be unified with the written
arguments later.

¢ When a structure appears in the body part, its el-
ements are initiated with the values written in the
program, rather than variables which will be unified
with the written ones later. '

Fartunately, there seem to be no reasons for an opti-
mized implementation to violate these rules.

2.3 Exception Handling

Exceptional events during the execution iz reported to
the report stream of one of the surrounding shéens,

2.3.1 Causes of Exceptions
Typical causes of exceptions are the following.

» When invalid arguments are given to a built-in pred-
icates in the body part of a clause, For example, giv-
ing non-numerical arguments to arithmetical built-
in predicates, giving arguments that cause arith-
metical overflow,® giving an index value that is ouf
of the range of the given structure, ete., fall into
this category.

When the guards of all the candidate clanses for a
goal are known to fail.

When an active unification? fails.

Built-in predicates appearing in the guard of a clause
will never cause exceptions. Instead, when a built-in
predicate, say addition, is given an invelid argument,

#Arguments which cause arithmetical overflow are considered
to be favelid here,

4 efive unifleation is one appearing in the body part of a clanse,
which ¢an instantiate unbound variables. Pessive unification ap-
pearing in the head or the guard part of & cleuse will never give
values bo variables.)

say an atom, it simply fails rather than generating an
exception. Built-in predicates appearing in the guard
part are considered to be sbbreviations of unification
patterns. For example, consider the following clause.

plX, ¥) :- X > Y | q(X).

This is considered to be an abbreviation of the following
infinitely many clauses.

pli, 0} = q(1).
pl2, 0} = q(2).
p(2, 1) = q(2).

p{3| 2} Hen q_(a}.

2.3.2 Reporting Exceptions

When an exceptional event is found, a message as shown
below is sent to the report stream of one of the shens
surrounding the goal that caused the exception,

exception{Info, Goal, NewGoal)

Each argument of the exception information has the fal-
lowing meaning.

Info: The reason of the exception.

Goal: Information on the goal which caused the
exception.”

NewGoal: A variable to specify a goal that will be ex-
ecuted in place of the original goal that caused the
_ﬂmptjun."'

There may be any number of shdens surrounding the
goal that caused the exception, but only one of them re-
ceives the exception message. Exceplions are classified
into several categories and each. category is associated
with some fag (one word bit patteran). On the other
hand, every shien also has a fag, which is specified on its
creation by an additional argument to the erecute prim-
itive, The exception is reported to the innermost shien
whose tag matches Lhe tag of the exception. Two tags
match when their bit-wise conjunction yields non-zero.
Using this mechanism, one shéen monitor can handle
oenly certain kinds of exceptions, leaving others handled
by the monitors of cuter shdens,

"In the actual implementation, it s given by twa terms; a code
pointer and an argument veetar,

BLike the goal information, two variables for a code pointer and
an arguiment vecbor are used in the actual implementation.

235

2.3.3 Hecovering from an Exception

When an exception report is generated, the execution
of the goal that caused the exception (a built-in pred-
icate goal or a failed goal) is replaced by a new goal.
That goal waits for the instantiation of NewGeal in the
exception report message and, after its instantiation, esx-
ecutes it. As this new goal belongs to the same shoen
as the original goal, the execution of the shden will not
terminate successfully before the NewGoal argument is
instantiated.?

The semantics of the language can be partly cus

fomized by specifying an appropriate NewGoal in the

shien monitor program. The semantics of unification
can be extended, for example, by giving user-defined uni-
fication routine as the NewGoal for a unification failure
exception.

Even when an exception is reported to the report
stream of a surrounding shen, the execution of other
goals in the shden will not be suspended. Whether to
stop the execution or not is determined by the moni-
tor program of the shden via the control siream of the
shoen. In parallel implementation of the language, it is
practically impossible in anyway to stop the execution
immediately.

2.3.4 Deliberate Generation of Exceptions

An exception report can be intentionally generated using
the following primitive.

raise(Info, Data, Tag)
Each argument has the following meaning.

Info: Any data identifying the exception. The genera-
tion of the exception is deferred until this argument
is instantiated eompletely to a ground term.!®

Data: Any data. This argument may be instantiated,
uninstantiated or partly instantiated.

Tag: An integer to specify the tag of the exception,
which, in turn, specifies the shéen whose monitor
handles the exception.

When an object-level program sends some information
Lo its meta-level, the parl of the data that is inspected
by the meta-level should be guarantesd to be instanti-
ated. Otherwise, the ohject-level program may fail to
instantiate it, causing the meta-level program wait for
it forever. The argument Info is used for this kind of
information.

On the other hand, the argument Date is used to pass
data that are not mspected by the meta level program.

*Abortion is possible at any time.

"n the actual implementation, the mechanism of deferring the
exception report is implemented by a KL1 predicate. However, it
is & langiage feature from the wsers’ point of view.

236

They are usually passed directly to the goal that is ex-
ecuted in place of the goal raise, by including it in the
term unified with the NewGoal argument of the excep-
tion report. As the substitute goal is executed in the
object-level, the problem of deadlock in the meta-level
will not appear.)

A typical usage of this feature is for establishing a
communication path from a user program to the PIM-
08, described in section 6.2.

2.3.5 Implicit Stream Argument

The exception mechanism of KL1 can be explained by
assuming one additional implicit stream argument to
each goal. This implicit argument is unified with []
when the clause has no body goals. When it has body
goals, an implicit merger goal is inserted in the body
which merges as many sireams as the number of body
goals to the implicit stream argument, and pass one
merged-in stream to each of the body goals as their im-
plicit stream arguments.

For example, a clanse such as:
pl%,2Z) :- qf%,¥), rlY,Z).
is considered to represent a clause:

pl(X,Z,5) :-
q{X,¥,51), =(¥,2,82), merge(51,52,5) .

The same rule applies also to built-in predicates in the
clause body. This implicit stream is virtually merged
into the report stream of the shden, through which ex-
ceptions are reported.

2.4 Priority Management

For specifying sophisticated . problem solving strategy
that can fully utilize the available .computational re-
sources in an effective manner, it is essential to intro-
duce the notion of priority between goals that can be
executed in parallel and between clauses that can be
chosen non-deterministically.

2.4.1 Requirements

In the original GHC language, the execution order of
two goals can be either of the following two,

¢ The order is not specified. The order is left to the
implementation, and the implementation may se-
quentially execute one after the other, or may exe-
cute them in parallel.

The order is determined by data dependency. One
can be exscuted only after the other makes some
data available.

These two mey be enough as far as there is no limit in
the available resource, because, in that case, everything
that can run in terms of data dependency can really
procesd. However, in an-actual implementation where
only limited resource must be fully utilized, the following
sirategy iz often desirable.

s The two goals may be executed in parallel, as far as
both can be. :

s If there is not enough computational resource {pro-
cessors, for example), execution of one should have
priority to the other,

Consider, for example, the alpha-beta tree search al-
gorithm. It is essential in the algorithm to search one
branch thoroughly as early as possible, to utilize its re-
sult for pruning other branches. If the search should
have been made in the breadth-ficst order, no pruning
procedure would be possible.

When programmed in sequential programming lan-
guages, strict depth-first scarch order is specified. The
same kind of strict sequentiality can also be specified in
GHC using data dependency, in which case, however,
the algorithm cannol make use of otherwise available
idle processors.

To solve the problem, more flexible notion of erecution
priority is required, in addition to the strict ordering
enforced by data dependency. When there are several
computalions ready to be executed in terms of data de-
pendency but with different priorities, and the compu-
tational resource iz available only for some of them, ones
with higher priority will be executed firal. The essential
difference with the strict ordering is that all the compu-
tation may be tried in parallel if abundant resource is
available,

Priority is not something to be obeyed strictly but
merely a guideline suggested to the implementation to
determine the execution order of goals. Thus, goals with
lower priority may be execuled even when there exist
goals with higher priority ready to be executed. How
much the priority is respected determines how good the
implementation is, and not whether the implementa-
tion is correct or not. Programs that won't be executed
correctly without the priority specification are incorrect
KLl programs.

If priority specification should be strictly obeyed in
a parallel implementation, the whole system must be
inspected in each execution step to ensure that there
exist no goals with higher priority. If this should have
been dene, the locality of computation would be totally
lost.

2.4.2 Priority Specification

Twe levels of prionity specification are provided in KL1:
Shéen by shfen coarse specification and goal by goal

4085 —~ I

| —_— 1 in.shoen
4085 — n R to.current (meg.)
IHM' to_carremt (pos.)
— - | !
M. ﬁ?:n :urrr:'l'll d'l':gi’-‘ =

Figure 2: Priority Pragma

finer specification.

When a meta-level program controls the priority of
object-level programs (for example, when the operating
system specifies the priority of user programs), shden by
shden specification is the recommended way. Priority
of the shben is specified as the minimum and the maxi-
mum priority allowed for geal: and children shiens in it.
They are given as additional arguments of the szecule
primitive when the shden is created!?,

When the object-level program controls the execution
of itself depending on detailed object-level knowledge
(for example, when heuristics are used), goal by goal
specification may be appropriate. The priority of 2 goal
can be specified by affixing a priority pragma to the in-
vocation of the goal (see below for details). When no
prierity pragma is given, the priority of the parent goal
is used as the default value. When a new shen is cre-
ated, ite top level goal will have the maximum priority
allowed in the shéen.

In both types of specification, the priority is specified
relative to the priority miniroum and maximum of the
immediately surrounding shoen and the current pricrity
(the priority of the goal currently being reduced). There
are two ways in this relative specification.

» Specifying by ratio in the range of priority minirmm
and maximum of the surrounding shéen.

s Specifying by ratio in the range of the current pri-
ority and the maximum {or the minimum, when a
negative value is specified) priority of the surround-
ing shéen,

The ratios are given by an integer n, where n/4095 is
the actual value of the ratic'®.

For example, priority pragma for goals i= given as fol-
lows, g

“In the current implementation, once a shien is created, its
priotity rangs cannot be changed afterwards. An alternative im-
plementation which altows it is being investigated.

Bt i better understood as representing & fixed-point real
nomber.

237

pli, W) :-
q(X,¥)@priority_in_shoen{4085),
t(Y,Z)0priority_to_current{-16),
s{Z.W).

Here, the goal q(X,¥) will have the highest priority al-
lowed in the shien, and the goal r{¥,Z) will have the
priority somewhat lower than the current priority, i.e.,
that of the parent goal p(X,W). As s(Z,W) has no prior-
ity pragma, it will have the same priority as the parent
goal.

Specifying priorities relatively, rather than absolutely,
has the following merits.

* Local relalive priority specifications are properly re-
spected without any change when the program is
run in & shien with mere global prionty specifica-
tiom.

 Different implementations may have different phys-
ical priority ranges. Relative priorily specification
can be free from such implementation dependency.

2.4.3 Implicit Fairness?

In an implementation of a parallel language with lim-
ited computational resources, execution of object-level
programs may make the meta-level program wait for at
least a while. In a naive implementation, even if the
meta-level program is about to stop the object-level pro-
gram, the meta-level may not be exceuted forever, wait-
ing for an infinite loop in the object-level program to
terminate and yield the reguired resources back,

A gimple method to solve this problem is to intro-
duce implicit fairness to the scheduling stratesy. A fair
scheduling here means, any goals that are ready to be
executed will be reduced at least by one step sometime
in a finite time period. To implement this, breadth-
firei seheduling or introducing depth limit to depth-first
echeduling has been proposed.

On the other hand, the problem can also be solved
by the priority mechanism, by specilying the priority
of object-level programs explicitly not to become higher
than the meta-level program. Implicit fairness is not re-
quired in this case. An important merit of not adopting
implicit fairness is that, when all the ready goals have
the same priority (that means almost all the time when
a simple application program is running withont much
communicating with the operating system), the imple-
mentation is allowed to choose the most efficient schedul-
ing, Tully utilizing the locality between geals. Forlu-
nately, simple depth-first scheduling is known to yield
the best results usually,

To assure that the meta-level program can stop in-
finite loops of the object-level programs, the priority
must be respected at least a little by the implementa-
tion. What is requested is that a goal with the highest

238

priority should be reduced at least by one step within a
finite time period.

2.4.4 Priority Between Clauses

In the original GHC, when multiple clauses can be used
for reduction of a goal, the implementation is allowed
to choose whichever clauses for the reduction. This se-
mantics allows the implementation fo choose the most
efficient reduetion strategy. Coensider, for example, the
following two clauses.

m{[WIx], ¥, WE) :=

WZ = [WlZ], miX, ¥,).
m(Y, [WIYl, WE) :-

WE = [WIZ], m(X, ¥,).

When the first argument is on a remote processor and
the second argument is already known to be instantiated
to a list cell on the curremtly execubing processor, the
implementation iz allowed to choose the second clanse
without even trying to access the first argurment.

With this mﬁhanism1 however, prsfemnm hetween
clanses cannot be specified in the program. For exam-
ple, again in an alpha-beta search program, when a new
maximum (or minimum) value is found by a child node,
that data should be used to confrol other children nodes
more efficiently. If that value is not yet available, the
goal will continue with the already known maximum {or
minimum). In this case, the clause waiting for the report
of new maximum/minimum values should have priority
to other clanses,

Specification of priority between mulliple candidate
clauses are thus introduced to the KL language. For ex-
ample, the above merger program will become a priority
merger by adding priority specification between clauses
as follows.

a(WIX], ¥, W2) :-
WZ = [WIZ], m(X, ¥, 2).
altarnatively.
mn{X, [W|Y], WZ) :-
WZ = [Wlzl, m(X, ¥, 2).

Mote that the second clause iz iried not only when the
first clause fails but also when it suspends. Thus, it is not
something like the sequential OR feature seen in Parlog
or the otherwise feature in Concurrent Prolog,'®
Similar to priority between goals, the implementation
does not have to fully obey the priority specification. In
the above example of the priority merger, the second

*The KL1 language also provides the sequential OR featore.
The saquential OR and otkerwase directives can, however, be re-
placed by writing negation of the guerd parts of all the preceding
clanses. Thus, although such language constructs are guite useful,
they merely provide a syntactic convention without extending the
asgential deseriptive power of the language.

clause may be chosen even after the first argument 1a
already instantiated to a list cell. Execution efficiency
will be considerably lost in implementations on parallel
hardware if the specification must be obeyed perfectly.
What is requested is that the first clause will be cho-
gen sometime within a finite time peried even when the
second clause can be chosen for infinitely many times.

In the implementation level, the clause with priority
will always be used for the reduction as far as all the
required data are available within the processor reducing
the goal. Otherwise, the second clause may be used but
fetching of the data required for reduction by the first
clanse from remote processors i initiated, even though
it is nof required for this particular reduction. [t will
eventually make the first clause ready to be chosen.

2.5 Quantitative Control

As described above, information such as the fermina-
tion of the computation or emergence of exceptions are
notified to the meta-level through the report stream of
the shoen. Execution control of shéens to suspend, re-
sume or abort the execution of a shien is also provided
through the control stream.

These features are gualitative in that the controlled
shéen either can procesd or not. To control the meta-
level behavior of the object-level program more into its
detail, features to quantitatively contrel the object-level
computation are required, in addition to the qualitative
confrol features, Quantitative control is Lo control meta-
level quantities of computation, such as how mueh com-
putation should be allowed for a shden.

The quantitative control features cannet be efficiently
realized casily without certain language level support,
The KL1 language thus provides not only the quali-
tative meta-control, but also quantitative meta-control
features as its language primitives,

2.5.1 Principles

The shien, which is the unit for qualitative execution
control, is also used as the unit for quantitative control.
Using the same shien mechanism is profitable in making
additional overhead smaller,

Although each program runs differently depending on
the problem and the algorithm, lower level notions such
as how much processing time or how much memory area
the computation consumes can be reasonable common
measures for all kinds of programs, Thus, such lower
level guantities are controlled by the featnre.

The simplest method may be to report each execution
step in the object-level fo the meta-level. This methed,
howewver, requires large & amount of communication be-
tween two levels. In KL1, the meta-level sets some limit
to the resource consumption of the object-level program,
and the object-level only reports the resowrce_low status

to the meta-level when the allowed amount of resource
has almost been consumed up. If the resource consump-
tion actually reaches the limit, then the execution is sus-
pended until the limit is raised by the meta-level pro-
Eram.

Receiving the resource_low report, the meta-level pro-
gram can choose from the following.

¢ Add some more to the limit to make the ohject-level
" eomputation continue.

* Abort the object-level computation by sending an
abort message to the control stream,

& Suspend that computation but freese the computa-
fion status as it 35 (by simply not adding any more
to the limit), until possible future resumption.

When the computation should be continued, the meta-
level program will add some more amount to the resource
consumption limit. However, there may be some delay
due to computation required for such a decision or for
communication between processors, Thus, the report is
made somewhat before the given resource is completely
exhausted. This allows pipelined resource supply.

Setting small resource consumption limit and adding
to it a small amount frequently, more accurate resource
consumption control is possible. However, it may re-
quire more resource handling overhead. The accuracy of
resource management is a parameter of the system thai
can be defined by the meta-level program considering
this trade-off.

2.5.2 Nested Resource Management

The resource management principle of KL1 is also based
on the assumpiion thai shden is a machine-level inter-
preter. The virtual interpreter is assumed to be counting
the resource consumption.

The virtual interpreter is considered to be made so
efficient that interpretation of a program consumes only
the same amount of the resource as when the interpreted
program is executed directly.

When shoens are nested, the inner interpreter is inter-
preted by the outer interpreter. If the outer interpreter
detects that the resource consumption lmit has been
reached, it will suspend interpretation until some more
resource consumption is allowed. Naturally, the inner
interpreter is forced fo stop there.

With this semantics, the meta-level program can con-
trol rescurce consumption of the object-level programs
without being aware of lower level meta/object layers.

2.5.3 Controlled Quantities

The following are the candidates of resources controlled
by the mechanism.

239

Time: How much CPU time can be used for the execu-
tion of the shien.

Space: How much memory can be used for the execu-
tion of the shen.

In stead of measuring the CPU time, the current imple-
mentation counts the number of reductions as its esti-
mate. The current implementation does not count the
memory consumption.

For about memory consumption, the garhape collec-
tion mechanism makes fair management difficuli. As
the same memory area can be made available again by
garbage collections, such reuse should not be counted
as consumplion. However, a data structure created in
cne shien may be passed to another and then garbage-
collected. Memorizing: all such data transfer has too
much overhead. In addition, notifying garbage collec-
tor of the affinity of memory blecks to shiaens will be
quite costly. ’

Another difficulty is in unbalanced resource consump-
tion. When multiple processors are available, one pro-
gram may consume much memory on one processor but
not on others. To cope with such cages, memory con-
sumption management in terms of total amount of allo-
cated memory is never enough; some amount of memory
consumption i one processor is not equivalent to that
amouni of consumption in another processor, This prob-
lem is left over as a further research theme.

2.5.4 Resource Management Messages

Communication required for resource management is ef-
fected through the control and report streams of shen.

When the resource consumption limit is reaching in
a shien, a resowrce {ow message is sent Lo the report
stream. Adding some amount to the resource limit of
a shoen is effected by sending an add.resource{Amount)
message. In response to this message, a resource_added
message is sent to the report stream. Watching the erder
of this message and a resource_low message, it iz possible
to know whether resource left is found to be low before
the resource addition is made or it became low even after
the addition.

To query the resource consumption status, the control
message sialistics can be used. As a direct response to
this message, the statistics_staried message i sent back
from the report stream, Sometime after that, a sfatis-
ties(Stafus) is sent to the report stream, bringing the
resource consumption statistics in its argument. The re-
ported resource consumption status is that of semetime
in between the two time points at which these messapges
are issued,

240

2.6 Executable Code

Ta be a self-contained computer system, programs in the
system must be handled by the system itself, The KL1
language thus provides features to handle executable
codes as data.

2.8.1 Module and Code Data Types

A block of object code for KL1 programs can be han-
dled as a data object of type module, One module may
contain executable codes for several predicates. Pred-
icates declared to be public in the source program are
registered in & certain table in the corresponding mod-
ule data object, which can be accessed using a built-in
predicate. Such predicates entries can be handled as a
data object of type code. Other predicates are local and
can be invoked only from inside of the module.

Module and code data objects are treated basically the
same as data objects of other types; they can be passed
as arguments; stored in structures, garbage-collected if
no access path remains to them, ele.

A module data structure consists of two parts: OC
part where pointers to other data are stored and non-GC
part where only atomic data, mainly executable KL1-B
code {Kimura and Chikayama 1987), are stored. All ac-
cesses to data outside of & module is made via pointers
stored in the GC part. The GC part can contain pointers
to uninstantiated variables. Thus, when created, mod-
ules can contain an invocation of a module that is not
defined yet. Accesses to such a module before its defi-
nition will be simply suspeaded. Later instantiation of
the variable will make it proceed. 1t is along the princi-
ple that executable codes should be treated the same as
other data objects.

The non-GC part of modules contains lower-level ma-
chine code. Thus, if module data objects can be ar-
bitrarily created, any protection mechanism above the
KLI language level may be violated. To avoid this, the
built-in predicate for creation of modules is not made
available to user programs. This is realized simply by
not including it in the built-in predicaie table of the
compiler when it is in the application program compila-
tion mode. User programs can only create module data
objects by asking the PIMOS for compilation of source
programe, which will never generate problematic codes.

Creation of a module is suspended until all of the ele-
ments of its non-GC part becomes instantiated, and they
are fully dereferenced during the creation; the low-level
execution mechanism can safely assume that executable
machine code is already there.

2.6.2 Higher Order Mechanism

The code object can be used for execution by the built-
in predicate epply. The apply predicate takes two argu-
ments: The code for a predicate and a vector of argu-

ments. When either one of these are still uninstantiated
on an invocation of apply, it is suspended until both get
instantiated.

The apply built-in predicate is a higher order exten-
sion to the language. The shoen feature described above
also takes this higher order approach for treating exe-
cutable code. Some other concarrent logic programming
languages adopt meta-level mechanism, in which usual
data structures such as p(X) are treated as executable
code (Clark and Gregory 1986). This approach, how-
ever, assumes that the mapping from predicate name
(the atom p) to the corresponding executable code is
available completely in the language implementation
level.

When the higher order invocation mechanism is avail-
able, the meta-level feature can be implemented in the
software, allowing full flexibility in name/code mapping
to the software. Section 4 describes how such mapping
is implemented in the PIMOS.

2.7 Other Extensions

In addition to the extensions required for meta-lewvel
programming, several other extensions to the original
GHC language are made in the KL1 language. They are
mainly for providing efficient primitives, which, however,
affected the design of the PIMOS considerably.

2.7.1 HRandom Access Structures

Many of the implementation level optimization of the
KL1 language are based on the low-level mechanism
that distinguishes multiple and single reference paths to
data objects. Such information is kept in pointers us-
ing one bit tag called the multiple reference bit (MRB)
{Chikayama and Kimura 1988). At the implementa-
tion level, the information is used mainly for incremental
parbage collection. When the sole reference path to an
object is known to be required no longer, that object can
be reclaimed.

This single reference information can be utilized to
implement efficient random access structures. The KL1
language has one-dimensional array structure data type
called vecfor." Updating an element of a vector can be
effecied by the following built-in predicate.

set_vector_element(0ldV, N, OldE, NewE, NewV)
The argumenis have the following meaning.
O01dV: The original vector structure,

MN: Index of the element to be updated.

O01dE: The Nth element of the original vector.

Mgyal functor stractures such as “£{X)}" are also represented
using the vector structuves such as “f£, 21},

MNewE: The Nth element of the newly created vector.

MewV: The newly created vector with the same length’

and elements &s the original vector, except that the
Wih element is replaced with Newf.

As far as the semantics is concerned, this predicate has
no side-effects. 1t allocates a copy of the original vector
with Nth element altered to NMewE. A naive faithful im-
plementation of this, however, requires time and space
proportional to the size of the vector. When the refer-
ence path to the original vector is kmown to be the last
one, that data structure can be destructively updated
in constant time with no memory allocation, without
disturbing the pure semantics.

The semantics of the language is not affected by the
existence of such an optimization. However, when such
an operation is known to be efficient, use of random ac-
cess structnres is strongly encouraged and the program-
ming style of KL1 may become drastically different.

There exist sequentiality between element accesses to

(physically} the same (but legically different] wector.
The updated vector can be aceessed only after the up-
date procedure is completed. The execution of the sef
vector_element predicate is automatically suspended un-
kil its first and second arguments become instantiated.
Note, however, that the VewE argument need not be in-
stantiated on update. The corresponding element of the
new vector will simply become that uninstantiated vari-
able. Consider, for example, the following process-like
Prograim. .

table([update(N, X} |8], OV} :- -
set_vector_slement (0¥, N, OE, NE, HV),
compute(OE, X, NE},
tablals, NV).

The compute predicate computes the new element value
from its previous value and the data supplied with
the message. In a parallel implementation, the call of
cempute and the recursive call of table can be executed
in parallel. If the next message is updating the same
element, it will be suspended naturally because data re-
quired for compute iz not available yet. If it is updating
a different element, however, compute for that message
_can be executed in parallel with the first one.

2.7.2 Merger

As stream-like communication using list structures is
a frequently used programming technique (Shapiro and
Takenchi 1983), the efficiency of stream merge operation
can be a key of the overall efficiency of the system. Thus,
a stream merging mechanism is built into the system.
Again, it does not affect the semanties of the language
but does affect the programming style considerably.

241

A merger process is created by the following built-in
predicate,
mergel In, Out)
Immediately after the invocation, the merger is merging
only one input stream to the output stream (this, of
course, is not a merger yet). Its semantics can given by
the fellowing clauses,

IElrEa'I:D, oy :-0 = [].
merge{[X|I],. X0) :- X0 = [X|0], merge(I, O).

More input streams can be added by uniflying the input
stream argument to a vector structure whose elements
are streams to be merged in, This feature can be de-
scribed by the following additional (infinite number of)
clauses (curly brackets are used to denote vector struc-
tures).

merge ({}, 0 :- o= [1.
merge({I}, 0) :- merge(I, 0).
merge({I1,I2}, 0) :- merge(Ii, 12, 0).

merge{{Ii,12 13}, 0) :- merge(Ii, I2, 13, 0.

The merge predicates with three or more arguments
also have clauses for increasing the number of merged
streams, in addition to the clauses for actual merging,

This description in the KL1 language gives the se-
mantics but the actual implementation is of course quite
different. It is highly optimized using the MRB informa-
tiom.

For inereasing the number of input streams, the vee-

" tor structure is used directly as the argument of merge. '

This scheme iz advantagecus to the scheme using a spe-
cial message for that purpose (Ueda and Chikayama
1984) in that no reserved message is used; addition of
merged streams is specified by the argument itself rather
than the car part of the list structure, where & message
should be. Uninstantiated messages can go through the
merger, because, although being uninstantiated, they
are known to be a message that goes through the merger
and not something controlling the merger. The basic
mechanism of the stream communication using list struc-
tures 18 that, communieation control is done by the edr
part which is a list cell or nil, and the ear part brings
a message. The scheme adopted in KL1 keeps this prin-
ciple of using only the edr part for controlling the com-
mnieation.

8 INPUT AND OUTPUT

This section describes how physical I/ devices are mod-
eled in KL1, what kind of logical I/ 0 interface the PIM-
OS5 provides to the user, and how they are realized.

16 Any structures other than lists could have besn used here.
The vector structure is used only because it is the most efficiently
handled steueture.

3.1 Model of Physical Devices

10 deviees can be modeled by processes of KLL In
a certain layer of the PIMOS, /O devices behaves the
game as KL1 processes,

A one-line display device can be modeled by the fol-
lowing KL1 clauses.

line_display([display(S)|R], E, _) :=
wait(3) |
line_display{(R, E, 5).
alternatively.
line_display(R, E, 53 :-
E = [photons(3)|EL],
line_display(R, E1, 5).

The device is always radiating photons messages de-
scribing the string displayed to the ether (via the stream
Ein the program). The displayed string can be changed
by receiving a request display from the host (via the
streamn B) with its argument being a new string.

A character input device can be modeled by the fol-
lowing KL1 clause,

char_input(0, [stroke(C)|K]) :-
o= [c|o1],
char_imput{01, K).

Unlike in the caze of output devices, the communication
stream (0 in this case) flows from the device to the host.
The device simply sends all the characters typed in fo
its output siream. Buffering is implicitly effected by the
cutput stream.

An explicitly buffered character input device can be
modeled by the following KL1 clauses.

char_input{R, [stroke(C)|Kl, B, T) :-
T = [CITi],
char_input(R, K, B, T1).
char_input{[get (X} IR], K, [CIB], T) :-
=0,
char_input(R, K, B, T).

In this model, direction of the stream is from the host
to the device. Characters typed in are buffered in this
process, using the third and the fourth arguments as a
difference list representing the buffer. They are sent to
the host on get request by unifying the argument of the
partially instantiated request message,

Among the above two models for input devices, the
PIMOS employs the latter, mainly because devices for
input, output and both can all be handled unifermly.
The request stream from the host to the device is called
the device control stream.

3.2 Device Control Scheme

| conirof = |
D
H E
E‘ . atbention 1{
: :
abortion

Figure 3: Comsrunication Paths to a Physical Device

3.2.1 Completion Status

All the I/O command messages sent to a device con-
trol stream have an argument to which the device pro-
cesg unifies a value indicating whether the command
was normally completed or not. This argument is called
the completion status of the command. Synchronization
with the completion of 2 command can alse be possible
by waiting instantiation of thiz argument.

3.2.2 Interrupt

With only the control siream, there is no way to send
information actively from the device process to the host,
Besides the control stream, a reverse direction commu-
nication path called the affention line iz provided. The
altention line is actually a shared variable among the
host process and the device. The device may instanti-
ate it when asynchronous communication to the host is
required.

3.2.3 Command Abortion

Sometimes, cancellation of commands already sent to
the control stream is desired. In the PIMOS, all the [/ O
devices have an additional communication path from
the host to the device, called the abortion line, which
is actually a shared variable among the host process and
the device. When the host instantiates this variable,
the device aborts the execution of the command under
execution and skips any subsequent commands in the
device control stream until a resef message appears in
the stream. The completion status of the aborted and
skipped commands will become aborled.

A reset mezsage has the following arguments,

Abort: New abort line.
Attention: New attention line.

Status: Completion status of the resel command.

After the reset message is received, subsequent com-
mands are processed normally using the new abort and
attention lines specified in the meszage,

original =

Figure 4: Filter

3.3 Lower Level Implementation

In the current implementation on the Multi-PS1 version
2, the above-described communication protocol (based
upon the model of physical devices as KL1 processes) is
almost faithfully realized by the 1/0 front-end proces-
sors. The KL1 language implementation is not aware
of the existence of such specialized front-end processors;
the front-end and the host communicate to each other
using the same protocels used in the communication be-
tween two processors of the host. In this scheme, the
message handling mechanism for KL1 language imple-
mentation st be implemented also on the front-end
processor. The merit of the scheme is that it makes the
language implementation simpler, which was quite im-
portant iin this prototype implementation,

In other implementations in the future, realizing lower
levels on the host machine and making I/0 processor
simpler may become advantageous. In that case, a lower
level model of devices with clean semantics will be re-
quired.

3.4 Logical Devices

Logical devices are provided by the processes called de-
vice drivers of the PIMOS. A higher level abortion mech-
anism which allows retrying of once aborted commands
iz provided here.

The device driver is a kind of filter. Filters are pro-
cesses that receive messages [rom ils input stream, pro-
cess them somehow depending on the nature of the filter,
and send the processed message to the output stream.

The device driver remembers aborted 1/ 0 commands.
They can be sent again to the physical device by a resend
command, Alternatively, that memory can be cleared
by a cancel cormmand. This decision can be delayed
arbitrarily long, even until after another abortion. Thus,
multiple such memories for multiple groups of aborted
commands are required. The reset message in this level
has an additional argument ID to which the identifier
of the immediately preceding aborted command group
is returned. This identifier is used in resend or cancel
commands to identify an aborted command group.

This feature is quite useful in programs where two or
more tasks share one device. For example, programs

243

running under & command interpreter shell often share
a display window with the shell itself for standard in-
put/output. When such a program is suspended by an
interruption, there may be multiple I/ O requests already
sent to the window logical device butl not processed vet.
In such a case, the shell aborts the processing (through
the abortion line) and sends a resef messages to the win-
dow device driver, and then uses the window normally
for its own purpose. All the I/O requests of the sus-
pended program are also suspended and remembered in
the device driver process, rather than being discarded.
When the suspended program is to proceed again, send-
ing a resend message to the device driver will continue
the processing of the suspended I/O requests. When it
is Lo be killed, a concel message is sent instead.

3.5 Buffering

The 1I/0 commands can be designed to send one com-
mand for each character or similar small units, which
may be convenient for most application programs. Ap-
plying that fine-grained protocol to all the communica-
tion channels in the system, however, the comrmunica-
tion overhead may become problematic. Where there
iz & considerable per-message overhead for communica-
tion, for example, in communication between the host
machine and the I[J O devices, one message should bring
as much data as possible, as far as communication delay
will not become a problem, to attain higher throughput.
To realize this without changing the end-user interface,
the well-known technique of buffering is widely used in
conventional operating systems. Simply by buffering
n characters, the per-message communication overhead
can be reduced to 1/n.

The PIMOS provides the buffering mechanism in the
process called [/0 wtility filter, which is a filter placed
between the device driver and the user program.'® Thus,
the command protocol of this buffer is the only one that
casnal users are concerned, Buffering can be made guite
efficient using updatable random access structures (in
this case, updatable character strings).

The szize of the buffer i3 2 parameter of the system
which should be determined depending on the hardware
parameters. In addition to the buffering feature, this
filter also provides parsing and unparsing features for
operator PI‘EEEdE‘II:E ETAIMMALS.

4 MANAGEMENT OF PROGRAMS

In the KL1 language level, atoms do not have any asso-
ciation with their name sirings nor any other properties
such as executable codes. They are merely identifiers in
its original meaning. It is the PIMOS that associates
atoms and their name strings or any other correspond-

Y¥There are ather filters in betwesn the devies driver and the
1/ utility filter, which will be explained below.

244

ing properties. This section describes the databases the
PIMOS provides for storing such information and how
they are nsed,

4.1 Atom Name Database

Atoms and their names {character sirings) are associ-
ated by the atom name dafabase provided by the PIM-
(5. This database is accessed when such an association
is required; for example, on Prolog-hke read or write
operations. The database is implemented as a KL pro-
cess, which maintaing two hash tables: One for mapping
names to atoms and the other for the reverse. These two
tables are always kept consistent. Hash tables can be
quite efficiently implemented using the randomly acces-
sible and updatable array structures described in 2.7.1.

If this single database is used by all the programs run-
ning under the PIMOS each time they need the informa-
tion, the process realizing the database can be a perfor-
manee bottleneck of the system. Forfunately, the atom
name database is monotonic; new atom/name pairs may
be added to the database but there is no deletion nor up-
date. Thus caching of the atom name database is quite
easy.

A cache database is creafed as an empiy database.
When a query is made to a cache, the query is sent
further to the central atom name database (or another
cache database) and the answer is remembered in-the
cache. Any subsequent queries made on the same atom
can be answered without accessing the central database,
No other synchronization is required.

MNote that the association ufa.t.mzﬁ and their names ate

provided solely by the software, rather than the language

implementation. Thus, the atom/name assodiation pro-
vided by the PIMOS is merely the standard and not the
only possible cne. Users can use their own database for
specific applications. It is also possible to create unique
atoms not associated with any names, if only identily is
of interest.

4.2 Module Database

As described in 2.6.1, a block of object code for KLI1
programs is handled as & data object of type module.
The meodule database provided by the PIMOJ associales
module names {(atoms rather than name strings, actu-
ally) with the corresponding module data objects.

Caching the module database is not as easy as that
of the atom name database, because modules may be
updated. Mon-deterministic parallelism makes keeping
of consistency difficult. Forfunately, access frequency is
considered to be much lower in this case. Thus, the PIM-
05 currently does not provide any caching mechanism
for the module database.

A module which is not defined yel can alss be regis-
tered to the module database. Such & module is repre-

sented by an uninstantizted variable. When a query to
obtain such a module is made, that variable is returned,
Accesses to such a module will be simply suspended, as
described in 2.6.1.

Note that the association of modules and names pro-
vided by the module database of the PIMOS is merely
a atandard also and not the only one, as in the case of
atomname association. When, for example, a higher
level language system is to be built wpon the PIMOS, it
may or may not use the standard association.

When the number of wsers concurrently using the
PIMOS increases, the module database may become a
performance bottleneck. In such a case, providing a pri-
vate module database for each user may be advanta-
geous. Commonly used modules, such as those provided

~ by the PIMOS, should be stored in a common database

which does not allow any update, to enable caching in
persenal module databases. The look-up mechanism will
be similar to the package system provided by Commen
Lisp {Stesle 1984).

4.3 Linking Modules

There are two types of linkage between modules.

The basic linkage mechanism is fired linkage pravided
by the language system. When linkage is made this
way, & module containing a invocation of a predicate
in another module has a pointer to the invoked module
ohject.!” This is the most efficient mechanism provided
for invocation of a predicate in a foreign module.

A drawback of this efficiency is that modules cannot
bie updated independently. For example, when a module
A ecalls another module B, updating the module B to B’
will not make the module A call the new module B
The newly created module B’ is merely replacing B in
the module database, without changing already existing
pointers to the module B elsewhere. In such cases, the
module 4 must be linked again with 5.

In the more flexible linkage mechanism implemented
in KL1 software, modules are not directly referemced but
designated by their names. Each time an invocation is
made uwsing this linkage scheme, a query to the mod-
ule database is made. When this soft linkage is used,
each module can be updated independently. Efficiency
drawback, of course, is not small. '

Fixed linkage is normally used. Name linkage is used
in cases where programs are in anyway invoked by their
names. For example, the command interpreter shell uses
this on inveking programs that run under it. Name link-
age may be profitable also in the program development
phase, where linkage efficiency may be more important
than execution efficiency.

WThere can be many copies of one module an different proces-
sors, but they all are logically equivalent,

Parent Task oont.
r'epI lmt. — T
cont, Task
Child Child ,Handler
Shéen ! Task =L

Figure 5 Task and Shéen

5 RESOURCE TREE

Controlling computetional resource is the most impor
tant role of an operaling system. Using the shoen fea-
ture, consumption of basic resources such as execution
time can be controlled. There are, however, other re-
sources, such as [JO devices, which are not controlled
by the language primitives and should be controlled by
the operating system.

This section describes how management of such re-
sources is realized in the PIMOS. The most crucial part
of the resource management is in releasing resources al-
located during some computation on abortion of that
compufation.

5.1 Resources

The shoen feature provided by the KL1 language is capa-
ble of controlling basic resources such as execution time.
The kinds of resonrces controlled by the shden feature
is called lenguage-defined resources, On the other hand,
other resources such as [f0 devices cannot be controlled
only by the shien feature. Such resources are called 05-
defined: resources.

5.2 Tasks

Tasks are units of resource management in the PIMOS.
Tasks are a shfen specially recognized as a task by the
PIMOS.

As the shen feature is provided by the language,
ghdens can be arbitrarily created at any time by any
program. Tasks, on the other hand, can only be created
by asking the PIMOS, because it is the only way a shden
can be recognized as a task by the PIMOS.

The control and report streams of a usnal shien are
directly connected to ils creator, while those of a task
are connected to 2 PIMOS process corresponding to the
task, called fask handler. The creator of the task can
only indirectly control the task and receive reports of
the task through streams connected to the task handler
process.

5.3 Resource Loop

245

Task
Handler
JJ| i
Device Device Device
Moniter = Mm;tor = M::ijt'.:ur
h o o o |u
1
Dievice -Device | Device ’l
Handler Handler Handler

Figure §: Resource Loop

When a task is aborted, all the OS-defined resources
allocated to the task are freed. This is essential to allow
abortion of tasks safely without disturbing subsequent
processing.

To realize ihis, all the OS-defined resources allocated
to the task must be remembered somehow. All accesses
to 05-defined resources from user programs are made
through a stream that is connected to a process in the
PIMOS, called device handler, The device handler pro-
cess is a filter, through which various requests are sent
to the device driver. This handler processes can thus
comirel users’ accesses fo the OS-resources.

All the OS5-defined resources are associated with an-
other PIMOS process called device monitor. The mon-
itor processes for resources allocated in a task are con-
nected by a stream in a loop structure called resource
loop.'® The monitor process and the handler process
have communication streams in both ways. HResources
allocated in 2 task can be released on its termination
by sending a message notifying the termination via the
resource loop to the monitors, and then to each cor-
responding handlers. Handlers will close their output
streams when when the message is received. When a re-
source iz released individually (when a file is closed, for
example), that resource can be eliminated from the loop
using the well-known short-circuit technique (Hircsh et
al. 1987}, Queries on the resource allocation status can
also be processed along the same path,

A monitor and the corresponding handler are made
as distinct processes in the current implementation for
keeping the modularity of the system; all the monitors
are identical but the handlers depend on the device they
handle. It may be possible, however, to merge these two

processes.

H.4 Hesource Tree

184 loop structure similat to the rescurce loop of PIMOS can
also be found in the Logix éperating system (Hircsh ef al. 1987)
for contralling user programs. In case of Logix, however, the unit
of control is cach goal to be reduced, as there is ne notion of goal
groops such as shden in the langoage level,

246

M I'M M
BEE % Tt
; T [D T
IT 11 It TTF
D||D D||D |D

T': Task Handler; M: Hesource Monitor; D: Device Handler

Figure T: Resource Tree

In the PIMOS, tasks are also considered to be O8-
defined resources. A task handler is & kind of device han-
dler whose corresponding device happens to be a shden.
Tasks are different from other devices in that they may
have children resources.

As children resourees of a task can be tasks again,
all the device monitors and handlers form a tree of re-
spurces. This is called the resource free. All the re-
source management, of the PIMOS is through this re-

aource tree,

6§ COMMUNICATION MECHANISM

As there is only one variable binding environment, the
aperating systern PIMOS and user programs can share
variables. Communication between the PIMOS and user
programs is made through such shared variables. The
user program instantiates a shared wvariable to a dala
structure for making a request to the PIMOS, and the
PIMOS instantiates certain elements of the structure to
return values to the user program.

Thiz section deseribes how such communication is
made, how the commumnication path is initially estab-
lished, and how the communication is made in a fail-safe
-way Lo protect the PIMOS from accidental or intentional
errors of appleation programs.

6.1 Basic Communication Mer:ha.niam

The communication mechanism between the PIMOS
and the user programs is based on the scheme proposed
in (Shapiro and Takeuchi 1583).

The structure of the top level of the PIMOS may be
as follows.

boot =
pimes (5],
executeluser(s), ...},

The variable S is shared hetween the user program and
the PIMOS and used as a stream for communication
between the user program and the PIMOS.

For simplicity, we assume here that the PIMOS pro-
vides only one device: A character input device, In this
case, the clause in & predicate of PIMOS for handling
one character inpuf requests may be defined as follows.

pimos ([get (C}[8]) :-
read_keyboard(C1),
C=C1,
pimos(s) .

Here, the read keyboard predicate is assumed to do the
physical input procedure and unifies the typed-in charac-
ter with its argument. When a messape get is received,
physical input operation is performed and the typed-in
character is unified with the argument of the get mes.
sage.

In the above program, the user program may be as
follows.

user(s) :-
8 = [get(C})|s1],
ugerl(C),

uan;;:;(ﬂ’ﬂ =L
usari(0'b) = ...

The user program sends a partially defined get request
message to the operating system, and then determines
its further processing depending wpon the result. The
predicate usarl implicitly waits for instantiation of the
variable to which the operating system is refurning a
value by unification.

The order of the commands sent to one message
stream is kept in the stream, for it iz determined by the
data structure, not by the order of operation.’® This
guarantees, for example, two messages fo be displayed
are displayed in the desired order.

Accesses Lo databases provided by the PIMOS are also
made in the same manner. In this case, the stream ob-
tained by request the PIMOS is an access path to a
database, in which commands are ordered. ™

6.2 Establishing Communication Paths

For communication using the above-described method,
the part of the user program which requires some service
of the PIMOS must have a stream connected to the PIM-
05 {or one that merges into it). As there is no notion of

Wheno mergers are inserted, the order of messages from origi-
nally different streams becomes non-deterministic.

W hen two or more sccess paths ere created, eynchronization
of two access paths should be made by the completion status ar-
gument of command messages,

global variable in the language, such a stream must be
passed all through the chain of invocations from the top
level to where actual communication is required. This
overhead may be too large if communication is needed

only in rare exceptional cases; only in case of error re-

porte, for example.

The PIMOS provides an alternative way of establish-
ing a communication path to the PIMOS. This can be
done by deliberately generating an exception using the
raise primitive (see section 2.3.4). By specifying an ap-
propriate fag in this this raise, the exception report in-
dicating the request goes directly to the report stream of
the shden used for realizing a tusk. The report stream
of & task shden is monitored by the task handler pro-
cess of the PIMOS, and there, the request is processed,
Thus, shGens in user programs can nest arbitrary num-
ber of levels without losing the direct availability of the
serviees of the PIMOS. :

it iz also possible for a user program to create a shden
specifying 2 tag corresponding o some requests to the
PIMOS. This way, all or part of the requests to the PIM-
(5 can be caught by the program monitoring the report
stream of such a shden. If the monitor program emu-
lates the PIMOS, the program in the shfen runs exactly
the same as when it is directly run under the PIMOS.
This is the way virtual machine operating systems are
implemented under the PIMOS,

There are three layers of communicalion streams be-
tween user programs and the PIMOS.

Device Level: This is the lowest level where concrete
1/0 command messages are sent.”

Device Request Level: This is the level where com-
mand messages to obtain device level streams are
sent. For example, a file request stream accepts
messages asking to open files and return the deviee
level siream connected to the file.

General Request Level: This is the top level where
eommand messages to obtain device request streams
are semt.

What is directly obtained by raising an exception is a
general request stream. All the services provided by
the PIMOS are available throngh this general request
stream.

6.3 Protection Problems

With the simple mechanism described above, however,
intentional or accidental error in user programs may
cause a system failure. This section describes the prob-
lems in shared variable communication between user
programs and the operating system.

HSame devices may also accept commands which ereates a new
device. For example, s file directory device can create a file devics,

247

6.3.1 DMultiple Writer Problem

As far as the user program is properly written as de-
scribed above, there will be no problems. If, however,
an erroneous user program such as follows is executed,
a system failure may take place.

user(s) -
5 = [get(C)a1],
usari(C),

userl(C) :-
C =0,

Here, the user program unifies the variakle C, If this hap-
pens before the unification “C = €1" in the PIMOS, the
unification in the PIMOS may fail. Even if it were pos-
sible to check that the variable C is uninstantiated im-
mediately preceding the unification®, the unification in
the user program can be executed in between the check
and the unification in a parallel system.

‘The Perlog Programming System (PPS) provides a
simple solution to this problem (Foster 1987). The prob-
lem arises because the value-returning unification is ex-
ecuted in the PIMOS. The PPS solution is to make the
unification done in a metacall {a mechanism similar to
shoen). Using this scheme, the code for the PIMOS will
be as shown beiow.

pimes([get(C) 8]} :-
read_keyboard(C1),
wait_and_unify(Ci, C),
pimes(3).

wait_and_upify(C1l, C€) := wait{C1) |
executell = €1, ...).

Wailing the value of C1 is essential because otherwise the
order of the invocation of the predicate read keyboard
and the execution of the shien will not be defined in the
language, and thus, without waiting for the value of C1,
the unification in the shen can be executed before the
invocation of the read keyboard predicate. This solu-
tion is simple but requires frequent metacall invocation;
one metacall per one communication from the operating
systern to the user is required. The metacall mechanism
cannot be optimized easily by compilation and other op-
timization efforts. Thus, this solution may be reasonahle
for interpretive implementations of the language where
the metacall mechanism is relafively inexpensive, but
may not be the best when the reduction mechanism is
highly optimized.

The problem may also be solved by introducing the
atemic commitment mechanism provided by Concurrent

¥ The KL1 language dees net provide a built-in predicate for
wariable clreck, such as war in Prolog, Such a predicete can only
guaranbes that its argument was not inatantisted sametime before
in parallel implementations,

248

Prolog (Shapire 1983). Implementation with atomic
commitment mechanism, however, may be not as effi-
cient as one without it. The problem is that the cost of
atomic commitient mechanism is not only in the com-
munication with the operating system but also in every
goal reduction in the system where such mechanism is
not required.

8.3.2 Forsaken Reader Problem

Another problem appears when the user program fails Lo
instantiate a shared variable inspected by the PIMOS,
For example, consider the following clause.

nser(S) :- 5= [_I51], ...

As the message to the PIMOS is not instantiated, the
FIMOS process will wait for it to be instantiated forever.
When the message has an argument which specifies more
details of the request (a character code to be output, for
examnple), the same problem may aceur in the argument
level, too. A similar situation also arises when the ex-
ecution of the user program is aborted using the shden
mechanism described above, even if the user program is
properly writien.

This problem cannot be solved using the shéen mech-
anism nor the atomic commitment mechanism.

6.4 Protection Filter

To solve the above-deseribed problems, a filtering pro-
cess called the protection filter is inserted in the stream
between user programs and the PIMOS. This filter is
executed in the user shien rather than in the PIMOS.

The user sends messages to the protection filter
stream, not directly to the PIMOS. The protection filter
translates the vser messages into a different form which
does not canse failure in the PIMOS, and sends it to the
PIMOS.

The concrete functions of the protection filter are as
follows,

» It waits for instantiation of variables which the user
should instantiate. The message is sent to the PIM-
05 only after that, Thus, when & message is sent to
the PIMOS, the values of these variables are guar-
anteed be instantiated. For structures, it waits for
instantiation of only certain elements of it which
are required to be instantiated, allowing partially
defined messages to pass through the filter.

« [i rcpla.cr_'a variables which the PIMOS should in-
stantiate with new unbound variables. Tt also imi-
tiates processes each of which waits for instantia-
tion of one of the newly created variables, and then
unifies the corresponding original variable with it.
Thusg, all value-returning unifications in the PIMOS

will always be with unboind variables, which will
never fail.

The protection filter for the above example will be as
follows,

filter([get(c) 18], 08) :-
08 = [get(C1)l081],
wait_and_unify(C1, C),
tilter(s, 0S1).

wait_and unify(DSV, UserV) :-
wait{03V) |
UserV = OSV.

The filter process will not proceed until the message be-
comes instantiated to the form get(C1); the wvait_and.
unify predicate unifies the variable supplied by the user
program (U=zerV) with the variable to which the operat-
ing system returns the result (05V) only after its instan-
tiation.

The key point here is thal the protection flier pro-
ceas is m the shen of the uger and thus the unification
"eerV = 0SV" is execufed in the user shoen. Its failure
can be safely handled by the shien mechanism.

The top level of the PIMOS with this protection filter
mechanism will be as follows,

boot -
pimos(0S),
executel (user(8), filter(s,08)), ...J.

As the protection filter is inserted automatically, the user
program may not be aware of the existence of such a
filter, as far as it 15 properly uwsing the communication
stream.

MNote that, the two occurrences of the variable S in
the above program must be unified prior te the invoca-
tion of the shien. Otherwize, this unification may fail.
The proper unification order iz gnaranteed by the rules
deseribed in 2.2.5.

8.5 Protocol Compiler

A disadvantage of the protection filter scheme is that the
filter must koow all the details of the message protocol.
It may be common in conventional operating systems
that the interfacing code knows all the details of the
communication protocol. It may, however, maks the sys-
tem maintenance cost considerably higher becanse the
code of the protection filters for various devices may be
lengthy, taking a large part of the PIMOS which is rel-
atively compact,

Fortunately, given the communication protocol of the
PIMOS and the user programs, the code for the protec-
tion filters can be generated automatically, This gener-
ator program is called the preiocel compiler. Using the

[Fser PIMOS
IP;_
Sll1ollEl{p||D
U 1 T N E E
?%;LEE;]:};I-‘:TV
abteEEnitnR Sl
= 1

Figum £ Communication Filters

protocol compiler, & compact specification of the com-
mumication protocol with fair readability can be used
as the source code of the PIMOS. It is also possible
to generate the device handler code using the same
technique.®

6.6 Summary of Communication

The communication pﬁth from a user program to a
physical device is summarized in the figure 8. Although
1/ messages goes through several filters as shown in
the figure, /O requests are buffered at the utility filter
which comes the first, keeping the commmnication cost
to a reasonable level, Also note that all the filters can
be executed in a pipelined manner.

8.7 Allocation of Filters

The current version of the PIMOS lets the user deter-
mine all the job allocation. All the filters in the commu-
nication path from the end user to the device driver are
allocated initially to the processor where the user pro-
gram first requested for the communication path. This
makes the communpication cost minimum as far as the
user program stays in the same processor. The user pro-
gram can make fillers migrate to other processors by
sending a reallocation message to the stream afterwards.
Filters will not migrate automatically following the user
process, for it may not be desirable. The user program
may move ameng processors often but actual 1/0 may
be required only after many migrations, in which case
enly one migration of filters before massive I/ 0 requests
is desirable.

Mlacation problem of the processes of the PIMOS
sheould be solved someday with the general load balanc-
ing problem, which is one of the most important research
topic in the future.

*n the version of the FIMOS available when this document is
being prepared, all the protection filter and device handler codes
are hand-written yet.

248
7 DEVELOPMENT ENVIRONMENT

This section describes the programming environment
provided for the development of PIMOS. Some of the
utilities described here may be also useful in develop-
ment of application programs.

7.1 PDSS and Micro-PIMOS

Prior to the development of the KL1 language imple-
mentations on parallel inference machines, an imple-
mentation of the language for conventional computers
was made-in the language C. In addition to the lan-
guage implementation, a primitive operating system is
also built upon it. The system is called the PIMOS De-
velopment Support System, or PDSE in short, and the
operating system is called the Micro-PIMOS {Miyazaki
et al. 1988). The primary objective of the development
of the PDSS was to provide a program development en-
vironment for the KL1 language that enables the devel-
opment of the PIMOS in parallel with the development

of the parallel inference machines,

The PDSS is a psendo-parallel implementation of the
language. Although real parallelism is not in the imple-
mentation, all other essential features 'of the K11 lan-
guage are provided by the system. The PDSS imple-
mentation thus also played a role of a prototype for im-
plementations on the parallel inference systems. Many
of the compilation and other fundamental implementa-
tion ideas developed for the KL1 language were verified
through this implementation.

The KL1 extensions to the FGHC language were ac-
tually uwiilized in the Micro-PIMOS. For example, the
shoen feature and the priority management feature were
extensively used in the Micre-PIMOS and have been
proved to be effective. The same applies to the various
optimizations in the implementation level.

The PDSS system provides various debugging features
including the following,

¢ Reduction by reduction stepwise execution with
symhbolic trace output. Selective tracing somewhat
similar lo Prolog debuggers including the spying
feature is also provided,

o Deadlock detection feature during program execu-
tion based upon multiple reference management and
during garbage collection. A goal is recognized as
deadlocked when it is found to be waiting for a vari-
able to which no other goals have access paths,

¢ Execotion profiling feature counting numbers of in-
vocations of predicates. Useful for program tuning,

s Stafic program checkers such s void variable detec-
tion and predicate dependency analysis,

250

The system has been revised many times on need adding
new features tl'ur]ug the dc’vr_"lup‘mc:uL of the PIMOS.
These debugping features accelerated the development
considerably.

As the parallelism, the enly crucial difference between
the PDSS and Parulff:l inu.plulrmuhu.ﬁuns, is iInp]icit. on
principle in the KL1 language, transporting of the PIM-
05 from PDSS to the Multi-PSI implementation was ex-
tremely easy. As was expected, almost no software syn-
chronization problem was found. This was the greatest
merit of writing the system in a logic-based concurrent

programming language.
7.2 KL1 Compiler

The compiler for the KL1 language was alao written first
for the PDSS. As the PDSS implementation and imple-
mentations for real parallel machines are both based on
the KL1-B abstract machine (Kimura and Chikayama
1987}, basically the same compiler could be used for both
of them. For parallel implementations, several features
were added for enabling parallel execution, but it was
quite sasy. :

7.3 Pseudo Multi-PSI

The Psende Multi-PSI is an implementation of the
KLl language on single-processor PSI-II machines
(Nakashima and Nakajima 1987). The PSI-IT machine
15 a logic programming workstation, developed earlier in
the FGCS project, which is also used as the front-end
processor for the Multi-P51 and probably for other par-
allel inference systems. The processor of the PSLII is
also used as the processors of the Multi-PSI machine.

A pseudo-parallel system for the KL1 language is im-
plemented on the PSI-II by storing two distinet set of
micrecodes n the microprogram storage: One required
for KL1 and the other for K10, which is the machine lan-
guage for 4 sequential logie programming language ESP
{Chikayama 1984), originally used in the PSI machine.*
Ag the same hardware and the firmware are used, the
peeudo Multi-PSI attains almost the same performance
as the Multi-PE1 system consisting of only one processor.

One processor of the Multi-PSI is emulated by one
process on the pseude version. Pseudo processors are
switched when given number of reductions are com-
pleted. The scheduler can specify arbitrary scheduling,
including random ones. An advantage of psendo-paralle]
implementations to real parallel implementations is that
the same execution sequence is reproducible. Ewven if
the scheduling is random, it is only pseudo-random; giv-
ing the same seed, the same random number sequence
can be obtained. This makes bug locating much easier.
Symbolic tracing feature of the PD35 was also made
available on the pseudo and real Multi-PSI.

M the actual implementation, two versions of the micrecodes
are overleyed due bo lack of storage capacty.

The PIMOS was first transported from the PDSS to
this Pseudo Malti-PSI and then to the real Mulii-PSL
As the PSI-T1 hardware 15 much more compack and in-
expensive than the Multi-PSI, dd:ugging of many parts
of the PIMOS and, more importantly, debugging of the
firmware could be carcied out in parallel. The same
would apply to future improvements of the PIMOS and
the language implementation, and also to development
of application programs.

8 CONCLUSION AND FUTURE
RESEARCH PLANS

The development of the PIMOS showed not only the
feasibility but alse advantages of using concurrent logic
programming languages as the basis of operating sys-
tems.

As we already experienced during the development of
the SIMPOS (the operating system for the logic pro-
gramming workstation PSI) in a earlier stage of the
project, there are various merils in using a symbolic
programming language for description of an operating
system {Chikayama 1988). The same merits were ob-
served also during the development the PIMOS. The
source programs could be written in a quite readable
form. An interactive symbolic debugger was made avail-
able from the earliest stage of the development, provid-
ing trace output quite easily compared with the source
program; without this symbolic trace, the development
would have been much more toilsome.

The most notable observation made during the devel-
opment of the PIMOS was that almost no synchroniza-
tion problem was found in the debugging phase. Using
conventional procedural languages, data-flow synchro-
nization mmust be transformed into control-flow synchro-
nization by the programmers, which is the largest source
of bugs in development of operating systems. Using a
concurrent logic programming language, the system de
signers have to be aware only of the flow of data and
almost nolhing of synchronization, as data-flow synehro-
nization is implicit in the language. This was the largest
merit of using the KL1 language.

There are several problems which are yet to be solved

in future research.

One of the mosi important problems left unsolved is
balancing computational load of processors. In the cur-
rent version of the PIMOS, load balancing is specified
by the user programs and the PIMOS merely faithiully
obeys thal (see section 6.7). A semi-antomatic load bal-
ancing scheme was proposed {Chilayama 1986) and the
basic hardware mechaniam required for the scheme was
provided {Takeda ef al. 1988), but it is not utilized in
the current version of the PIMOS and its effectiveness
has yeb to be evaluated. '

Another problem left is in the memory management.

The garbage collection mechanism and the quantitative
memory management scheme proposed in this paper do
not necessarily go together well. A new model of memory
consumption may be required here.

In the current version of the PIMOS on the Multi-PSI
machine, the front-end processor provides a high-level
I/0 interface. This scheme gives clean semantics to the
physical /0, but it may be laying too much burden on
the back of the front-end processor. A decent model
of lower-level 1/ operations, which alss can be imple-
mented more efficiently, is desirable.

Tuning of various parameters of the PIMOS, commu-
nication buffer size or resource management accuracy,
for example, are not carried out yet. Such parameters
should be determined through future experiences with
the system and parallel application software,

ACKNOWLEDGMENTS

Many researchers of ICOT and other related research
groups, too numerous to be listed here, participated

in the design and implementation of the the KL1 lan-

guage, Lhe operating system itself and the development
tools. We would aleo like to express our thanks to
Dr. 5. Uchida, the manager of the fourth research lab-
oratery of ICOT, and Dr. K. Fuchi, the director of the
ICOT research center, for their valuable suggestions and
encouragement.

REFERENCES

(Chikayama 1984) T, Chikayama. Unigue Features of ESP. In
Proceedings of FOOS 8, pages 292-208, ICOT, Tokyo, 1084,

(Chikayama 1986) T. Chikayama. Load balancing in & very
large seale multi-processor system. In Proceedings of Fourth
Japanese-Swedish Workshop on Fifth Generalion Compuier
Systems, S1C5, Stockbolm, 1986, Also as ICOT Technical
Memorandum, TM-276, I00OT, 1934,

(Chikayama 1988) T. Chiksyama. Programming in ESP — ax-
periences with SIMPOS. In K. Fochi and M, Nivat, editor,
Progmmming of Fefure Generation Compulers, pages T6-86.
Narth-Holland, New York, New York, 1088,

{Chikayama and Kimura 1988) T. Chilayama and Y. Kimura.
Multiple reference management in flat GHC. In Proceedings
of Fourth Mnternalione! Conference on Logic Programming,
volume 2, pages 276-293. The MIT Press, Cambridge, Mas-
sachusetts, 1987,

(Clark and Gregory 1984) K. Clark and 5, Gregory. Notes on sys-
tems programming in Parlog. In Proceedings of FIOS'84,
pages 209-308. ICOT, Tokyo, 1084,

(Clark and Gregory 1986) K. L. Clark and 5. Gregory. Parleg: A
parallel logic programming language. ACM Trarsaction on
Frogramming Languages and Systems, 8(1), 1038,

{Foster 1987) 1. Foster. Logie operaling systems: Design issues.
Proceedings of the Fourth Fndernational Conference on Logic
Programming, volume 2, pages 910-926. The MIT Press, Com-
bridge, Massachusetts, 1987.

251

(Foster 1988) I. Fester, Parlog as a systems pregramming lan-
guage. Pk D, Theses, Imperial College, London, 1988,

[Goto ef ol 1988) A. Goto ef al. Overview of the parallel infer-
ence machine architecture (PIM). In Proceedings of PGS 88,
ICOT, Tekys, 1058,

(Hircsh ef al. 1987) M. Hiresh ef ol Computation control and
protection in the Logix system. In E. Shapire, editor, Con-
currend Prolog: Collected Papers, volume 2, pages 28-45. The
MIT Fress, Gambridge, Massachosetts, 1987

(Kahn ef ol 1988) K. Kabn el al. Objects in concurrent logic
programming languages. Sigplan Noffces, 21{11):242-257,
1986.

(Kimura and Chikayama 1987) ¥, Kimurz and T. Chikayama,
An abatrset KL1 machine and its insteuction set. Tn Proceed-
ings of 1987 Symposium on Legic Progmmming, pages 468
477. Computer Society Press of the IEEE, Washingon, LT,
18EB7.

(Miyazaki 1988) T. Mivazaki. Parallel logic programming Jan-
guage KL1 — Tts implementation and an operating system in
it —. In The Transaction of the Institule of Flectronics, Infor
mition and Communication Enginesrs, JT1-D{8}:1423-14372,
1988, in Japanese.

(Mivazaki ef ol 1988) T. Miyazaki ef af. PDSS Mannal. ICQT
Technical Memorandum, TM-437, ICOT, 1988, in Japanese,

(Nakashima and Nakajima 1987) H. Nakashima and K. Naka
jima. Hardware architecture of the sequential inference ma-
chine PSLIL. In Procesdings of 1987 Symposium on Logic
Progrmming, pages 104-113, Computer Society Press of the
IEEE, Washingon, D.C., 1957,

({Shapiro 1983) E. Shapiro. A subsel of Concurrent Prolog and iis
interpreter, TOOT Technical Report TR-003, ICOT, 1988,

(Shapiro 1984) E. Shapiro. Systems programming in Coneurrent
 Prolog. In Preceedings of the 1ith ACM Symposinm on Prin-
ctples of Programming Languages, 1984,)

{Shapire and Takeuchi 1983) E. Shapire and A. Takeuchi. Object
Oriented Programming in Concucrent Prolog. ICOT Techni-
cal Reéport TR-004, ICOT, 1983, Also in New (Feneralion
Compuling, 1-1, 1985,

(Steele 1084) Guy Steele ef al. Common Lisp, the quug;uﬂjc.
Digital Press, 1984,

(Tekeda ef ol 1988) Y. Takedz of al. A load belancing mecha-
nism for large scale multiprocessor systerns and its implemen-
tation. In Preceedings of FOS88. ICOT, Tokyo, 1088,

(Ueda 19686) K. Ueda. Guarded horn elauses: A parallel logic
programming language with the concept of 2 guard. 1COT
Technical Repert THR-208, I[COT, Tokye, 1936,

(Ueda and Chikayams 1984) K. Ueda and T. Chikayama, ER
ficient etream/array processing in logic programming lan-
guages. In Proceedings of FGCOS'84, pages 317-326. ICOT,
Tokyo, 1584,

(Yeshida and Chikayama 1988) K. Yoshida and T, Chikayama.
A'UM — & stream-based concurent object-oriented language.
In Proceedings of FGOS'88. ICOT, Tokya, 19358,

