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ABSTRACT

As part of the FGCS project, we are developing parallel
inference machine (PIM) systems based on a logic pro-
gramming framework. The PIM systems include the ker-
nel language (KL1), the paralle]l operating system (PI-
MOS) and the PIM hardware architectures,

KL1 has been designed with its parallel implementa-
tion techrigues. We used the characteristics of KL1 to
solve the KL1 parallel mmplementation issues, such as
distributed resource management, goal scheduling and
distribution, memory management, and distributed uni-
fication. They have been condemsed into the abstract
machine instruction set, KL1-B.

In designing the hardware architecture of the PIM pi-
lot machine, we aimed at a total elfective performance
of 10 to 20 Mrps. We introduced a hierarchical configu-
ration to connect more than one hundred processing el-
ements. We provided a new instruction architecturs for
KL1 for the processing elements. We designed a coherent
cache protocol to make high-performance clusters, each
of which includes eight processing elements connected
with shared memory. We designed a multiple hypercube
network to connect these clusters.

1 INTRODUCTION

The research and development (Ré:D}) of the parallel in-
ference machine (PIM) system is one of the most im-
portant targets in the FGCS project. The PIM sys-
‘tems will be the pioneer of parallel processing in knowl-
edge information processing system (KIPS) application
fields (Murakami et al. 1983).

During the initial stage (1982 to 1984) of the FGCS
project, the elementary mechanisma of PIM were studied
from various standpoints (Murakami et al. 1985, Goto
and Uchida 1985, Gote and Uchida 1986). The Ré&ID
of the current PIM system started in 1985, It includes
the design and implementation of the kernel language
(KL1), the PIM operating system (PIMOS), and the
PIM hardware architecture as shown in Figure 1. We
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* Figure 1: Parallel Inference Machine System Overview

set the following goals for the R&D of the PIM system.

1.1 BResearch Goals

One of our most important policies in the R&D of the
PIM system is to build up a total systern based on logic
programming, so that the system designers of the PIM
can easily look through all levels of the system in a logic
programming framework. This is an important way to
solve the so-called semantic gap argument: application
and implementation are closer, therefore execotion is
faster.

KL1, the kernel language of the PIM system, was de-
signed based on GHC (Ueda 1886a). The major reasons
for choosing GHC as the basis for KL1 are as follows.
(GHC has clear and simple semantics as a concurrent
logic programming language, by which programmers can
express important concepts in parallel programming,
such as inter-process communication and synchroniza-
tion. In addition, GHC is an efficient language, in
the sense that we can specify the machine level lan-
guage (Goto 1987).

We hope to realize very high execution performance
for the logic programming in K11, We believe that more
than one hundred times the performance of current ma-
chines will be necessary to enhance the logic program-



ming application research. Parallel machine architec-
ture research to date has explored many new technolo-
giea (Hwang and Briggs 1984), but there remain many
unsolved problems. To achieve this performance goal,
both software and hardware architectures have been
studied.

Mext, we aimed to build practical systems that would
be available as research tools in the next stage of the
project. This is essential for the application research.
In addition, the development of total and practical sys-
tems stresses the importance of memory management
and program control in parallel processing systems, and
it also reveals the hidden problems in parallel processing.

Finally we tried to build the PIM system by KLL. The
PIM operating system, PIMOS (Chikayama ot al. 1988),
is written in KL1 as a self-contained operating system.
In addition, the language features of KL1 are fully used
in the parallel architecture design.

1.2 Issues in the Following Sections

This report describes the parallel execution mechanism
of KL1 and the hardware architecture of the PIM pilot
machine. The major issues are as follows.

Distributed management for KL1 programs: The
first issue m the KL1 parallel implementation is how to
control the KL programs in distributed environments.
The meta-programming capability by the shéen (Chika-
yama e al. 1988) facility was introduced to KL1 to
manage KLl programs by PIMOS written also in KLI1.
The next section describes how to realize the shen facil-
ity: more precisely, the shéen and foster-parent scheme

with weighted message protocol is discussed.

Scheduling /distribution: Scheduling and distribu-
tion of KL1 goals are the key isaues for the efficient im-
plementation of KL1. Section 3 describes the non-busy
waiting goal scheduling mechanism, as well as the prior-
ity goal scheduling. It also shows two kinds of goal distri-
bution mechanisma: for tightly coupled multiprocessors
with shared memory, and for loosely coupled multipro-
CES30TS.

Memory management: An essential role for logic pro-
gramming is to free programmers from having to perform
the memory management. In other words, the KL1 im-
plementation has to include efficient memory manage-
ment schemes. Section 4 shows the incrementel garbage
collection mechanism embedded in the parallel KL1 im-

plementation.

Distributed unification: We have designed the princi-
pal operation (unification) in distributed environments,
Section 5 discusses how to reduce the communication
cost in distributed unification.

KL1-B: The above schemes for the KL1 parallel im-
plementation are condensed into the abstract instruc-
tiom set, called KL1-B {Kimura and Chilkayama 1987).
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KL1-B interfaces PIMs and KL1, just as WAM {War-
ren 1923} interfaces Prolog and sequential machines. In
other words, KL1-B represents the abstract architecture
of PIM. Section 6 overviews the KL1-B features.

Hardware architecture of the PIM pilot machine:
The hardware architecture of the PIM pilot machine is
shown in section 7. We introduced a hierarchical con-
figuration into the PIM hardware architecture (shown
in Figure 2), which is assumed in the above discussions
about KL parallel implementation. Each processing el-
erment (PE) has a tagged architecture. Several PEs farm
a cluster. All PEs in a cluster can share a memory space
which is local to each cluster. These clusters are in-

. terconnected by a communication network. A shared

memory in each cluster works as a local memory for
inter-cluster parallel processing. In other words, intra-
and inter-cluster addressing systems are separated.

The Multi-P51 (Taki 1986) system has been built to
enhance the research for the KL1 parallel implementa-
tion and the PIMOS design. The Multi-PSI is 2 col-
lection of the PSI machines (Nakashima and Nakajima
1987) connected by the fast mesh nelwork (Takeda et
al. 1988). From the KL1 implementation viewpoints,
each processing element in the Multi-PSI can be seen as
a cluster of one processor, Most of the KL1 implementa-
tion issues in distributed enviromments have been stud-
ied through the design of the Multi-PSI system (Ichi-
yoshi et al. 1987).

2 RESOURCE MANAGEMENT BY SHOEN

KL1 was initially specified as flat GHC (Ueda 1986a,
Ueda 1986b), taking efficient implementation into con-
sideration. Flat GHC is a subset of GHC, which allows
only built-in predicates as guard goals, This restriction
males langnage implementation more efficlent while re-
taining most of GHC's descriptive power. Starting from
flat GHC, KL1 has been extended so that it has become
a practical language with the features required for the
PIMOS design’.

YChikayama et al. (1988) describe the system programming fea-
tures in KL1. Also Miyazaki (1988) in Japaness.
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2.1 Metaprogramming by Shien

In GHC or flat GHC, all goals compose a logical conjune-
tion, so that the failure of a certain goal causes a global
failure. However, the relation between the operating sys-
tem and user programs must be that of a meta-level pro-
gram and object-level programs, where the meta-level
program controls or monitors the object-level programs.
Therefore, it is necessary to introduce a metaprogram-
ming capability into KL1.

The metaprogramming capability of KL1 is realized
by the shaen facility. While tail-recursively executed
goals look like small-grain threads of contrel {processes),
a shfen defines a larger-grain computational unit, that
is, the concept of a job or a fask It deals with exe
cution control of programs, resource management and
exception handling.

A shoen may include child sh@ens, so that we can see
KL1 goals form a tres-like structure (shoen tree) whose
nodes are shiens and whose leaves are KL1 goals. In
this case, when the execution in an outside {or parent)
shéen stops, all execution in an inside (child) shéen stops
antomatically. When the outside execution is restarfed,
inside execution is also restarted,

Computing resources can be managed in each shben lo
avoid, for example, infinite execution of nser programs.

The management of computing resources is roughly im-

plemented as how mauy goal reductions can be done
within a shen. The inside shSen can consume the com-
puting resources within the amount of the resources that
the outside shoen has.

A shien is created by & call to the built-in predicate
execute/0:

ezecute (Goal, Control, Report, Min Maz, Mask)

{(7oal specifies the initial goal, that is, the predicate name
and its arguments, to execute in the shden. All forked
goals from the given Goal belong to the same shien. Min
and Maz are minimum and maximum possible priorities
of goal scheduling allowed in the shden. (See section 3.3.)

Control and Reporl are the control and the report
streams. The control stream is used to start, stop or
abort the sh@en from outside. The moenitoring process
can be informed of events within a shden such as the end
of execution and exceptions through the report stream.
'Hxceptions that have occurred in the shien or are del-
egated from one of the child shdens are reported as a
message to the report stream. Mask is a bit patiern for
determining which exceptions should be handled in this
shden. The monitoring process can substitute a new
goal fer the goal that has given rise to the exception.
An important thing to note is that there is no failure n
a shfen. Any kind of failure is treated as an exception.
The logical conjunction between KL1 goals is maintained
within each shden. In other werds, goals in a shden do

Cluster;

Clusler,

i :5hden A
: Foster-parent for the shoen A
: Goals in & shien

Figure 3: Shoen and Foster-parents

not form a conjunction with goals outside the shden.

2.2 Distributed Resouree
Foster-Parents

Management by

The main role of a shéen is to control the execution un-
der the shoen, that is, the shden status is checked in each
goal reduction Within & cluster, processing elements can
share the shden status, so that the hardware mechanism
(& coherent cache, see section 7.4) can reduce the cost
of checking the shien status in every goal reduction. In
inter-cluster paralle]l processing, the shden tree crosses
memory space boundaries of clusters. If we simply rep-
resented a link of a shien free using an external refer-
ence link, the rate of inter-cluster operations could be
very high and the synchronization would be very com-
plicated. We provided a shéen and foster-parent scheme
to avoid this (Ichiyoshi et al. 1987).

In the shen and foster-parent scheme, a foster-parent
for & certain shien is ereated, if necessary, in a cluster.
The foster-parent works as a branch of the shfen within
the cluster, The foster-parent manages the child shiens
or goals belonging to the shden in that cluster, that is, it
may start, stop and abort its children. By this scheme,
meat communication between the child sh@ens or goals
and the parent shfen can be done by the communica-
tion between the children and the foster-parent within
a cluater, o that the inter-cluster communication traffic

can be reduced.

Figure 3 shows the following situation. A shfen A
has a child shéen B and several child goals in clusters,
Cluster;, Cluster; and Clustery. Therefore, each clus-
ter includes a foster-parent {A;,4; or Ag). The shéen



B has its child goals, p, ¢ and r. They were created at
Cluster; and were linked o the fosier-parent B;. When
eme goal pis thrown to another eluster, Cluster,, a new
foster-parent, £y, is created, and the goal p is linked to
it.

2.3 Weighted Throw Count

Termination detection of all or some processes 15 one of
the principal functions in any systems. The end of a
KL] program execution corresponds to the end of the
shden. When all poals in a shien or descendant shiens
are reduced to null, the execution of the shien finishes.

When all goals under a foster-parent have been re-
duced to null, the foster-parent sends a termination mes-
sage to the shéen and disappears. The shien seems to
be able to detect the termination when it receives termi-
nation messages from all foster-parents. However, there
may be goals in transit as the goal r in Figure 3.

The weighted throw count (WTC) method was pro-
vided to solve this problem (Rokusawa et al. 1988),
where certain weight is assigned for the shien, its foster-
parents, and messages. The WTC can be seen as an
application of the so-called weighted reference count-
ing (Watson and Watson 1987, Bevan 1987).

In the WTC scheme, a shden has a certain weight of
negative value, and all its foster-parents and messages
will have & positive weight. The following tondition is
kept during their execution:

w.lflm -+ E Wj{ut:rpmnr + E

TFor example, when a foster-parent sends a goal to an-
other fuste[-pa,mt] the sender aaa!'gna a certain wﬁghl
from its own to the goal, then sends the goal with the
weight, The receiver adds the weight sent with the goal
into its own weight. When a foster-parent dizappears, it
sends a termination message to the shienwith its weight.
When the weight of the shfen becomes zero by adding
the weight of the message, the termination of all goals
in the shien is detectable.

0

m:am}e]

3 GOAL SCHEDULING

3.1 Goal Reduetion by Register Machines

While any unifications of KL1 can be done in parallel
under the semanties of GHC (Useda 1985), we did not
adopt this fine-grained parallelism, but the parallelism
between poal reductions. This is because: (1} unifica-
tions are granules that are too small to implement in
parallel, and [2) we can extract enough parallelism be-
tween goal reductions.

A set of candidate clauses for the same predicate is
compiled into KL1-B code &5 shown in section 6, exe-
cuted by single thread of control from guard to body.
Mo parzllelism is expected within each goal reduction.

Suspension
(suspendg) Pﬂp a anl
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Figure 4: Goal State Transition and KL1-B Instructions

Each passive and active unification can be dene by dis-
crete KL1-B mmstructions as register-memory or register-
register operations, so thal we can expect aptimization
by the compiler such as in register allocation.

3.2 Non-Busy Waiting Goal Scheduling

A poal can be a ready goal (RG], & suspended goal (53)
or a current goal (CG), as shown in Figure 4. The ready
goals are linked into a list forming & ready-goal-stack. In
principle, a current goal is pepped up from the ready-
goal-stack, then the goal reduction is performed by KL1-
B code corresponding to the goal predicate.

When any unification suspends, the goal i linked as
a suspended goal from the variable which cavsed the
suspension ([chiyoshi et al. 1887, Sato et al. 1987).
Here, the non-busy wailing method has been adopted.
That is, the suspended goal is not scheduled until the
variable will be instantiated. When a suspended goal is
resumed, it is linked to the ready-goal-stack again.

3.3 Priority Goal Scheduling and Pragmas

Diepth-first scheduling is, in principle, adopted for body
goals. A left most body goal can be executed without
pushing it to the ready-goal-stack (see Figure 4]}, while
other body goals are linked to the ready-goal-stack.

The priority of goal scheduling can be controfled by
specifying pragmas (Shapiro 1984). While each shoen is
created with the maximum and minimum priority (see
section 2.1), the pragmas'can specify the relative priority
within the range allowed for the shden. The ready-goal-
stack iz managed with the priority of goals. The forked
goal specified with pricrity is linked to the specified po-
gition. Otherwise, the same priority as with the current
goal is adopted.

3.4 Goal Distribution within a Cluster

How to keep the processing Joad well-balanced is a key
ssue in making the best use of parallel prl:_i:{:ﬂaing ré-
sourees.  Although several ideas for load distribution
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Figure 5: Goal Scheduling within & Cluster

have been proposed so far (Chikayama 1986, Takeda ef
al. 1988, Shapiro 1984), we should continue to study how
fo distribute the processing load. Currently the follow-
ing steategies are provided in the KL1 implementation
on PIM.

In a cluster, we provided an individual ready-goal-
stack for the goals with highest priority on each process-
ing element, as shown in Figure 5, to avoid conflicts of
access Lo the common goal-stack (Sato et al. 1987). The
highest-pricrity goals are distributed to keep the proces-
sor loads in good balance, We found on-demand distri-
bution to be an effective way to realize a good balance
within a cluster while reducing the amount of wasteful
communication among processors {Sato and Goto 1988).
In the on-demand scheme, an idle processor sends a re-
quest to & busy processor. On receiving the request,
the busy processor sends the goal from its cache in the
ready-goal-stack to the idle processor. These commuini-
cation should be done efficiently within a cluster, so that
we designed a coherent cache and an inter-processor sig-
paling by slit-cheeking for the PIM pilot machines. [See
section 7.2.)

New ready goals with higher priority than the current
highest priority are possibly born in a cluster, or sent
from other clusters. These higher priority goals are dis-
tributed gradually, saving the goals in each ready-goal-
stack into the common ready-goal-stack.

3.5 Inter-cluster Goal Distribution

The load distribution among dusters should be done
carefully because the communication cost is more ex-
pensive than within a cluster. Therefore, we provided
pragmas by which users can give the indication for load
distribution.

The pragmas for loed distribution have the form:
goal@node(C'L), attached to body goals as suifixes, and
throw KLI goals to a certain cluster. A body goal:

goal@node[CL) is thrown by a message Fthrow to a
cluster €'L when the clause confaining the body goal is
committed to. The semantics of programs with pragmas
is the same as that without them. The node (more pre-
cisely, & certain processing element in the cluster GL)
that received the Hthrow message links the goal to its
ready-goal-stack as well a3 to the foster-parent. If there
is no foster-parent, one will be created on the spot.
In the future, we plan to implement a dynamic load-
balancing mechanism.

4 MEMORY MANAGEMENT BY MRB

4.1 Importance of Efficient Garbage Collection

While KLI can describe synchronization and commu-
nication between parallel processes without side-effects,
naive implementations of KL1 as well as other concur-
rent logic programming languages (Clark and Gregory
1984, Shapiro 1983, Ueda 1986b) consume memory area
very rapidly. For example, whole array elements must
simply be copied when only one element is updated be-
cause destruetive assignment is not allowed. As a result,
garbage collection (GC) occurs very frequently. In addi-
tion, the locality of memory references is not good during
GC by widely used methods, so that cache misses and
memory faults occur often. In sequential Prolog {War-
ren 1983), this problem is not very serious because of the
backtracking feature. However, since concurrent logic
programming languages have no backtracking, an effi-
cient incremental GO method is important in their im-
plementations.

4.2 Ineremental Garbage Collection by MBEB

Reference counting (Cohen 1981) is one method by
which to recognize incrementally when a certain storage
arca Las become inaceessible from the program. How-
ever, in reference counting, each word cell must have a
reference counter field for the whole memory space. In
addition, the cost of updating the reference counter is
high, because data objects must always be accessed.

Several methods were proposed to reduce these over-
heads relying on the fact that data objects are not used
very many times, and most are used only once (Deutsch
and Bobrow 1976). Multiple reference bit (MEB)
method was. proposed as an incremental GC method for
concurrent logic programming languages® (Chikayama
and Kimura 1987).

The MRB method maintains one-bit information in
pointers indicating whether the pointed data object has
multiple references to it or not. This multiple refer-
ence information makes it possible to reclaim storage
areas that are no longer used. By lkeeping information

ZAnsther incremental GO method called lasy reference count-
ing (LRC) (Goto et al. 18EE) was designed. LRO uses two-waord
indirect polnters with a reference counter,
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Figure §: References in the MRE Scheme

in the pointers rather than in the pointed objects, no ex-
tre memory access is required for reference infarmation
maintenance.

Figure 6 shows the data representation in the MREB
scheme. A single-referenced object (a) and a multi-
referenced object (b} can be distinguished by the MRB
flag on pointers, of-MREB by O and on-MEB by @ .
Because of ihe single assignment nature of KL1, an un-
bound variable eell usually has one reference path for
instantiating and one or more reference paths for ref-
erencing its value. Therefore, an unbound variable cell
with only two reference paths is pointed by oft-MRB, as
in Figure (c). On the other hand, an unbound variable
with more than two reference paths has only one or no
pointer with offt-MRB, as in Figure 6(d).

The MRB information on variables or structure point-
ers is maintained through their unification. When a uni-
fication consumes a reference path to a single-referenced
data object, the storage area can be reclaimed after the
unification. For example, the goal reduction by a clause:

P([XTY]) : — true | o( X, Y').

is commitied when the argument of the goal p is the
pointer to a cons cell. Its elements are retrieved as the
arguments A and ¥ of the body goal g, consuming one
reference path to the cons cell, If the pointer to the cons
cell shows off-MRB, the storage area for the cons cell
can be reclaimed during the goal reduction.

Although the MRB scheme gives up the storage recla-
maticn for the data ebjects that were once multi-
referenced, the MEB scheme can greatly reduce the
memaory consumption rate with small run-time owvar-
heads. The MRE scheme alsc makes available several
optimizaiion techniques, such as destructive array ele-
ment update without using the method in Barklund and
Millroth (1287).

4.3 Garbage Collection within a Cluster

Data structures or variables in KL] are stored as shared
data in each cluster memory, The MRE scheme enables

213

storage reclamation for these data structures. Thus,
free lists for data strectures and variable cells are main-
tained. Storage allocation and reclamation are very fre-
quent operations. 5o each processing element has a set
of free lists for [requently used cells, enabling each free
list access to be dane independently in each processing
element.

We use another garbage collection that is done lo-
cally within a cluster accompanied with the incremental
garbage eollection by MRB. Thiz s hecause the MRB
gcheme leaves some garbages. Wa first implemented a
simple garbage collection of so-called copying scheme on
our experimental KLL system.

We  designed the parallel mechanism to  collect
garbages by all processing elements in a cluster. When a
certain processing element finds the shortage of memory
space during its goal reduction, it informs this event to
other processing elements, after it finishes the current
goal reduction. This is because garbage collection is dif-
ficult to start during a goal reduction. So, the shortage of
mernory space should be detected before all memory area
is used up. After all processing elements stop their goal
reductions, they start the copying operations tracing all
active cells in & shared memory of a cluster. Here, the
copying roots ate the ready goals in ready-goal-stacks®.

We also studied garbage collection schemes tailored to
the KL1 parallel processing, and designed a new schemea
called Piling garbage collection (Nakajima 1988). The
piling scheme has the feature of life-¢ime (Lieberman
and Hewitt 1983). The piling scheme can be used with
the MRB scheme, as well as can be done in parallel by
all processing elements in a cluster.

5 DISTRIBUTED UNIFICATION

5.1 Export/Import Tables

A goal is thrown by the fthrow message between the
clusters. The Fihrow message includes the following en-
coded information: the code of the predicate of the goal,
the arguments of the goal, and the shfen to which the
goal belongs, The encoding of arguments (or any KL1
data) is called erportation; decoding is called importe-
tiom,

In the KLI parallel implementation a reference can be
exfernal or internal. An external reference is a réference
to a non-local data. The external reference is identified
by the pair {node, ent), where node iz the cluster num-
ber in which the referenced data resides, and ent is the
unique identification number of location of the data in
that cluster.

We did not choose to lake the memory location di-
rectly as the unique identification number, ent, becanse

3Expert tables in section 5 are ales the roots of copying oper-
atians,
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that would make it very difficult to do garbage collec-
tions locally within one cluster. Ordinary garbage col-
lections by marling or moving schemes are sometimes
requited even if the MRB incremental garbage collection
is adopted. If the locations of data have moved as the
result of these garbage collections, it must be announced
to all clusters that may reference the data. Instead, each
cluster maintains an export fable to register zll locations
that are referenced from other clusters {Ichiyoshi et al.
1987). Bach externally referenced cell is pointed to by
an entry in the table, and the entry number is used as
the unigue identification number. When the externally
referenced cells are moved as the result of a local garbage
collection, the pointers from the export table entries are
updated to reflect the movements.

Also, each cluster maintains an fmport fable to reg-
ister all imported external references. All references in
a cluster to the seme external reference are represented
by internal references to the same exlernal reference cell,
The external reference cell points the import table entry
and vice versa. Export and import tables are shown in
Figure T, where an external reference cell is indicated by
EX celld,

5.2 Avoiding Duplicated Exportation/ Impor-
tation

When there are multi-referenced data objects in a clus-
ter, they may be exported more than once. In such cases,
each exportation tends to use export table entries. In ad-
dition, if a cluster imports the same data strueture more
than once, the cluster has to allocate its memory for the
same data structure.

As multiple references are managed by the MRB
scheme in each cluster, sach exportation can find the
possibility of multiple exportation for each data objects.
Single-referenced data objects may not be exported more
than once. Therefore, we introduce two kinds of ex-
port and import tables, each for single-referenced ob-
jectd and multi-referenced objects. Slightly complicated
procedures are introduced for multi-referenced objects io
save exporl Lable entries and to aveid duplicated imper-
tations, while a simpler external reference mechanism is
used for single-referenced objects.

A hash table is attached to the export table for multi-
referenced objects. In case o multi-referenced object is
exported more than once the same export table entry
can be retrieved from the object address and used in
the second and later exportations. There is also a hash-
ing mechanism for retrieving an import table entry for
multi-referenced objects from an external reference, so
that even if 2 cluster imports the same external refer-
ence more than once, only one external reference cell is
allocated.

9EL cell is either an EXREF cell or an EXVAL cell. The data
refarenced by an EXVAL cell is known te have a concrebe value.

Cluster,

Clusterm Import Table Export Table

i
EX cell N exported data

Ex_é:_{“! €} —] X

Figure T: Export Table and Import Table

The introduction of export and import tables help re-
duce the number of inter-cluster read requests as fol-
lows. Suppose Cluster, exporta the same data X twice
ta Cluster, as an argument to goals p and ¢. Since X
iz exported with the same external reference in the two
exportations (by exporl table mechanism with hashing),
T lusterm allocates only one external reference cell to X
(by import table mechanism with hashing). Even if both
p and g attempt to read X, only one read request mes-
sage is sent to Clusters, because the first read attempt
is remembered by the external reference cell and the sec-
ond attempt only waits for the return of the value. This
mechanism also prevents Cluster, from making dupli-
cate copies of the same external data.

5.3 'Unification Messages

In passive unification, the two terms to be unified are
read and compared. To read an external reference (EX)
cell to X, & read request is made by sending a Fread
message to the referenced cluster.

%read(X, ReturnAddress)

Where X is the external reference (n,e) in Figure 7,
and Returndddressis a newly created export table entry
{m, ) for returning the value®.

If the referenced cell has a concrete value V, it is re-
turned by the Hanswer-value message:

Fanswer_value{Return Address, V)

If the referenced cell is an unbound variable, the read
request is suspended until the variable is instantiated, If

Cit i an EX cell, a firead message is passed to the clus-

ter that it references, When the Banswer_value message
returns, the EX cell identified by Returndddress is over-
written by the value, and the import table entry corre-
gponding to the EX cell can be freed. This is why the
cell and the entry are separate.

When an active unification tries to unify an external
reference cell X with a term 3¢

B he %read and Hanswer.value mossages correspond to the
Hreadvalue and Freturn_valus messages in lehiyoshi et al. (1987).




Funify(X, ¥)

is sent to the referenced cluster. [t iz 2 request to unify
the data referenced by X with a term ¥. The cluster
that receives the above mesesapge does the active unifi-
cation after translating the two terms into internal rep-
resentations. Care muat be taken with the unifications
between two unbound variables in different clusters, be-
cause th.e}' miay make reference lnupa between clusglers.
This problem can be solved by: first compare the two
cluster identifier, them make refersnce pointers always
in the same direction, in descending order {or ascending
arder) of cluster identifier {Ichiyoshi et al. 1988).

5.4 Distributed Garbage Collection by WEC

Since export table entries for multi-referenced data ob-
Jects cannot be freed by a local garbage collection within
a cluster written in section 4.3, there must be an inter-
cluster garbage collection mechanism to free those en-
tries that have become garbage.

One way of realizing inter-cluster garbage collection
is by a global garbage collection. We are designing a
parallel mark-and-collect type global garbage collection.
A serious problem with global garbage collection is that
it will take a very long time.

Another is an incremental inter-cluster garbage collec-
tion. The merit of such a garbage collection scheme is
that it keeps intact the locality of data access in the pro-
gram. A naive implementation of the standard reference
counting scheme, however, does not work correctly in a
distributed environment.

Unlike the standard reference counting which assigns
reference counts to only referenced data, the weighted
export counting (WEC) scheme assigns reference counts,
or weighted export counts {wee), to references (pointers)
as well as to referenced data (Ichiyoshi et al. 1988).
More precisely, positive values are assigned to external
references (import table entries and references encoded
in messages ), and negative values are assigned to export
table entries, so that the following invariant is keptl true
for every export table enfry E (See Figure 8.):

(weight of E)+ 3

cwre ference o B

{weight of ) =10

The weight of & will become zero only when there is no
reference to E. As a result, export table entries can be
incrementally reclaimed through the message operation
with wee,

The WEC technique has been used in functional lan-
guage implementations on multiprocessors (Watson and
Watson 1987, Bevan 1987), but we introduced it for the
incremental garbage collection of export table entries,
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Clustery,

Cluster

Figure & WEC [nvarant

6 ABSTRACT INSTRUCTION SET: KL1-B

To build an efficient parallel inference machine, execu-
tion on each processing element must be as efficient as
possible. Therefore, KL1-B was designed first based on
sequential execution®. It was extended for parallel exe-
cution. :

The role of KL1-B is similar to that of WAM [Warren
1583). The major differences are:

o Passive unification instructions will be suspended
when instantiation of variables is required to accom-
plish the unification.

# The guard part is compiled o that argument regis-
ters are never destroyed before commitment.

s Instructions are arrangdd so that reference paths to
data objects can be maintained correctly in terms of

the MRE schems.

Most instructions in KL1-B include run-time data type
checks. The actions that follow the run-time type check
are very different.

6.1 Data Type and Goal Record

All the memory words and all the argument /temporary
registers can hold tagged words of the form:

{tag(M RB, type), value).

The MER in cach tag is maintained to show the multiple
reference information. The {ype shows the data type
information such as:

UNDF: Undefined variable.

f4n explanstion of each WL1-B instruction ean be found
in Chikayarna and Hirsure (1987), and Kimura and Chika-
yama (1947).
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Code for the first clause

{ Head and guard part: )
passive uniﬁm!ian instructions
(commit)
garbage collection instructions

{ Bady part: )
active unification instrucfions
argument preperation instructions
goal fork instructions

Code for the second clause

Labely:

Labely:

Label,: Code for the last clause

Label . -s';.L.spendg pred

Figure 9 A Form of Compiled Codes in KL1-B

HOOK: Undefined variable, some goals are waiting for in-
stantiation of this variable. The value is the pointer
to these goals.

REF : Indirect pointer or reference pointer to an unde-
fined variable cell.

INT : Integer.
ATOM: Symbelic atom.
LIST: List cell.

EX: External reference pointer.

A data structure called a goal-record iz used for rep-
resenting a goal. A goal-record consists of it argument
list, a pointer to the compiled code corresponding to
its predicate name, and some control information. The
argument list includes atomic values or pointers to vari-
ables or structure bodies in the heap.

6.2 Compiled Code in KL1-B

A zet of candidate clauses for a predieate is compiled into
a seguence of KL1-B instructions” as in Figore 8. A goal
reduction is initiated by a KL1-B instruction®, procesdg,
popping up & goal as a current goal from the ready-goal-
stack. Here, we assume that the arguments of a current
goal are located in argument registers (Ads). For the
current goal, candidate claunses are tested sequentially
by head umification and guard execution to choose one
clause whose body goals will be executed.

"The actual compiled code has a different form when indexing
instructions are used.

In this article, each KL1-B instruction is written with posific
B, for exemple: proceedg.

Table 1: Passive Unification Instructions

KL1-B Instruction Comment

{ For goal arguments )
wail_valueg Ai, A7
wail_consig Ai, Const

Unify two instantiated terms.
Wait a constant Const in Af,

wail listp Ai Whait a list in Ai,
_wail_veelp Ai, Arity Wait an Arity vector in Af.
{ For structure elements }

ERead car of a list 4i into Aj.
Read cdr of a list Af into Aj.

read_carg At A

read_cdrg  Ai, A

read_elements Ai, N, Aj
Fead the N-th element of & vector Af into 45,

{ Indexing ) .
suitch.ontupep i, Labelo e, Labelpie, ...
branch on_consty  Ai, Entry Table

{ Suspension and labels )
try.me.elseg  Label Set a branch label Label.
suspendp  Goad Suspend Foal.

Mote: 41 and 47 are the argument registers,

woi_conastyg Af, Consi
put the dereferenced result of A{ to Ai
check the equality between Ai and Const
if they are equal then proceed Lo the next code
else if Aiis uninstantiated
or an external reference
then push Aito the suspension stack
jump to Label

Figure 10: A KL1-B Instruction: wail_constp

A KLI1-B code for a set of candidate clauses includes
passive unification instructions for head and guard part,
active unification instructions, argument preparation in-
structions and goal fork instruction for body part, and
garbage collection instructions.

8.3 Passive Unification

Table 1 shews typical passive unifieation instructions
and a suspension instruction in KL1-B. They include
the instructions for goal arguments {weit XX Xp), and
for structure elements (read XX Xpg). The indexing in-
structions are also used to avoid duplicated eperations
between the head and guard part execution of candidate
clauses.

Figure 10 shows the action of a passive unification in-
struction, weil_consly. Wail.conslp corresponds to a
passive unification between a current goal argument, Ai,
and a constant value, Const. Label, indicated by the
preceding try_me_elseg, is a branch address when the
passive unification is suspended or failed.

Dereferencing is required at the beginning of passive
and active unification instructions. The data type of
an argument register is first tested to see whether its



Table 2: Garbage Collection Instructions

KLI1-B Instruction Comment

markp At
collecivalueg Al
collect_listyg  Ai
collect_vecty Al

Set MRB of Af on.

Reclaim along the reference from Ai.
Reclaim a list cell A1,

Reclaim & vector Ai.

content i an indirect pointer or not. If it is an indi-
rect pointer, the pointed cell is dereferenced until some
instantiated value, an unbound variable cell, or an ex-
ternal reference is reached.

If the instantiation of & variable (including an external
reference) is required during the execution of the passive
part, the test for this clause is abandoned. The variable
that caused the suspension is saved in a suspension stack,
then execution proceeds to the next candidate clause,

The Hread message is not sent, in principle, in the
passive unification instructions even when the value of a
certain external reference cell is required, instead such a
message will be sent in the suspendp instruction. This
is becanse other candidate clauses may be committed.

6.4 Suspension

If no clause iz selected for the current goal, suspendg
instruction finally tests the suspension stack. If there is
no veriable, an exception of failure occurs at the shoen.
Otherwise, the current goal becomes a suspended goal.
[irst, variables that cause the suspension are popped
up from the suspension stack. Then, the current goal is
linked to these variables, sefting the tag of the variable
by HOOK, to realize & non-busy waiting synchronization
mechanism betwesn KL1 goals.

When an external reference is found in the suspension
stack, %reed message is sent to the node where the ex.
ported data resides (see Figure 7). The goal waits for
the Hanswer.value message as a suspended goal.

The processing element that received %read meszage
returns the value of the exported data by Hanswer_value
message. However, the exported data may be an un-
bound variable cell. In this case, the action of replying
the Bread message is suspended by linking a reply_record
to the unbound variable cell. The reply-record can be
seen as a special goal record to reply Banswer_value mes-

sage.
6.5 MRE Maintenance and Garbage Cellection

Active unification may produce a chain of variable cells
puinf.ur.! h}r indirect P-r.r'mtr;ra. These variable cells paluter."l
by an indirect pointer with off-MER can be reclaimed
during the deferencing. Therefors, each dereferencing
operation includes the MEB test and, possibly, reclama-
tion operation.

The MRB is maintdined in each KL1-B instruction.
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collect. listp A
if MEB of Aiis off
then reclaim the cons cell pointed by A
else procesd to the next ingtruction.

Figure 11: A KLI1-B Instruction: collect.lisig

pullisig Aj % allocate a cons cell
umrite.car.consip Aj, foo % write the car part
write_cdr_variableg A, Ak % allocate a new variable
get_list_valien Ai, 47 % active unification

Figure 12: An Active Unification Example

In addifion, several garbage collection instructions are
introduced to KL1-B. (See Table 2.) The compiler de-
tects candidate places where reference paths are added.
In thiz case, markg s used to set MRE on®. When the
compiler finds a unification in which a referemce path
to a data object is consumed, it inserts a collect XX Xp
instruction at an appropriate place. Collect_lisig in Fig-
ure 11 is & typical KL1-B instruction which corresponds
to the goal reduction by, for example, the clause:

p([X[Y]) s — true | (X, Y).

This clause unifies the goal argument with a cons cell,
then refrieves ils elements X and V. Tn this case, One

reference path to the cons cell is consumed, if the clause

is committed. Therefors, the garbage eallection instrue-
tion, eollect_listg, is executed after the head and guard
parl execution ends successfully. The collect Nslg re-
claims the cons cell if it iz a single-referenced cell {of-
MRE).

6.6 Active Unification and Resumption

If a clause is selected, the body part of that clanse is
executed. Execution of the body part includes two kinds
of operations, active unification and body goal fork The
KL1-B instructions in Table 3 and 4 are provided for
them. Figure 12 shows the typical compiled code for
the active unification in such a clause as:

o | X = féo ¥}, ...

The structures for the active unifications or the ar-
guments for body goals are prepared by argument
preparation instructions, put XA Xp, write XX Xp, and
set XX Xgp. New variable cells or structures, such as the
right-hand-side of the above unification, may be allo-
cated from free lists or in free memory area by these
instructions. [See Figure 12.) Unlike the original WAM,
structure elements should not be wsed dirﬂcﬂ}l‘ as unde-
fined variable cells to aveid fragmentation. This is be-
cause the ineremental garbage collection by MEB may

? Markg iz merged wi;i; the argument preparation instructions
in Table 3.
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Table 3: Active Unification Instructions

KL1-B Instraction Comment

{ Active unification b
get_valuen  Ai, Aj
getconsty  Af, Const  Unify A and Conat,
geblistvaluep Ai, A§  Unify Af and = list {A7).
getvect valwep  Ai, Aj  Unify Af and a vector (Af).

Unify Az and Aj.

{ Argument preparation )
pulvariables  Ai, AF

Make 2 new variable pointed by Af and Aj.
Move a variable from Ai to Aj.

put_volueg Al Ajf
put_consty Al Const
put listy  Ai
putvecty Az, Arity

Write Const in A4
Allocate a list call in Ad.

Alloeate an Arity vector in A

{ Argument preparation in a forked goal 4
sel_voriableg 4, A7 .

(i is the i-th argnment of a forked goal.

sel.valueg (7L, A7
setconsig (7, Const
set listy (i

selvecty (G, Arity

{ For structure elements }
write_car/edrvariablegy  A{, A7
write_slement sariableg 4, N, Af

N the element position in a vector.

write.car/cdr.valueg  Ai, Af
write_element valuep  Ad N, 45
write_car/cdr.constg  Ai, Const
write_element_consty  Ai, N, Const

getdist_valueg Af, Af
put the dereferenced result of Ai to Af
if Af is uninstantiated
then if Aiis linked by suspended goals
then resume suspended goals
Ai = Aj and proceed to the next code
else if Aiis an external reference
then send Bunify message
alze if Afis list
then do general wniflcation
between A7 and Ai
else Failure

Figure 13: A KL1-B Instruction: get_lfisi_valueg

Table 4: Goal Fork Instructions

proceedg
G"-"-l‘.’:\‘.'."ﬂicﬁ Goal
enguene_goaly ol

enguene_with_prioritys  Goal, Priority
engueue_to_processorg  (oal, Node

reclaim a structure body and its elements at different
timing. Thue, when & structure element should be initi-
ated as a new variable, the new variable cell is allocated
separately from the structure body, and a pointer to the
cell is stored inside the bady.

The last instruction in Figure 12, get_lisi_valueg, is a
typical KL1-B instruction for active unification. This
instruction has one of four kinds of actions, selected by
checking the data type, as in Figure 13.

- When A{ is an uninstantiated variable without sus-
pended goals, that is, the tag of A{ is UNDF, A7 (a pointer
to a cons cell made by the first instruction in Figure 12)
is assigned into the wvariable cell. Mote that unbound
variables are located in shared memory. Thus, the in-
stantiation of unbound variables is done by locking and
unlocking the variable cells (Sato et al. 1987). Here,
it is important to shorten the period fo locking the un-
bound variable. Therefore, the compiler generates the
compiled code as in Figure 12, where the right-hand-
side structure is created first. As a result, the unbound
variable is locked only within gef_list_valuep instruction.

If Af is an uninstantiated variable with suspended
goals, that is, the tag is HOOK, these suspended goals
are resumed by moving the goal-records linked from the
variable to the ready-goal-stack again before instanti-
afing to Aj, (See Figure 4.) When reply_records are
linked to that variable, the Fanswer_valye messages for
each reply_record are sent to the cluster which is waiting
for the instantiated value,

Ai may be an external reference: the tag is EX. In
this case, the %unify message is sent to the node which
exported the variable. The node which received the unify
message performs active unification on the behalf of the
sender processor.

When Ai is a pointer to a list cell, general unification
is performed. Otherwise, the unification fails and an
exception occurs,

6.7 Goal Fork and Slit-checking

Several goal fork instructions are provided to push and
pop a goal-record to and from a ready-goal-stack, or to
execute goal reductions repeatedly. (See Table 4.) Asin
Figure 4, a KL1-B instruction proceeds pops up a goal
record (a current goal) from the ready-goal-stack when
the previous geal reduction did not fork any body goals.
The KLI-B code corresponding to the goal predicate is



executed. Assume that there are two body goals in a
KL1 clause as:

g = lguard) | g,7.

the reduction of the left most body goal, g, will continue
just after the eurrent goal reduction, while ather goal(s),
7, is pushed into the ready-goal-stack. The KLI-B code
for the above clause will be as follows.

Head and guard execution for p.

... [commit) ...

Arguments preparation for a goal record T
enguene gocly T

Argumenls preparalion in registers for ¢.
execuleg

The KL1-B instraction ereenteg § is a jump operation
to the top of KL1-B code for the goal g.

Other body gouls are pushed by engrene_goalp instruc-
tions. When scheduling priority was specified by the
pragmas, the KL1 compiler generates a KL1-B instruc-
tion, enquesewith priorityg. When the pragmas for
load distribution were specified in a KL1 program, KL1-
B instructions enguene.to_processorg are used. This in-
struction sends a message, $throw to the specified clus-
ter instead of enqueuing its own ready-goal-stack.

The following events incidentally happen in KL1 ex-
ecution: a garbage collection requiremnent (section 4.3},
an inter-processor communication request, and a goal
fork with the highest priority (section 3.4. These events
are only detected by slit-checking in ezecufen, proceedy
and suspendg instructions, that is, the actions corre-
sponding to these events are delayed until a certain goal
reduction finishes, even if the event occurred during a
goal reduction. This is because garbage collection is dif-
fieult to start during a goal reduction. In inter-processor
communication or for a goal fork with highest priority,
the corresponding actions do not have to be performed
immediately. 5o, they may be delayed until after the
goal reduction finighes.

As in section 2.2, a foster-parent in a cluster holds the
shienstatus as well as the information about the com-
puting resources assigned for the foster-parent. Before
erecuien, proceeds or suspendp start a goal reduction,
they check the shfenstatus of a current goal, and the
computing resources left in that foster-parent.

7 HARDWARE ARCHITECTURE OF PIM

7.1 Targets of the PIM Hardware Architecture

Our performance target in the R&D of PIM hardware ar-
chitecture was to execute KL1 programs with more than
one hundred times higher performance than conventional
machines, To achieve this goal, we studied new process-
ing element architectures as well as new parallel archi-
tectures to connect more than one hundred processing
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elements. The target processing element performance is
200K to 500K RP5'Y, so that 10 to 20M RPS is expected
to be the total performance for practical applications.

Several pilot machines are now being developed for the
PIM research for the final stage of the FGCS project.
The PIM/p is one of the PIM pilot machines, which
is planned to include 128 processing elements. In the
following, we would like to focus on the hardware archi-
tecture of the PIM/p.

7.2 The Pilot Machine: PIM/p

7.2.1 Hierarchical Strueture in PIM/p

In the paralle]l architecture design for the PIM/p, we
aimed to build a parallel processing architecture where
the locality in communication cost can easily be used
from software. We introduced a hierarchical structure,
as shown in Figure 14. Eight processing elements (PEs)
form a cluster with shared memory. The PIM/p consists

of 16 clusters connected by inter-cluster network,

7.2.2 Processing Element. Design Issues

The PIM/p processing element is newly designed for
the efficient implementation of KL1. - The design
slarted by analyzing the behavior of the KL1-B instruc-
tions (Shinogi et al. 1988).

As discussed in section 6, run-time data type checks
are essential for KL1-B instructions. So we introduced
the tagged-architecture to the CPU design. The next
issue is how to implement the pelymorphic functions
in KL1-B", because most KL1-B instructions include
very different actions that follow the run-time data type
check, The RISC-like instruction set can be executed
uging short pipeline cycles and has advantages in hard-
ware design cost, However, considering the naive expan-
ston of KL1-B using RISC-like instructions, the static
code size of compiled programs will be very large. This
problem can be solved by incorporating the features of
microprogrammable processors such as PSI {Nakashima
and Nakajima 1987). Therefore, we designed the RISC-
like instructions with the conditional macro-call instruc-
tions for the PIM/p processing elements, so that both
the advantages in the RISC-like instructions and micro-
programmable processors are available in the KL1-B im-
plementation on the PIM/p.

The principal operations such as the incremental
garbage collection by MRB and dereferencing are sup-
poried by the dedicated RISC-like instructions. Sec-
tion 7.6 discusses the instruction set and correspond-
ing KL1 features. To shorten the machine cycles, the
CPU was designed to execute the RISC-like instructions
by four-stage pipeline. The processing element perfor-
mance estimated from the compiled code is over 00K

WREPS: KL1 goal reductions per second
UThe detailed discussion can be found in Shinogi et al. { 1883).
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Figure 14: The Pilot Machine: PIM/p

RPS for the append program. Note that the estimated
performance includes the incremental garbage collection
cost using MRB. The detail configuration of the PIM/p
processing elements is shown in section 7.3.

In addition fo the KLl-oriented instructions, the
PIM/p processing element includes the functions for the
KL1 parallel implementation: an interrupi mechanism
for the slit-checking, a coherent local cache tailored to
the characteristies of KL1, and the network interface for
inter-cluster parallel processing.

7.2.8 Design Issues for Cluster

Processing elements within each cluster share one ad-
dress space. Focusing on KL1 parallel execution in each
cluster, quick and exclusive access to shared data is a key
issue. We designed a local coberent cache protocol for
the KL1 parallel processing. Each processing element
in the PIM/p has a coherent cache memory designed
specifically for KL1 parallel execution (Matsumoto et
al. 1987). The cache mechanism increases not only the
efficiency of local execution on each processing element,
but enables high-speed communication within a clnster.
It is also necessary to provide an efficient mechanism
to access shared data exclusively. The exclusive mem-
ory access can be obtained at a low cost by using the
cache block status of the coherent cache memory. (See
section 7.4.)

7.2.4 Design Issues for Inter-Cluster Network

As discussed in section 5 and 6, inter-cluster commu-
nication will possibly be required during a unification
instruction of KL1-B on each processing element. That
communication may include various kinds of messages.
We aimed af the followings in the design the infer-cluster
network:

# Enough performance for both short and long mes-
sage packets.

# Inter-cluster processing where it is required.

The hyper-cube structure is introduced to connect clus-
ters in PIM/p, placing each cluster on the hyper-cube
node. This is because Lhe hyper-cube structure enables
us to shorten the inter-cluster distance with reasonable
hardware costs. Each processing element has 2 network
communication port to send and receive messages be-
tween clusters, so that infer-cluster communication op-
erations can be done on the spot. The network router
and the network interface unit on each processing ele-
ment are written in section T.5.

7.3 PIM/p Processing Element

A PIM/p processing element is implemented on a single
board with about 20 static RAMs and several custom
CMOS LSIs as shown in Figure 15, The target of the
basic machine cycle is 50 nanoseconds.

The processing element includes twe caches: 2n in-
struction cache and a data cache. The contents of both

cache memories are identical. They are provided to en-
able the CPU to fetch both data and imstructions every

_ machine cycle. The cache memory redundancy can be

useful to detect & cache memory error, because EGC is
not adopted in the cache. The cache controller units
{CCU) menage both the instruction cache and the data
cache. The cache address array would be updated by
both commands from the CPU and a commeon bus. To
avoid the access conflict, the CCUs include two cache
address arrays with cache block status.

The CPU has two instruction streams, one is from the
instruction cache, and the other is from the internal in-
struction memory (IIM). The IIM is similar to & writable
microprogram store. Hopefully, the CPU will execote an
instruction al every 50 nancseconds using a four-stage
pipeline in most cases. The CPU has two co-processors:
a network interface unit (NIU) and a floating point pro-
cessor unit (FPU). The CPU has 2 common _protocol to
use both co-processors.
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Figure 16: KL1 Tagged Data Representation

T7.3.1 Memory Model

The PIM/p has a 4G-byte global virtual address space
on each cluster. Taking practical KL1 implementation
into consideration, 40-bit KL1 data (an 8-bit tag and 32-
bit data) is necessary. However, we decided not to build
a complete 40-bit system, because: (1) it may be difficult,
to use an off-the-shelf memory system as shared memory;
and (2) instructions should not necessarily be placed on
the 40-bit boundary. Although KL1 data density will
be low in the PIM/p memory system', this will not
caunse performance degradation. Normal KL1 data is
placed by 40-bit KL1 tagged data in aligned 64-bit words
in the PIM/p memory system, as shown in Figure 16.
Instructions and seme data structures, such as strings or
floating peint numbers, are placed on a byte boundary.

7.8.2 CPU Execution Pipeline

A PIM/p processing element has two kinds of instruc-
tions, external and internal, but most of them are com-
mon. External instructions are used to represent com-
piled codes of user programs. They include KL1 support

12 As an alternative to MRB garbage collection, LRC(lazy refer-
ence counting) (Goto et al. 1988) is now being examined, In LRC
method, the free three bytes in each tagged data will be used as a
reference count field.
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Table 5: Pipeline Stage and its Operation

| COperation

Decode [ Address tegister read

Address calculation

Data register read [ Cache address access
ALU [ Cache data access / Register write

We =0

instructions as well as simple RISC-like instructions. [n-
ternal instructions are slored in the internal instruction
memory ([IM) of each processor, in the same way as in
the microprogrammable processor. Small programs in
ITM can specily the complex actions of KL1-B instrue-
tions. They are invoked by external macro-call instruc-
tioms,

The processing element uses an instruction buffer and
a four-stage pipeline, D A T B, to attempt to issue and
complete an external instruction every cycle. External
instructions are either four, six or eight bytes long, so
that the instruction buffer has a hardware aligner. Each
internal instruction requires two additional stages, pre-
ceding stage D, to set the internal mstruction address
(stage S) and to fetch the instruction (stage C).

Table 5 shows the pipeline stages in both ALU and
memery access instructions. General-purpose registers
are updated enly at the last B stage, thereby avoiding
write conflicts. Internal forwarding is done by hardware
g0 that the result of a register-to-register instruction can
be used by the next instruction even though that result
has not yet been written to the general registers.

In 2 branch instruction to an external instruction, the
branch target mstruction is fetched at stage B in the
same way az memory read instrections. Therefore, ordi-
nary branch instructions may cost three additional cp-
cles to branch. Delayed branch instructions can aveid
the three cycles by execuiing other effective instructions.

Mest tag branch instructions test their condition at
stage B, However, macro-call instructions and some in-
ternal branch instructions test their condition at stage
A. Figure 17 shows the maero-call instruction pipeline.
A macro-call instruction initiates the internal instruc-
Lion fetch (stage S) at its stage D, then tests its condi-
tion at stage A. Therefore, even if the branch is taken,
& macro-call instruction costs only one additional cycle
to invoke a subroutine in the ITM. In addition, delayed
macro-call instructions are provided to avoid the penalty.

‘Heturn from macro-call, thaf is, return from internal in-

structions Lo exfernal instructions, can be indicated by
a one-bit flag: eoi The internal instruction memory has
an eof field for each instruction, so that the execution
of the macro body will finish af any internal instruction
except for branch instructions. (See Figure 17.)
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When the condifion iz true:
D A (condition test at A)
D (canceled)
S C D AT B
§ C D AT B

: macro-call instroction

¢ nexct external instruction

; first internal instruction

: gecond internal instruction

When the condition is false:

D A {condition test at A) : maero-call instroction

D AT B ¢ next external instruction
D AT B : external instruction
End of maere body:
5 ¢ D A T B ¢ internal instruction eef
5 € (canceled) : internal instruction
5 (canceled) : internal instruction
oA T B : next external instruction

Figure 17: Macro-call Instruction Pipeline

7.3.3. Registers

The processing element inchudes 32 general-purpose reg-
isters with some dedicated registers. These registers are
specified by & 6-bit register specifier in most instructions.
Each general-purpose register has an 8-bit tag and 32-hit
data. :

The dedicated registers include: s condition code reg-
ister for the result of ALT execution, a slit-check register
(see sections 6.7 and 7.3.4), and a tag mask register to
mask tag fields in conditional branch instructions. Most
flags, such as the condition code, are placed in the tag
part of the dedicated registers. Therefore, these flags
can be tested by the tag-branch instructions. (Ses sec-
tion 7.6.5)

Internal instructions can use virtual registers, called
indirect registers, in addition to the above registers.
Through the indirect registers, internal instructions can
handle the operands of 2 macro-call instruction that has
just invoked the internal program code. In other words,
sach indirect register corresponds to the operand posi-
tion of the macro-call instruction. It can represent either
the immediate value or the contents of a register speci-
fied in the operand of the macro-call instruction.

In addition to the above registers, the processing ele-
ment has co-processor registers, which are handled only
by co-processor interface instructions.

7.3.4 8lit-check and Interrupt

A hardware mechanism for slit-checking (see section 6.7)
iz incorporated into the processing element of PIM/p.
A normal hardware interrupt causes antomatic save of
program status, however, slit-checking does not. Fach
processing element has a dedicated register, each bit
of which can keep an individual evenl. The slit-
checking mechaniem has an additional one-bit flag to
show whether any evenis happened or not, which can
be tested by one conditicnal branch instruction. On

Table 6: Basic CPU Commands to the Cache

CPU command | Comment

Head Ordinary memory read.

Write (Qrdinary memory write.

Read Invalidate | When cache-to-cache transfer occurs,
the souree cache block ie invalidated.
Otherwise, same as Head.

Read.Purge After CPTI reads, the cache block

is purged. The shared blocks in
other caches are also purged.

If cache mizses at block boundary,
write data into cache

without fetching from memaory.
Ctharwize, ordinary memory write.

Direct Write

Lock. Read Lock address, then memory read,
Write_Unlock Memory write, followed by unlock.
TUnlock

Unlock addresa,

general purpose computers, the slit-checking might be
implemented using normal interrupt mask/unmask op-
erations and cumbersome interrupt handler. Tt would
cost too much for the KL1 system. By incorporafing
the hardware slit-checkinf mechanism, the processing el-
ement can avoid frequent mask/unmask operations and
interrupt handling overhead.

7.4 Cache System

The design of a local coherent eache is a key issue to in-
crease the efficiency of local execution on each process-
ing element, and it enables high-speed communication
within a cluster. Several coherent cache protocols have
been proposed so far (Arcchibald and Baer 1986, Good-
man 1983, Bitar and Despain 1986, Papamarcos and
Patel 1984). Here, reducing commeon bus traffic is a
more important design issue than reducing cache miss
ratio (Goodman 1983).

We aimed to design & cache protocol for KL1 paral-
lel execulion. We developed a coherent cache simulator
with a KLl experimental system. The local coherent
cache for PTM /p is designed based on the simulation re-
sult {Matsumoto et al. 1987). The simulation results
have shown that KL1 programs reguire more write ac-
cesses than conventional languages. Therefore, we chose
a write-back protocol which can reduce commen bus
traffic more than a write-through protocol. When a
cache block is updated, the consistency with other cache
is kept by invalidating the shared cache blocks in other
caches. In addition, we extended some cache functions
from ordinary cache protocols using the characteristics
of the KL1 parallel execution. Table § shows the basic
CPU commands to the cache.

7.4.1 Cache Commands for KL1 Support

In parallel implementation of KL1, some data structures
can be known when they are not accessible, A typical ex-



ample is an explicil: communication between processing
elements. First, a sender processor creates a message in
its own cache. The message is sent to a receiver processor
as a cache-to-cache data transfer. Although the message
in the sender processor is useless after message transfer,
it remains as shared cache blocks between both proces-
sors’ caches. So, when the receiver processor makes a
message in the same area, cache invalidation of another
cache will occur, The CPU command, Read Invalidate,
iz provided fo aveid such invalidation by invalidating at
cache-to-cache data transfer,

In niormal write operations, fefch-on-write is used.
However, when new data siructures are created in an
unused memory area, it may not be necessary to fetch-
on-write. This is because the memory contents have ne
meaning, and because new data structure is not shared
by other processors. The Direcl Write command is in-
troduced to avoid useless cache block fetch from shared
memory. The Read.Purge command invalidates the own
cache block just after CPU reads the last cache block
word, so that Direct Write command can be used for
already-used memory area.

7.4.2 Hardware Lock

Lock operations are essential for implementing KL1 in
the shared memory multiprocessor. This is because ex-
clusive memory acesss is required to instantiate variables
in active unifications (ses section 6.6) or to link sus-
pended goals to them (see section 6.3). Although lock
conflicks seldom oceur, lock latency is high in KL1 execu-
tion. The simulation results in Matsumoto & al. (1987)
shows that th Read Lock frequency is about T % for data
access, 50 a lightweight lock operation is required.

The PIM/p cache enables a lighiweight lock and un-
lock operation by using the cache block status, lock ad-
dress registers, and busy-wait locking scheme. When
the CCU receives & Lock.Read command from CPU, the
CCU checks the corresponding address tag and status
tag. If the address hite and its status is ezclusive, the
address can be locked without using the common bus.
The locked address is held in a lock address register,

7.4.3 Cache Configuration

The capacity of both the instruction and data caches
is 64K bytes. In general, 5 larger cache is necessary to
maintain a high hit-ratio. However, it is preferable to
give up forming a large cache by enlarging the cache
black size. This is because our software simulation re-
sults have found that a cache block larger than four
tagged words causes an inmcrease in shared blocks be-
tween caches in parallel execution of KL1, so that mu-
tual cache invalidation may increase (Matsumoto et al.
1987). On the other hand, the size of the cache ad-
dress array is restricted by the L8I capacity of the cache
controller unit (CCU). Therefore, the CCU has a block
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status tag for each 32-byte (four tagged wordsz) block,
and an address tag for each two blocks, that is, every 64
bytes. Our simulation result also shows that that scheme
does not decrease the performance so much compared to
a full 32-byte block cache of the same capacity.

7.5 Hyper-Cube MNetwork and Network Inter-
face Unit

The hyper-cube structure (Broomell and Heath 1983) is
introduced {o connect clusters in PIM/p, placing each
cluster on the hyper-cube node. This is because the
hyper-cube structure enables us to shorten the inter-
cluster distance with reasonable hardware costs. In ad-
dition, the network router can be distributedly imple-
mented on each cluster.

The network was designed aiming at the inter-cluster
communication throughput of 40M bytes/second. We
chose the following configuration considering the limita-
tions in hardware implementations. A network router
was designed for six-dimension hyper-cube connection.
While four dimensions are enough to connect 128 pro-
ceszing elements (16 clusters), the router switch will be
available for the future extension. Fach communication
path has the throughput of a 20M byies/second, one
byvte every 50 nanoseconds, in both directions. To en-
able the 40 M bytes/second throughput, the inter-cluster
network ia doubled. Therefore, two nelwork routers are
provided for each cluster, one for four processing. ele-
ments.

Each processing element has a network interface unit
{NIU) as a co-processor of the CPU. The NIU has two
packet buffers, one for each direction, whose comtents
can be transferred to add from CPU registers. A packet
is sent to the other processing element from the NIU
by the CPU requests. The buffer status in a NIU, full
or empty, can be informed to the CPU by slit-checking
mechanism. Therefore, these message handling opera-
tions can be done on each processing element, '

7.6 PIM/p Instructions and Corresponding
KL1 Features

This section focuses on the PIM/p instruction set and
several important points in its design, Table 7 lists the
notation for instruction operands,

7.8.1 Basic Memory Access and Tag Handling

Table 8 shows the basic memory access instructions.
Each memory access instruction reads data to a des-
tination register from a memory location whese address
is specified by a register and immediate offset, and vice
versa. The transferred data width can be 8, 16, 32 bits,
32 bits with an 8-bit tag, or 84 bits. 64-bit data is loaded
to {or stored from) two neighboring registers. The mem-
o1y access instructions for 64-bit data are useful to load
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Table 8: Memory Access Instructions

Instruction Operands Comment

Aead Rd, Ra, ofst Read tag and 4-byte data

ReadB/HH/H/DW Rd, Ra, ofst Read 1, 2, 4, 8-byte data

Write Rz, Ra, ofst Write tag and 4-byte data

WriteB/HW/H/DW Rz, Ra, ofst Write 1, 2, 4, &byte data

WriteuTag e, Ra, ofst, imtg Write 4-byte data giving a new tag

FUIZH Rz, Ra, ofst Pugh data into a free list

PUSHWTag Re, Ra, ofst, imtg | Push data giving a new tag

FOF Ad, Ra, ofst Pop up data from a fres list

POPwTag Rd, Ra, ofst, imtg | Pop up data giving a new tag

MABerfead Bd, Ra, ofst Read data with mrbk OR

DEREF Rd, Ra, ofst Pop up data with mrb ORL

DirectWrite/B/HW/W/DW Re=, Ra, ofst Write data in Direct_Write cache mode

ReadPurge Rd, Ra, ofst Read data, followed by cache purge

FeadInvalidate Rd, Ra, ofst Read data, invalidating other cache

Exclusivefead Rd, Ra, ofst For the last cache block word: ReadPurge
For other words: ReadInvalidata

LockRaead Ad, Ra, ofst Lock address and read data

Writalnleck R=, Ra, ofst Write data and unlock address

Unlock Ra, ofst Unlock address

Table 7: Motation for Instruction Operands

Six-bit register specifier
Be,.Rsl.Re2 Source registers
Rd Destination register
Ra Base address reglster
Rt1,Rt2 Register for testing tag
R,R1,R2,..R5 Argument for macro-call

Immediate value

inm{8/32/40) Immediate constant
imrg(8) Eight-bit immediate tag
ofet(8/16/24/32) Immediate address offset
retofst(B) Offset for return address
iaddr(18) Internal memory address

and store the execution environment to and from a goal-
record in proceeds or suspendp.

The tag part in a KL1 variable cell can be implic-
itly loaded and stored with the data part by using basic
memory access instructions, In addition, a new tag can
be given in memory access instructions and ALU com-
putation, as follows. '

WritewTag Rs, Ra, offset, immTag;
MiRatoffset] +— data(Ra),
M[Rat+offset+7]| — imnTag

The memory access giving a new tag is a primitive op-
eration in argument preparation instructions of KL1-B.
Instructions to move the tag part of a register to the data
part of another register, and vice versa, are provided as
register move nstructions in Table 9.

7.6.2 Support for Dereference and MRB Gar-
bage Collection

In MEB incremental garbage collection, each variable
cell or structure iz allocated from a free list. When re-
claimed, its memory area is linked to a free list. To
support these free list operations, the PUSH and POF in-

" structions listed in Table 8 are uwsed. PUSH can link a

variable cell or a structure to the free list, and FOF can
allocate it from the free list, in one machine cycle.

Their actions are specified as follows.
PUSH Rs, Ha, offset: M[Ratoffset]—Re,
Rs+—Ra;

POF Rd, Ra, offset: Rd+Ra,
Ra—M[Rat+offset];

Here, imagine £t to be the free list top pointer register:

POP ri, £t, -

“ allocates a cell to r1 from the free list pointed by ft,

and:
PUSH ft, ri, -

links 2 cell to the free list pointed by £t from ri. The
following POPuTag instruction is used to give a new tag.

POPwTag Rd, Ra, ofst, imtg

The POPwTag instruction is used to put a new tag in the
register that has a pointer to a struchure just allocated
from a fres list. For example, the KL1-B instruction,
put_lislg, can be axpressed as:



put_listy : POPwTag i, £t, -, LIST

The MRB of each pointer and data object has to
be maintained correctly in all unification instructions.
Here, the most primitive operation is MEB maintenance
during dereferencing. In dereferencing, the MRB of the
dereferenced result should be off if and only if MRBs of
both the pointer and the eell are offf In this case, the
indirect word cell can be reclaimed immediately because
the indirect word cell has no other reference paths to it.
Two dedicated instructions, MRBorfead and DEREF, sup-
port this operation. MRBorRead accumulates both the
address register’s MRB and the destination register’s
MREB, then sets the result in the destination register.
DEREF performs MRB accumulation along with the POP
operation. The DEREF instruction acts as follows. IHere,
rl is an argument register, and ptr is used to refer to
an indirect word cell,

DEREF r1, ptr:
ptr +— z1, r1 — M[zi],
mrb(rl) — morbipt ) or mrb({ri).

7.6.8 Memory Access with Coherent Cache
Control

As stated in section 7.4, the coherent cache of the pro-
cessing element has the extended functions for KL1 par-
allel execufion. The instruction set includes memory
access instructions corresponding to each cache fune-
tion: DirectWrite, ReadPurge feadInvalidate, and
ExclusiveRead, as shown in Table 8. Exclusive memory
aceess instructions, LockRead and WriteUnlock, are also
provided. Incorrect use of these instructions may canse
fatal errors. Therefore, the use of these instructions will
be limited to internal instructions.

T.6.4 ALU Instructions

Table 9 shows the instructions for' data and tag compu-
tations, All ALU instructions have two source registers
and one destination register. These instructions can be
classified inte thres kinds: 32-bit data computation, 8-
bit tag computation, and 40-bit computation. Although
logical operations are available for both the tag and data,
arithmetic operations and shift operations are limited to
the data part.

7.6.5 Tag Branch Instruetions

Table 10 shows branch instructions. FEach external
branch address iz specified by the instruction pointer
with address offset (ofst). The internal branch address
ia specified by the absolute address of the internal in-
strucliion memory,

The run-time test of the type tag is a primitive op-
eration to implement KL1. As discussed in section 6,
mest unification includes & mmlti-way branch for the
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wait:listy Ai, (Label):

if tag{A{) is LIST then proceed to the next code
elseifl tag(Ai) is REF
then put the dereforence result of Af to Af
if tag( Af) is LIST
then proceed to the next code
elseif Ails uninstantiated
then push A to the suspension stack
and jump to Label
elge jump to Lobel
else jump to Label

Figure 18: A KL1-B Instruction: wait_listp

goal arguinent type. Some Prolog machines, such as the
PSI (Makashima and Nakajima 1987), have a hardware-
supported multi-way branch function. However, the pro-
cessing element of PIM/p does not have such hardware.
This is because: (1) it is difficult to adopt a hardware-
supported multi-way branch to a pipeline processor; and
(2} branches taken in run-time are biased. Even a nor-
mal two-way branch can be useful enough by selecting an
appropriate branch condition. Therefore, the PIM (p in-
struction set has only fwo-way branch instructions, but
various tag conditions can be specified in them.

A branch eondition can be specified as 2 logical op-
eration between two register tags, or between a reg-
ister tag and an immediate tag. In addition, a tag
mask tegister is used to mask logical operation (see
XorMask, WotKorMask in Table 10). To avoid frequent
update of the tag mask register, some branch instrue-
tions have an immediate tag mask in their operands,
such as JumpCondImmMaslk,

In the processing element of PIM/p, various hardware
flags, such as the condition code of ALU operation and
an interrupt flag, can be accessed as the tag of dedicated
registers. Therefore, most conditional branch operations
are performed as tag branch operations.

7.6.6 High-Level Instructions Using Macro-Call

Macro-call instrections in Table 10 inveke small pro-
grams in the internal instruction memory (IIM) depend-
ing on given conditions. They are introduced to im-
plement high-level KL1-B instructions. A macro-call in-
struction can be regarded as a lighiweight subroutine call
or as a high-level instruction realized by microprogram.
For example, the KL1-B instruction wait_listy in Fig-
ure 18 first tests the data type of a given argument. If
the data type is the expected LIST, this instruction fin-
ishes. Otherwise, it selects the operation in Figure 18
according to the data type. A macro-call instruction
corresponding to wait_listy is written as follows, whers
LIST is an immediate tag value and acp is an alternative



226

Table 9: ALU Instructions

Instruetion Operands Comment

Dop Ral, Rz2/imm, Rd Mormal ALU aperation

Lropdl) Rel, Rs2/imm, Rd 40-bit ALU operation

Shift Rs, Rfimm, Rd Shiflt operation
AddwTag/SubwTag Hsl, Rs2fimm, Rd, imtg | ALU operation giving & new tag
AddImm/LoadImmn  Rsd, imm(32) Add or load long immediate constant
SextB/HY Rz, Rd Sign extension

Tap Rsl, Rs2/imm, Rd Tag computation

PEC Hs, Rd Pricrity encode

HMova Re, Rd Tag and data transfer

MoveTD Rs, Rd Move tag to data transfer
HevaDT Re, Rd Move data to tag transfer

Mote: Dop: Add, AddCarry, Subtract, SubtractCerry, AND, Or, Xer, NWOT
Dopdl: AND4O, 0r40, IordQ, YorMask40O
Shift: sShiftleft, ShiftRight, ShiftlLeftDouble, ShiftRightDouble
Top: Taghnd, Taglr, Tagler, TaglorMask

Table 10: Branch Instructions

| Instruction

Operands

Comment

) External branch

-

(Dalay) Jumpdond
fDalag’} Jump(ondImmMask

(Dalay) Jump(ond20

ofst
imtg, ofst

Rtl, Rt2/imtg,
Rtl, Rt2/imtg,
Ritl, Rt2, ofst

(Delay) Tag jump
(Delay) Tag jump under immediate mask
(Delay) 40-bit compare jump

(Delay) MiunpClandh
[Pelay) HiunpCondImmMask
(Delay) HlunpCondd0

RAti, Rt2/imtg, iaddr
Rti, Rt2/imtg, imtg, iaddr
Rti, Rt2, iaddr

aKipCond Rti, Rt2/imtg, imm Conditional skip
(Dalay) Jump Ra, ofst(32) (Delay) Jump

(Delay) JAL Ra, ofpt(24), retofst (Delay) Jump and link
Internal branch : _

(Delay) MIumpllond Rtil, At2/imtg, iaddr {Delay) Tag jump

(Delay) Tag jump at A-stage
{Delay) Tag jump under immediate mask
(Delay) 40-bit compare jump

{Delay) HiunpCondd0l RI, R2, daddr (Delay) 40-bit compare jump at A-stage
MsKipCond Rti, At2/imtg Conditional skip

(Deley) MIAL R, iaddr (Delay) Jump and link

{Delay) Mlump iaddr (Delay) Jump

Conditional macro cxll

{Dalay) MacroCall(ond

Rt1,At2/imtg, (R3,R4,RE] laddr

(Delay) Macro call

{Delay) MacroCall

R1,[A2,R3,A4,05,] iaddr

{Delay) Jnconditional macro call

Mote: Cond : And, Notind,

Or, HotOr, Toxr, NotXor, XorMask, NotXorMask




wait type: JumpNotXor @r0d, REF, @r2;

DEREF ptr, @rl;

HMIumpWotAnd Qro, UNB, case-unbound;
MTumpNotAnd @r0, MAP, case.mrp;
FUSH fri, ptr;

MiumpHotXorMask @r0, @dl, wait fype;
Hop (eod);

Figure 19: Weit sty and Internal Instructions
clause pointer register for Label.
MacroCallNot¥orMask Ai, LIST, acp, wait.dype;

The data type tag of register Ai is tested first. If the
register Af has a value with the LIST type, this macro-
call instruetion simply finishes. Otherwise, this macro-
call instruction invokes an internal routine whose entry
address is specified as wait-type. Figure 19 shows the
internal instructions corresponding to wail listp. Here,
@r0 and @r2 are indirect registers corresponding to
arguments A1 and acp in the macro-call imstruction.
2d1 is also an indirect register to show the immediate
value in the second argument of the macro-call, namely,
an immediate tag LIST. The first internal instruction,
JumpMotXar, tests the tag of @0, namely Ai. When the
tag is REF, it proceeds to the next instruction for derefer-
ence. Otherwise, it jumps out to the external instruction
specified by @r2, namely acp.

8 SUMMARY

We have described an overview of the parallel inference
machine architecture. The KL1 parallel implementation
issues, such as distributed resource mamagement, goal
scheduling and distribution, memory management, and
distributed unification, were discussed based on the logic
programming framework. These izsues are implemented
on the parallel software workbench, the Multi-PSI sye-
tems. We showed the design of the PIM pilot machine
hardware, including its processing element instruction
seb, The L5Ts are now being implemented.
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