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Abstract

This paper offers a tutorial but incomplete survey of a
succession of proposed logic programming language
schemes all of which can be considercd variants or
descendants of the original Kowalski scheme. Semantic
properties and implementation issues are discussed.

1 Imtroduction

It is now 14 years since Kowalski(1974) described his
scheme for logic programming based on a backward
chaining resolution inference system for Horn clause
programs and 15 years since the first implementation of
Prolog (Battani & Meloni 1973), a language which is an
instance of that scheme. Since, many extensions of the
Kowalski scheme have been proposed, and many
successors of Prolog have been implemenied. This paper is
a totorial introduction to a succession of logic language
schemes starting with the Kowalslkd scheme and ending
with the CLP scheme of Joxan and Lassez (1987).

The schemes are presented using a common framework
derived from Colmetaver(1982). The semantic properties
are discussed using concepts from (Clark 1979,1982). This
was the first formulation that focussed on the semantics of
the answer substitutions retumed by the Kowalski scheme,
interpreting them as conjunctions of equalities denoting
relations over the Herbrand universe. This is the
formulation that best relates the Kowalski scheme to the
other schemes, which compute descriptions of relatons
represented by conjunctions of more general formulas,
possibly over other domains.

Schemes not based on first order classical logic, such as
lambda-Prolog (Miller and Nadathur 1986) and schemes
based on bottom up evaluation (Ramakrishnan 1988) (see
also Bancilhon & Ramalkorishnan 1986) are not covered.

2 Units of computation

The unit of computation of many l.gic programming

schemes is the unification of one or more pairs of terms.
Terms are constructed from countably infinite disjoint
alphabets F, V of functors and variables. Each functor
has an associated arity. Functors with arity 0 are constants.
A term is a variable, a constant, or of the form f{tl,..,tk},-
k21, where f is & k-adic functor. t(F,V) is the sct of all
terms and t(F) is the set of ground (variable free) terms.

An assignment is a set A of equations
{X1=t1,..,Xn=tn} where Xi are distinct variables and ti are
terms (which may contain variables). i is called the
binding for Xi. A substiturion S is an assignment where
no Xi occurs in any . A unifier @ of a pair of terms t,t'
iz a substitution such that t{@} is identical to t{@}. t{@}
is t with any variable bound by S is replaced by its binding.
We give below an algorithm for computing a unifier of a set
of pairs of terms given as a set of equations. The algorithm
actually returns a most general unifier (mgu). See
(Robinson 1979) or (Lassez et al 1987) for a more formal
definition of unifier and mgu. ’

The difference between an assignment and a substitution
is important. Let (E)S denote the existential closure of 5,
the existential quantification of all its variables. (E)S is true
no matter what interpretation 1 is given to the functors.
Such an interpretation is a pair <D,A> where D is a non-
empty domain and A is a function mapping each k-adic
functor into a k-adic function from DX to D. Let M be a
function mapping the variables Y1,.., Yk, of the binding
terms in 3 to elements 2l,...ek of D. Letting Xi = w(ti), the
value of ti for interpretation 4,M gives a tuple of values
X1=v(tl),..,Xn=v(tn),Yl=el,.,Yk=ek which wivially
satisfies the equations 5.

If § is just an assignment, (E)S is not always true for
every 1. Consider the assignment {X=f(X]}.
(EX){X=f(X)} is true only if f has a fixed point.

Herbrand interpretation
An interpretation for which (EX){X=f(X)] is false is the
free or Herbrand interpretation HI, The domain is the set



the functors has a special role in logic programming. A
substitution denotes a non-empty relation for any
interpretation because it denotes a non-emply relation in the
Herbrand interpretation.

Unification algorithm
The following algorithm finds a unifier of a set of pairs of
terms expressed as set of equations E={t1=t'L,...tk=t'k}.
The algorithm terminates with a substitution S (a success
termination) or it terminates with a set of equations
containing false, (a fail termination).
() Replace any equation of the form f(tl,..,tk)=f(t'l,...t'k)
by the k equations t1=t'l,..,t=tk
{b) Delete any equation of the form X=X.
{c) Replace any equation of the form t=X, t a non-variable,
by X=t, L
{d) Select any equation of the form X=t, where X occurs in
some other equation and Xt
(i) If X cccurs int (the occur check), terminate replacing
the equation by false,
(ii) Otherwise, replace X by t in all other equations. X=ti
is not deleted . .
{e} If there is an equation f{...)=g(...), where { and g are
different, terminate replacing the equation by false.

The above algorithm always terminates. IF it fails, the
original set of equations E has no unifier, If it terminates
with success then S is a substitution which is an mgu of E.
A proof is in (Martelli and Montanari 1982). The algorithm
is essentially Herbrand's original algorithm for checking
whether or not a set of equations has a solution for the
Herbrand interpretation (HI) of its functors. .

Rule d(ii) can be modified to the instrection: replace X by
t in some of the other equations. The rule can then be
reapplied, possibly to a different binding equation X=t' for
X, until X does not appear in any other equation. This is a
modification of the algorithm used in the some of the
parallel languages we shall discuss in section 4.

Let us call an equation of the form X=t to which d(ii)
applies a binding equation. Applying d(ii)., is
communicating or broadcasting the binding. Applying the
substitution to every equation is global broadeasting,
applying it to only some equations in which X appears, is

Ipcal broadcasting. In an implementation in which a
variable is a pointer to a single memory location, from

which any binding is automatically retrieved, global
broadcasting is achieved by simply assigning the value t of
a binding eguation X=t to the location for X. Local
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broadcasting must be implemented by having multiple
locations for X, or by explicitly copying and substituting
for X in those equations covered by the local broadcast.

An implementation that stores bindings instead of
substituting in cquations corresponds to the following
modification of rule (d). _

{d'y Select any equation of the form X=t.
If there is a broadcasted equation X=t' for X, replace X=t
by t'=t. Otherwise,

(i) If X occurs in t (the occur check), terminate replace

the equation by false, ' _

(ii) Otherwise, make X=t the broadcasted equation for X,

Local broadcasting to some subset of equations is the
further modification of this rule to incorporate the idea of a
broadcast equation restricted to certain other equations. The
test then checks for a broadeast equation for this eqaution.

We can also allow simultaneous selection of several
equations, each to be handled by application of the
appropriate rule, providing we impose some resirictions. If
we have global broadcasting, only one binding equation can
be selected for any variable. If we have local broadeasting,
we can select multiple binding equations providing each is
not included in the broadcast range of any other.

Unificarion as a special form of equation solving

Let X1,..,Xk be the variables of the original set of
equations E. E can be be viewed as defining a relation
REe={<Xl,..Xk>E} given some interpretation I. An
empty set of equations Eiﬂfinn_s {==>:true}, or equivalently
just the logical constant true, The equations have a solution
for 1 iff Ry is not empty for L. The final set S produced by
the unification algorithm is such that Rg is contained in RE
for any interpretation L If S is a substitution, this tells us
that Rg is non-empty, hence that the equations have a
solution, for any interpretation I. If S contains false, Rg is
the empty relation false. We cannot conclude that
Rp=false for any I, but we can conclude that is empty for
the interpretation HI. This is because each of the equation
rewrites preserves equivalence for HI. The free
interpretation of the functors is reflected in rules (&), d(i)
and (g).

Unificarion as inference from a theory of the funcrors
The following axioms, from (Clark 1978), characterise the
Herbrand interpretation.
{F1) for every functor
f(X1,..Xk) = f(¥1,..Yk) -> X1=Y1,.Xk=Yk
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(F2) for every pair of distinct functors f,g

I(X1,..Xk) = g(¥1,.Yn)
(F3) for every non variable term t(X) confaining some
variable X, X=t(X)

These axioms, together with the normal reflexive,
symmetrie, transitive and substitution axioms for =,
comprise the Herbrand equality thecry HET. Each step of
the unification algorithm is & particular use of one of the
axioms of the equality theory. This relationship is
formabised in the result (Clark 1978):

{(R2.1) HET |= Rg=Rg, or equivalently V(E <-> §)
where V denotes universal closure.

That E =- S only needs the general equality axioms, which

cstablishes that RE contains Rg for all interpretations. That

E - § needs the freeness axioms.

As corollaries of (B2.1) we have

(R2.2) S=false iff HET |= Rg=false

(R2.3) 5is asubstitution iff Rp=false for any I

Thus 5 is equivalent to E for theory HET and a simple test
on the syntactic form of S tells us whether or not E has a
solution, 8 15 a solution form for equations B for the
theory HET.

Solving squ.ﬁriam for other theories of the functors

The unification process can be viewed as a special case
of a.more general process of checking whether or not a set
of equations has a solution for some other equality theory.
(Colmerauer 1982) is an example of a logic programming
scheme in which equations are solved for a different theory,
an equality theory of infinite rational trees.

Checking solvability of mare general equality formulas

Viewed as a description of a relation, a set of equations is
a just  special case of a first order formula vsing only the
predicate =. Unification could be replaced by a process of
checking whether or not some more general equality
formula is satisfiable (denotes a non-empty relaton) for
some interpretation of the functors, Colmerauer's (1586)
scheme is an example of this. In this scheme, the formulas
are conjunctions of equalities and negated equalitics reduced
to solution form for a theory of infinite rational trees.

Checking solvability of constraint formulas
The final generalization, is to allow other predicates in
the formulas for which we need fo determine sadsfiability.

The key logical requircment is that there is some theory T of
the functors and predicates that appear in the formulas
which is satisfoction complete for the formulas, That is,
for any formula it determines whether or not the formula
denotes a non-empty relation. Checking this property for
some formula F, is this generalization of unification of
Jaffer and Lassez's(1987) scheme for constraint logic

Programmung.

Pragmaric requirements

Testing satisfiability of a set of equations using
unification is suitable unit of computation for a logic
programming language because it is algorithmic, it produces
an equivalent solution form and the algorithm s
incremental. To reduce a larger set E(jE' to solution form
we can apply the algorithm to SyyE' where 5 is the solution
form for E. Moreover, the solution form form for SpE' it
is expressible as an extension S738' of 5 if rule (d') is used
ingtead of rule (d). This incremental nature of the
algorithm is essential for efficient implementation. This is
because a unification based logic program computation is
essentially the process of reducing to solved form
progressively larger sets of equations.

In the non-unification based schemes, we must also have
‘algorithmic' and incremental reducibilty to solved form if
we are'to justify the programming label,

3 Schemes based on unification
3.1 SLD resolution - the Kowalski scheme

The first schematic framework for logic programming
languages was given by Kowalski (1974), This scheme is
actually LUSH resolution (ELll 1974), now referred to as
SLD-resolution. Programs comprise rules of the form

A=Al An  for nz0

where A, Al,.,An erc atoms. An atom is of the form
p(tl,...tn}, n20, where the ti are terms and p is a n-adic
predicate taken from some countably infinite set P of
predicate names disjoint from F and V. A is the clause
head and Al,..,An are calls comprising the clause body.
It is a clause about 1, if r is the predicate of A. Each
varfable in the clause is implicitly unlversally quantified.

A computation is invoked by a conjunction G of calls. If
X1,..,Xk are all the variables of G, it {s a request to a
description of one or more instances of the relation
Rge{<X1,. Xk>:G} for any interpretation which is a
maode] of the program.



A state of the computation is a pair <G,5> where Gisa
conjunction of calls B1,..,.Bm and § is a substitution or it
containg false. In the initial state S is the empiy substiution
{}. A unit of computation is the unification of some call
Bi= r{t'l,...tk), selected by a compuration rule CR, with
the head A=r{tl,. tk) of a clause variant A<-Al,. An (a
clause with variables renamed so as to have no variables in
common with G) in the binding environment represented by
§. This is the application of the above unification
algorithm to Sy{ti=t'l,. tk=t'k}, or equivalently to
Sp{tl=t'l,.. tk=tk}{S} to produce a sclution form §'. A
next state of the computation is
<true, 5> if m=1n=0,otherwise
<B1,.. Bi-1,Al,. . AnBi+l,.. Bm,S'>.

The alternative states that can be derived using different
clauses for the predicate of the selected atom represent
branch points for the computation. The computation tree
fior a goal G and computation rule CR. is a finitely branching
tree roated at <G,{}> labelled with states. The offsprings
of a node in the tree are all the alternative states that can be
gencrated using all the clauses about the predicate of the
selected call. =~ - ) o

A branch of the computation tree terminates with
success if its end node is labelled by a state <true,S=
where S is a substitution. A computation path terminates
with failure if its end node is labelled with a state <G,5=,
3 contains false. A branch may be infinite.

The strategy for constructing the computation tree is the
search strategy. The strategy is fair if it does not
indefinitely postpone the construction of some branch of the
search tree.

The answer computed by a success branch on a tree for
computation rule CR is the substitution S restricted to
bindings X1,...Xk for the variables of the original goal
clause G. (If rule unification rule d' is used instead of d, S
must also be applied to the bindings for X1,....Xk.) The
answer 5' can be interpreted as denoting a k-adic answer
relation Rgn ={<X1,.,.Xk> : §'"}, where S' is the
existential quantification of § with respect to all the
variables in the binding terms, Important theoretical results,
strengthening the soundness and completeness results of
(Hill 1974), were proved in (Clark 1979). They are:

(R3.1.1) Soundness
For every CR-computed answer substitution 3,
P |= R contains Rga
Since for a substitution, Rga = false for any I, this result
implies the usual but weaker soundness result :
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If there is a success computation path then Pl=(E)C
(R3.1.2) Independence of the compuration rule

For each CR-computed answer § there is an CR'-computed
answer ' such that Rga=R g for every L

(R3.1.3) Strong completeness

For every substitntion §' such that P |= R contains Rga
there is an CR-computed answer S such that Rga containg
E.g's for every L

Proof of (R3.1.3) uses the fact that the unification
algorithm returns an mgu but I believe it can be proved
using only (R2.1).

The Kowalsld scheme allows for or-parzallel search dewn
the alternative evaluation paths but only and-sequential
evaluation, Ateach computation step only one call is being
unified. A trivial extension, is to allow concurrent
evalvation of any sequence of k steps from state <G,5> that
select aboms which can be independently unified with heads
of clauses in the context S. The condition that guarantees
thig is that each pair of atoms B, B' of the sequence of
selected atoms are such that B{5} has no variables in
common with B[S}, This is independent and-parallelism.

Another simple extension, 15 to allow the return of
qualified answers. Suppose the original goal has been
reduced to a state <G5 where §' is a substitution but
G'#true. Let S be the subset of bindings in 5' that bind
variables in G. A qualified answer (Vasey 1986) for that
computation path is 8, G'. A simple generalization of
(R3.1.1) tells us that

P |= R contains RI[S,G']"" .

Of course, R{S,G'}"" # false only if P |= (E)G'

Types of computation rule

A rule that always selects one of the introdeced calls
Al An if there is one, i8 & depth first rulg. The rule that
always selects the leftmost introduced call, or the next call
in the goal conjunction if thers are no introduced calls, is the
leftmost call rule. A rule that does not always select an
introduced call is a coroutining rule. With a coroutining
rule the computation can alternate between the evaluation of
different calls, With a depth first rule calls are always
completely evaluated once selected but the calls are not
necessarily selected in the order in which they appear in the
goal and in the body of clauses.

Implementations of the Kowalski scheme
The first implementation was Prolog (Battoni and Melond
19733, which actually predated the publication of the
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Kowalski scheme. Prolog uses the leftmost call
computation rule. It also wses a depth first backtracking
search strategy trying the clauses in the fixed order in which
they are entered.

IC-Prolog (Clark and McCabe 1979, Clark et al: 1982)
was the first implementation to allow more general
computation rules specified by program annotations. Like
Prolog it nses depth first backtracking search. The default
rule is the leftmost call rule but a different order of the calls
in the body of a clause can be specified for different modes
of use, causing the calls to be intreduced into the goal in
different orders for different modes. A mode of use is a
restricton of the unification with the head of the clause
which specifies certain argument terms as Input or output.
Suppose that we successfully unify a call {tl,...tk) in in
state <(3,8> with a head r(t'l,...tk). The input restriction
on t'i 15 satisfied if all the bindings that result from rewriting
equation ti{S}=ti are for wariables in ti. The output
restriction on t is satisfied if tj is a variable that is not
bound in S. ‘ .

A coroutining rule in IC-Prolog is specified by
annotations on variables in calls, A 7 annotation on a
variable 'V in a call, B, specifies B as a eager consemer of
the binding for V. Suppose the lefimost call rule selects a
call A to the left of B and the unification with the next clanse
for the atom resulis in the broadcasting of a non-variable
binding t for V. The body atoms for the clause are
introduced into the goal but call B is moved from its
position in the current goal conjunction G to the leftmost
position. The evaluation then continues with a depth first
evaluaton of B, However, no call B', which is a
descendant of B, is allowed to broadeast a non-variable
binding for a variable in ¢ If the unification of such a call
B, would result in the broadeasting of such a binding, the
call is not selected. Instead, the conjunction of all the
current descendants B1,..,Bj of B are moved back to the
position that B occupied in goal G. The computation
continees with the new leftmost call. The descendants of B
are moved to the front of the goal if a non-variable binding
for any wariable in t is computed and back again to the
position they occupied if the selection of one of the
descendants wounld result in the broadcasting of a non-
variable binding for a variable in t'. The switching forward
and back continues until there are no descendants of B. The
consumer annotation has no effect if no eall to the left of B
tries to bind V. A dual notion, that of an lazy producer, is
specified by the annotation * on a variable in a call B. Strict
one step aliemation between the depth first evaluation of
two or more calls can also be specified, giving pseudo

parallel evaluation.

A weaker form of the eager consumer concept of IC-
Prolog, which is easier to implement, was independently
devised by Colmeraver and colleagues and implemented in
Prolog II {(Colmerauer 1982b). This is the freeze call.
Instead of annotating the variable V in a call B with A, the
call is written freeze(V,B). Suppose now that the leftmost
call computation rule selects freeze{V,B). If V is bound to 2
non-variable in the current envircnment S, the evaluation
continues as though the call was B. If V is unbound, B is
temporarily removed from the goal conjunction of the
current state and linked with V. Other freeze calls can add to
the number of frozen calls linked with V, as can binding V
to some other variable U that has linked frozen calls. Now
suppose that a non-variable binding for V is broadeast by
the unification of some call B' with the head of a clause A<-
Al,.,An. B and all other frozen calls linked with V are
reintroduced .into the goal in front of the body atoms
Al,..,An. The freeze condition is not inherited, a
descendant of B will resuspend only if it is contained inside
another freeze call. : .

If V is never bound to a non-variable, B and any other
frozen calls linked with V will never be re-introduced into
the compuiation. - So this implementation computes
qualified answers, the qualification being the conjunction of
all frozen calls that are not reintrodoced. [C-Prolog does
not compute qualified angwers because all calls always
remain in some position in the goal,

In MU-Frolog (MNaish 1935) coroutining is also
implemented by temporarily removing the lefimost call from
the goal. Here, the suspension condition is not specified by
the form of call, but by the specification of allowed modes
of use of clauses. With each predicate r a set of modes of
use is specified by a set of wair stalements, A wair
statement specifics a subset of argument positions that are
allowed output positions for the unification of any call for
rwith the head of each clause forr, 'When the left most call
E is for a predicate with wair statements, the call is
suspended if the unification with the next clause for r would
result in the broadcasting of bindings not allowed by any
wair statement for r. Let U1,..,Uj be those variables for
which bindings cannot be broadeast without violating some
wait statement. The call B is removed from the goal but
reintroduced at the front of the goal as as soon as a non-
varible binding is broadcast for any of these variables, The

call may resuspend.

In Chapter 3 of MNaish (1985) an algorithm for
automatically generating wwir statements is given. These



have the effect of suspending any call for which a
depthfirst evaluation would resuli in an infinite computation
branch,

In NU-Prolog (Thom and Zobel 1887), wair statements
are replaced by when statements which give conditions
under which a call can be selected rather than conditions for
suspension. The when declaration is dummy clause for a
predicate that must succesed before any call to the predicate
can be selected. Its role is to check that certain arguments
are of a particular form, or are non-variable, or are ground
terms. As in MU-Prolog, they can cause a call to be
temporarily removed until one or more variables are bound
to non-variable terms.

(Ciepielewski & Haridi 1984) and (Moto-Oka et al 1984)
are designs for or-parallel implementation of SLD with a
leftmost call rule. (Conery 1987) has or-parallelism,
restricted and-parallelism and dynamic re-ordering of the
body calls depending upon which variables in the body are
bound by the head unification. (Degroot 1984) is a proposal
to allow restricted and-parallelism in an otherwise sequential
leftmost call implementation with compile time analysis
used to simplify the runtime test for independence of calls.
Warren (1987) is a survey of current work en the or-parallel
implementations of Prolog,

3.2 Heterogeneous SLD - the Naish scheme

An interesting variation of the SLD, called H::t:mgepenus
SLID, has been proposed by MNaish(1984) as & more suitable
model for a coroutining implementation. In this variant, it
15 i1l the case that only a single call is unified and replaced
by the bedy atoms of some clause during a computation
step, but the successor states do not all have to be produced
by replacing the same selected call. Some of them can be
produced by selecting another call and using only some of
the clanses for the predicate of that call. The computation
rule applied to a state returns a sequence of <call,clanses
pairs to be used in generating the successor states, although
the sequence order does not constrain the order in which
some search strategy generates the successor states. A state
of the computation also records the clauses that can be still
used to unify with a particular call. Suppose the
computation rule returns a sequence <Bi,Cx<Bj,C'=,.
for the state <(3,5>, and <(Gi,3i> is the successor generated
by unifying Bi with the head of C and <Gj,5j> is the
successor obtained by unifying Bj with the head of C',
Then, C' will appear in the list of clauses that can be nsed to
unify with the occurrence of Bj in Gi, but clause C will not
appear in the list that can be used for Bi in Gj.

125

Naish proves that providing the sequence returned by the
computation rule includes all the (to be used) clauses for at
least one call, the scheme computes the same set of answers
as SLD. Operationally, it allows a backtracking
implementation which has discovered that all computation
paths that result from using clause C to try to solve call Bi
in <G,5> ends in failure, o backirack to <G,S>, select
another call Bj in G, and subsequently to try to solve Bi
without needing to reconstruct the failure subtree generated
by using C. This is because C will have been deleted from
the clause set associated with Bi down the new branch
routed at =G,5>. Maish also points out that it justifies the
following form of intelligent backtracking: once a call has
been found to fail, on backtracking to the parent state, retry
the failed call if it is in the goal rather than the previously
selected call. Repeat this until the call succeeds or until it is
no longer in the backtrack goal. .

1C-Prolog and MU-Prolog are implementations of this
scheme. This is because the attempied unification which
causes & call B to be delayed may be an attempted
unification with the second or later clause for B, When B is
resumed, the previous clauses are not retried.

3.3 SLDNF - the Clark scheme

In (Clark 1913} an extension of SLD was proposed to
allow negated atoms in queries and the bodies of rules.
Programs are now cxpressed as implications of the form

ALl Ik
where A is an atom and each Li is a literal : an atom B ar its
negation ~B. Goals are conjunctions of literals. Each
variable in a rule is 561l implicitly universally quantified.

States of the computation are as'in SLD except that the
goal component s a conjunction of lterals and it may
contain false. The computation rule SE can select any
positive call or any negative call ~B in <G,5> such that
B{S} is ground (variable free). Following (Lloyd and
Topor 1986) we shall call such a rule safe, If the selected
call is positive, this is a normal call, and is handled asin
SLD.

If the selected call is a negative call ~B then the query
evaluation process is recursively entered with the ground
query B{5}. If every computation path ends in failure, ~B
is assumed to succeed and is deleted from the current goal
to give the new goal. If some computation branch for B{S}
ends in success, ~B is replaced by false, giving a failure
termination. This is the negarion as failure rule.

A computation branch flounders if a state is generated
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which only has an unground negative calls.

Frolog is an SLDNF systems but without the safety
constraint on the computation rule. It is left to the
programmer to make sure the negated calls come after
positive calls that can be used to generate ground bindings
for their variables. MU-Prolog and NU-Prolog have safe
computation rules. TC-Prolog has an unsafe rule but raises
an error if the evaluation of a negated call ries to broadcast
& binding for a variable in B{5}.

The answers computed by SLDNF are not logical
consequences of the program. Firstly, failure to unify is
interpreted as proof of falsity, which is only valid for the
Herbrand interpretation. Secondly, there is an implicit
assumption that the given clauses somehow constitute a
complete definition for each relation.

Program completion

{(ay rtl,.kn) < L1, Lk
is a program clause. The guarded form of the clause is

b)) X1, Xn) == Xl=tl, . Xn=tn:L1,.,Lk
and the general form is

{e) n(X1,.,Xn) <- (EY1,.Yj)

(X1=tl,.,Xn=tn : L1,..,Lk)

X1,..Xn are new varizbles not in (a) and (EY1,..,Y]) is the
existential quantification of all the variables in (z). The " is
just a conjunction connective like °','.

Remember that unification between a selected call
©{t'l,..,t'n) and the clause head r(tl,..,m), is the unification
of Eyp{t'l=tl,...t"m=tn}. This is equivalent to the
unification of Ey{X1=t'l,...Xn=t'n}yy Xl=tl,., Xn=tn}.
If we revised our definition of a computation step, so that
all guard equations are also added to E before it is reduced
to solution form, computation using the guarded form of the
clause is exactly the same as computation using the original
clauses. Let

7(X1,..,Xn) <- E1

rX1,.,Xn) < E2

(X1, Xn) <- Em

be the general forms of all the clauses forr .
The complered definition for r is:
nX1,..Xk) <> El yE2 y ..y Em,

Frogram completion
completed(P) comprises:
(i) the completed definition for every predicate that appears
in the head of 4 clause in P,
(ii) the definitions
X1,.., Xk) <-> false ko

for every k-adic predicate for which there are no program
clauses.

comp(P) = completed(PY;HET

Soundness results for SLNDF (Clark 1978)
(R3.3.1) For every SR computed answer S for goal G,
comp(F) |= Ry contains Rgn
(R3.3.2) If for some safe computation rule every branch of
the computation tree for G ends in failure then comp(F) |=
~(E)G
(R3.3.3) If the SR-computation tree routed at G is finite and
51,..,5n, n20, are all the answers computed by the success
branches, then
comp(F) |= Rg = R§14 U oo 7 R , equivalently
comp(P) = (V)[G <-> 51" y.....yy 5™

Allowing unshared local variables in the negated call
{(R3.3.2) will allow us to generalize SLDNF programs to
have negated conjunctions ~C, not just negated cafls. We
can liberalise the safety condition and allow ~C to be
selected if C{S} does not share a variable with any other
call in G{8}. These local variables are then implicitly
existentially quantified inside the negation because a
completely failed computation is a proof of ~(EJC{5}. This
is what happens in the Prolog implementation of negation as
failure. We can have a rule
maths_major{X)<-
student(X),~(maths_course(Y),~takes (3, Y))
The evaluation of maths_course(Y),~takes(X,Y), with
X=p, , will be a proof of
~(EY)(maths_coursc(Y),~takes(p,Y))
if it fails. Unfortunatly, this relaxation does effect the
simple rule that all variables of a clause are implicitly
universally quantified and it is better to insist that the
negated condition is explicitly existentially quantified in the
rule as in NU-Prolog (Naish 1986). NU-Prolog(Naish
1986) enforces the generalized safety check that all
unquantified variables of such a negation (its global
variables) are bound to non-variables before it can be
selected. The quantified variables are its local variables,



Suspending evaluation of negated call

Another extension of the negation as failure rule would
be to allow selection of a quantified conjunction ~(EV] }C,
with unbound global variables Vi, but to suspend any
branch of the computation of C{5} that tries to broadcast a
non-variable binding for any of these variables. The branch
iz resumed when a binding for the variable is broadcast.
The evaluation will coroutine between the recursively
entered goal C{8} and the evaluation of the original goal G.
Suppose there is a suceessful evaluation of C{S} that
succeeds without binding anry global variable, we can
replace ~(EVp )C by false. For we have established
(VVG)EVL)C{S} and hence ~(EVG)~(EV] )C{S}. No
matter what ground bindings are given to the variables in
Vi C{5} will succeed. IC-Prolog has this generalization
of the rule, but it raises an error instead of suspending if
there is an attempt to bind a global variable.

Allowing generation of values for global variables

(R3.3.3) will allow a negation as failure rule which
generates answers, Suppose we allow any negated
condition ~C to be selected and that we always by to
construct the complete computation free for C{S}. If there
is & success branch that does not result in any bindings for
variables in C{S7}, we can replace C{5} by false. If all
branches fail, we can delete it. If S1...5n are all the answer
bindings for variables in C[S], then result (R3.3.3) tells us
that ~C can be replaced by the conjunction ~814,...,~8n",
Distributing the negation will give us quantifed negated
equalities. To handle these, we need to extend the SLDNF
scheme so that unification is replaced by the process of
checking that such inegualities are consistent with the
binding equations returned as answers to other calls. We
shiall return to this in section 6.

Constructive proof

As pointed out in (Clark 1978), SLDNF requires each
negated atom to be constructively proven, it does not allow
case analysis proofs. Thus, g is a consequence of the
completion of the program

P<p Q=P q<-=p
but the evaluation of q will not terminate under any
computation rule. This is because the evaluation cannot
make use of the law of the excluded middle, g v ~p, hence
it cannot show that g is true no matter what the the muth of p
15,
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Completeness resulis

Unfortunately there is no simple completeness result,
The problems are threefold. Firstly, there is no guarantee
that for an arbitrary program that the computation will not
flounder, terminate with only non-ground negated calls in
the goal. Secondly, it must be the case that everything that
can be inferred from comp(P) can be inferred
‘constructively', without using the law of excluded middle.
Thirdly, when there is a ‘constructive’ proof of ~B{S}
from comp(F), we must be able to generate a finite failure
tree. The first two conditions force us to put extra
constraints on the syntactic form of P. The last one requires
that the computation rule be fair as well as safe.

A fair computation rule is a concept introduced into logic
programming by Lassez and Maher. It is a computation
rule which does not indefinitely postpone the selection of
any call. No depth first computation rule is fafr, a fair rule
must be a coroutining rule. The following program from
(Clark 1978) is an example of a program and goal that
require a falr computation rule:

_ P(X) =- q(¥)r(Y)

qCh(Y)) <- q(Y)

2(Y))
With Prolog's leftmost call rule a single branch infinite

computation tree is generated for call p{a). With any fair
rule it is finite.

Hierarchical programs

Consider the directed graph representing the relation
refers to for the predicates of P. There is a +(-) labelled
edge in the graph between predicates p and g if g appears in
a positive(negative) atom in some clause for p. A edge can
be labelled with both + and -, In a hierarchical program,
there can be no ¢ycles in this graph. MNote that this rules out
recursion. In (Clark 1978) there was some informal
discussion of completeness for Merarchical programs, The
key result concerning hierarchical programs was later given
by Sherpherdson (1985);

(R3.3.4) If the program is hierarchical, every variable in a
clanse oceurs in a positive literal in the body, and every
variable in a negative literal in & goal G occurs in a positive
literal, then for every SLDNF answer §' such that comp(F)
|= Ry contains Rgra there {s an SR-computable answer S
such that HET |= Rsn containg Rga

The conditions concerning variables ensure that the
evalpation will not flounder and the hizrarchical condition
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ensures that every call generates a finite computation iree,
hence that everything can be inferred from comp(P)
constructively. ;

As (Lloyd and Topur 1986) showed, the syntactic
condition of program clauses can be slightly relaxed for
predicates that are only used in negated calls. For the
clauses for these predicates only the local variables of the
body of the clause have to appear in positive atoms, it is not
necessary for variables in the head to appear in a positive
atom. Proprams and goals that satisfy the Lloyd and Topur
conditions are called alfowed. For allowed programs and
goals every computed answer is a set of ground bindings
for the variables of the goal.

Campleteness for negation free programs

A completeness result that is of considerable importance,
even though it is only the base case of a general result, was
given by Jaffer et al (1983):
{R3.3.5) For pure definite clause programs (i.e. programs
that do no contain negated atoms in the bodies of clanses),
when comp(F) |= ~B. for some ground atom B then for
every fair computation rule every branch of the computation
tree for B ends in failure,

Omne might hope to use this result to allow negated calls in
allowed programs which are calls to predicates defined by
negation fres clauses. But as soon as we allow this, we can
have non-constructive proofs from comp(F). It allows the
Program

P=-p q=p q=<=~p
which has the negated call ~p defined by a negation free
program,

Completeness for strict programs

A completeness result that constrains P so that there
cannot be a non-constructive proof from comp(F) is given
by Kunen(1988b) for strict programs. A program is not
sirict (Apt et al. 1988) iff in its refers fo graph there are is
a pair of relations p,q such that thers 15 a path from p to g
which contains an even (possibly () number of - labelled
edges and a path from p to g that contains an odd number of
- labelled edges. In a strict program a predicate p cannot be
defined directly or indirectly in terms of positive and
negative atoms for some predicate q. The Kunen result is:
{R3.3.7) Suppose P and G are allowed and P is swrict. If
comp(F) |= GS for some ground substitution 3, then 3 is an
SLDNF computable answer. If comp(F) |= ~EG, then
there is a finitely failed SLDNF tree for G.

Sherpherdson (1988) and Kunen(1988) are both excellent
recent surveys of many other results concerning the
semantics, soundness and completeness of negation as
failure, for the concept seems to have aroused a lot of
interest,

4 Parallel unification based schemes

4,1 GLD resolution -Wolfram, Maher, Lassez
scheme

The first scheme to allow unrestricted and-parallel
evaluation - the concurrent unification of two or more calls
with shared wariables is the (Wolfram et al. 1984) GLD
scheme. Programs and goals are as in SLD but a state of
the computation is & pair <G,5> where G is a multiset of
calls, As in SLID, S is a substitution or contains false. The
computation rule selecis n=1 calls {B1....Bn} from G. If
[{Al=-Gl,.., An<-Gn} are variants of n program clauses
{with no variables in common with G) where Bi and Ai
have the same predicates, then a next state of the
computation is

<GGlyr...yyGn,S'>
where §' is the unification solution form of

Sy{B1=Al,...Bn=An}.

(We assume that the unification algorithm is trivially
exiended to handle the rewriting of rtl,...tk)=r{t'l,...t' k)
using rule (&) where r is a predicate.)

Asynchranous GLD
In the GLD scheme, the scope for parallelism is limited

. because the entire unification must terminate before goals

can be selected for the next step. The reduction of each
selected goal to the body of a clause is a synchronized step.
The following generalization of GLD, implicitly described
by Wolfram at al, allows for asynchronous reduction of
calls on different processors.

Asynchronous GLD (AGLD) has states <G,E> where G
is a multiset of calls and E is a multiset of equations which
may contain false. The computation rule selects k=0 calls
Bl,..Bk from G and n=0 equations from E, k+n=0,
where each equation is such that one of the unification rules
applies. Each selected equation is handled using the
appropriate rule. Let E' be the rewritten set of equations.
Let Al<-Gl,..,Ak<-Gk be k variants of clauses for the
predicates of the selected calls. Let S be the subset of E' that
are bindings that have been, in this or a previous step,
globally broadeast to all other equations in E. Then



<GyGly..yGkE'y{B1{S}=Al,.,.Bk{S}=Ak}>
is a next state of the computation, The definitions of
success and failure and computed answer are as for SLD
and the results of the Wolfram et al. paper show that the
computed answers are exactly the same as SLD for every
computation rule,

Types of computation rule

GLD is ACLD with a computation rule that always selects
only equations to rewrite until the E component of the state
has been reduced to solution form. At the other extreme,
we can have a computation rule that only selects equations
when the goal component of the state is true, delaying all
unification until the end of the computation. Wolfram et al.
use this rule to prove the independence of the computation
rule, which is now just a way of collecting together the final
set of equations to be reduced to solution form.

Consider the intermediary computation rule which allows
selection of atoms along with equations but which delays
the selection of any of the introduced atoms Gi from the
body of the i'th clzuse until Bi{S$}=Ai has been reduced to
a set of binding equations Si, and which only locally
broadcasts these bindings to equations descended from
Bi{S}=Ai. That is, bindings for shared variables of Bi are
not initially communicated to the other concurrently selected
calls. Moreover, body calls in Gi are then unified relative to
the locally extended SyjSi. This corresponds to an
implementation in which each call is evaluated as in SLD
with the computed bindings for shared varfables of
concurrently selected calls being compared (by global
broadeasting of the bindings) only when each call has been
reduce to true. The Epilog system of (Wise 1986) and the
Prism system of (Kasif at al 1983) are or-paralle]l versions
of AGLD with this computation rule.

A sequential AGLD rule is one which at each step selects
a single equation or a single atom to replace. If it always
selects equations until E is in sclution form, this is the same
as SLD. An intermediary sequential rule generalizes SLD
because it allows coroutining implementations to do partial
unification, which is not undone, before switching to
another atom. For example, a call Bi that is not allowed to
generate a non-variable binding for X can be selected and
the unification rewrite of Bi{S}=Al pursved until a binding
=t is generated. This binding is retained, but not
broadcast. The next call, or the designated producer of X is
then selected in order to generate a binding X=t' which is
broadcast. The unification rewrite of the Bi{S}=Ai can
then continue with t'=t in place of Xt
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Absys (Foster & Elcock 1969), which can with
justification be considered the first logic programming
lanpuage (sec Foster 1988), is essentially an implementation
of AGLD with a sequential rule. Terms are restricted to
variables, constants and lists and programs are entered in a

" syntactic variant of the completed definitions of 3.3, The

computation rale never selects an equation of the form
X=Y, X and Y distinct, for application of rule d{ii}. Such
variable/variable equations remain as qualifications to
computed answers if no other equation rewrite generates a
non-variable binding for X or Y. Absys also implemented
the negation as failure rule but without the safety check,

Data flow parallel rules

The generalization of a sequential coroutining rule that
sclects another atom when a binding equation for some
input variable of the call is generated, i a parallel rule
which delays the selection of any call in the body Gi of the
clause Ai < Gi, until Bi{S}=Ai has been reduced to a et of
allowed bindings, bindings that can be globally broadeast.
Any binding X=t made for some deésignated imput variable
X of the call, is not an allowed binding. Such a binding
cannot be broadcast, The handling of X=t is suspended
until a binding equation X=t' is otherwise generated and
broadeast to the equation X=t

If need be, we can distinguish between occurrences of
variables, preventing broadcasting of a binding equation
only if it is generated by rewriting some particular term in
Bi. Let us call such variable occurrences, however
specified, input variable occurrences for the call Bi. Only
binding equations generated for nen-input variables of Bi
are allowed, and can be globally broadcast.

Delaying the plobal broadeast of allowed bindings

Allowed bindings generated by the rewrite of Bi{S}=Ai
do not need to be broadcast immediately they are generated.
Data flow rules are used to delay the evaluation of the call
untl certain bindings have been broadeast to it because the
appropriate clause to use for the evaluation of the call is to
be determined by the form of the received bindings. This is
why we delay the selection of any call in Gi until the
unification of Bi{S}=Al, in the context of all the extra
broadeasted bindings it receives, succeeds. If we delay
broadcasting any allowed binding until Bi{S}=Al has been
completely reduced to allowed bindings, an attempted
unification that fails will have no effect on the evaluation of
any other call. We can with impunity substitute for the
clause Af «- Gi some ofher clause Al <- G'f soch that
Bi{$]=A" does reduce to a set of allowed bindings. We
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will usually need to locally broadcast allowed bindings to
other equations descended from Bi{ 8}=Ad, for example to
check for incompatible bindings for variables in the clause
head, but we can delay the global broadeasting to all other
equations in the environment E. Note that delaying the
global broadeasting of some allowed binding Y=t for a
variable means that Y=t may be transformed into t'=t if
some allowed binding for ¥ generated by another call is
globally broadeast. The unification rewrite of Bi{S}=Ail
only terminates when all its allowed bindings have been
globally broadcast.

Atomdc unification

Suppose there is a state of the AGLD computation in
which Bi{S}=Ai has been completely reduced to a set of
allowed bindings Si (possibly after the receipt of globally
broadeast hindings for some variables in Bi{S} generated
by other unifications). If the computation role is
constrained so that if it selects one of the bindings from Si
for global broadcasting, it must select them all, the rule
implements atomic wnification. (As remarked in section 2,
we must already constrain the rule so that it selects only one
binding for any variable for global broadcast.)

If, in addition, no call in Gi is selected before all the
allowed bindings generated from Bi{S}=Ai have been
selected for global broadcasting, the rule implements
atoric test wrification.

In a multiprocessor implementation, atomic wnification
requires synchronization of the global broadcasting of
variables bindings. A given processor must get binding
permission from all other processors that might generate an
alternative allowed binding for each of the variables bound
in 5i before broadeasting the bindings. It must be prepared
to relinguish the binding permissions given if it cannot get
binding permission on them all. A guite complex
interprocess protocol is therefore needed to implement
atomic unification on a multiprocessor.

Specifying the allowed bindings for a call

The analogue of the freeze call of Prolog IT is some sort
of annotation in call Bi on the input variable ocowrrences.
Concurrent Prolog (Shapiro 1983) does this by annotating
the input occurrences with 7. As with the freeze call, the
restriction is not inherited. Occurrences of variables in a
binding t' received for an 7 annotated variable of a call Bi
are not also input variables of Bi, unless they are also
annotated with a 7. If the input variable property was
automatically inherited, and in addition applied to all calls

descended from Bi, this would be the analogue of the IC-
Prolog eager cONsumer.

An alternative way 1o determine the allowed bindings for
the unification of the call Bi{ S} with some clause head Ai,
is to associate 3 allowed mode of use with the clavse, as in
MU-Prolog.

In the Relational Language and Parlog(Clark & Gregory,
1981,1986), this is done by specifying for each argument
for each k-adic predicate r an input 7 or output * mode. Let
t{t'l,..,t'k) be the head of the clause being tried and
r{tl,...tk) the call. If i is in an input argument position,
then only bindings generated for variables in clause head
term 11 are allowed bindings for the unification of {3 }=tL.
If the unification rewrite generates an cquation V=t for any
other variable, this is treated as an input occurrence and the
binding cannot be broadeast.  If j is an output argument
position, all bindings generated by the unification of
ti{S}=tj are allowed, The rewriting of the equations for
the output argument terms is started only after all the input
argument equations have been reduced 1o allowed bindings.
Note that this means that all bindings broadeast to a
suspended equation V=t for input variable ¥V must be
generated by the unification of other calls. It also means
that all variables in the input argument term {5}, and all
variables in bindings for these variables globally broadeast
before t'i=ti{S} is reduced to only allowed bindings, are
input variables of the call. The input property is inherited.

In GHC (Ueda 1985), for the whole unification of
Bi{S}=Ai only bindings for variables in the clanse are
allowed, In Parlog terms, every argument position is input.
All output in GHC is done by explicit equality calls in the
body of the clause.

Guard calls

The global broadeasting of allowed bindings for the
unification Bi{S}=Ad is always delayed until there are no
disallowed bindings. In addition, we could further delay
their global broadcasting until some guard subset G of the
body calls in Gi have been reduced to irue. Note that
during the evaluation of the gnard subset we must also
prevent global broadeasting of allowed bindings, having
only local broadeasting to equations generated by the
evaluation of the guard calls and the rewrite of Bi{S}=Ad,
In GHC this is done by inheriting the input variable
restriction, all input variables of the call are input variables
for the all the calls in G'i and their descendants. In
Concurrent Prolog, only local broadeasting of call variables
is allowed until the guard successfully terminates. Inm
Parlog, only calls that cannot generate allowed bindings for



the input variables of the call can appear in the guard. Such
a guard is called safe. In the flar versions of all three
languages, only calls to primitives are allowed in the guard
set 31, Evaluating these calls can then be implemented as
an extension of the unification with the clause head.

Mote that this helding back of the broadeasting of allowed
bindings for call variables means that we can in parallel
unify with the clause heads and evaluate the guard calls of
all the clauses for Bi. These parallel evaluations will not
compete for the broadcasting of bindings. It also means that
we can commence the guard calls as we commence the
rewrtite of Bif S}=Al.

Committed choice

Suppose that there is a state of the computation in which
Bi[S}=Ai and evaluation of all the puard calls G'i have
successfully terminated producing a set of allowed bindings
Si. In the Relational language (the first committed cheice
language) and in Parlog and GHC, there is a commitment to
use the clanse Ai <- Gi for call Bi. All competing parallel
unifications and guard evaluations using other clauses for
the call are aborted, immediately, or on termination of the
unification and the guard calls. Calls in Gi-G' can be
selected, and, in the Relational Language and Parlog, the
rewriting of the equations t'j{5}=tj{3} for the cuwtput
argument terms is commenced. The broadcasting of the
allowed bindings generated by these rewrites is not atomic,
they can be broadcast independently as and when they are
generated. In GHC, selection of equations in Gi-G' will
generate these allowed bindings for call variables, which are
also not atomically broadcast. '

In Concurrent Prolog, there {5 no commitment to the
clause Ai <- Gi and no call in Gi-G'i is selected, before all
allowed bindings generated for call variables during the
rewrite of Bi{S}=Ai and the evalvation of the guard calls
are atomically globally broadcast.

In Parlog and GHC one must program in such a way that
only one call will generate & binding for each shared
variable, with all other calls suspending until that binding is
broadeast. In Concurrent Frolog, one can allow calls to
compete, with the atomic test unification making sure that
only one binding is globally broadcast and that calls are
forced to test the broadcast value before committing to a
clause. The disadvantage is the complexity of the
implementation of atomic unification.

(Burt & Ringwood 1988) have recently proposed a
simpler notion of atomic test broadcasting of a single
allowed binding as an extension to Flat Parlog. A single
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allowed binding for a call variable is designated as the test
binding. The computation rule must select this designated
allowed binding and globally broadcast it before trying to
globally broadcast any other binding or select 2 Gi-G'i call.

A recently proposed successor of Flat Concurrent Prolog,
the language PCP(},:,?) (Klinger at al 1988), borrowing
ideas from (Saraswat 1988), divides the guard calls into an
ask component and a tell component. Only the rell
component can generate allowed bindings for variables not
in the clause, for the unification of the call with the head of
the elause and the evaluation of the ask component only
bindings for clause variables are allowed. The rell
component has a role similar to the unification with the
output argument terms in Parlog, for no allowed binding
generated by the tell component is broadcast to the head
unification or the ask calls, The difference is that in
FCP(),;,7), there is no committment to the clause until the
head unification and the geard succeed and all the allowed
bindings of the tell component have been atomically
broadcast.

(Tikeuchi and Furakawa 1986) and (Shapiro 1988) both
survey the family of committed choice concurrent logic
languages based on the AGLD scheme, with examples of

programming techniques.

Suspending until only one clause will unify

An alternative computation rule, is to select any call Bi for
which there is only one clause with a head Ai which will
unify with Bi{S}. To implement this, the different clauses
must be tried with loeal broadeasting of bindings. If more
than one call/head unification has been reduced to a set of
bindings, the call is suspeaded until bindings are broadcast
from elsewhere which caese all but one unification to fail.
All the bindings generated by that unification can then be
broadcast, P-Prolog (Yang & Adso 1986) has has such a
suspension rule.

Parallel selection untl all calls suspend

Inany language which has suspension of calls waiting
for variable bindings to be broadcast, deadlock can arise,
One can break the deadlock, by picking a single call and
ignoring the suspension rules.

In Andorra Prolog (Brand et al 1988), deadlock is
broken in just this way. The computation rule selects any
number of calls providing there is only one candidate clause
for the call, calls suspend when there is more than one
clause. A candidate clause for a call is one for which the
head unification succeeds generating only allowed bindings
and some set of guard calls to primitives successfully
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terminates. The allowed bindings for a call are specified by
wait declarations similar to the when statements of NU-
Prolog. A commit operator can make & clause the only
candidate clause clause, as in the committed chodce
langnages. Mo binding is globally broadcast until a single
clause remains as candidare. The language has atomic test
unification. If all calls are suspended, due to wait
declarations, or because there is more than one candidate
clanse for each call, a single call is selected and aliernative
new states of the computation are generated for each
candidate clause to be pursued as cr-paralle] computations,
The langunage combines the search capability of the SLD
scheme with the concurrency of AGLD with committed
choice. The penalty is a more complex implementation than
is required by either extreme,

P-Prolog also has both or-parallel and and-parallel
evaluation but the or-parallel forking does not delay until all
the and-parallel calls suspend. It has uncommitted and-
parallelism with parallel evaluation of the alternative
computation paths. .

The CP language of Saraswat (1987} has committed
and uncommitted and-parallelism with the concept of a call
block. A call block limits the broadcasting of bindings to
calls and their descendants in the block. The bindings are
broadeast between sibling blocks only when each call in the
block successfully terminates. Putting each call in its own
block, gives the communication on termination computation
rule we mentioned above that is used in Epilog and Prism,
Saraswat's language also allows both parallel and sequential
(backtracking) search of the alternative evaluation paths.

Parallelised NU-Prolog(Naish 1988) and ANDOR-
II(Takeuchi et al 1987) are other recent proposals for
mixing committed choice and-parallelism with uncommitted
exploration of alternative evaluation paths. (Clark and

Gregory 1987) is a discussion of ways in which Prolog and

Parlog might be combined.

5 Schemes based on general equation solving

5.1 Removing the occur check - Colmerauer's
equation solving over rational trees

Nearly all the implementations of the SLD or SLDNF
schemes do not implement the oceur check, rule di), of the
unification algerithm. In (Colmeraner 1982) this 'bug' was
turned into a feature. In his scheme, the rational tree
scheme RTS, programs and goals are as in SLD but

answers are assignments and states of the computation are
pairs <G,A> of goals and assignments. Remember that in
an assignment we can have an equation X=f{a,X) which is
not allowed in a substitution.

Colmerauer’s equation selving algorithm

Rules (a),(b), (c) and (e} are the same as in the unification
glgorithm. Rule (d)(i) is deleted, as we would expect. Rule
d(ii) becomes two rules, which distinguish two cases
covered by diii):

{dil) Select any equation of the form X=Y where X and Y
are distinet variables. If X occurs in other equations,
replace all other occurrences of X by ¥. XN=Y is not
deleted.

{dii2) Replace any pair of equations of the form
X=t1,XK=t2, where X iz a wariable and £1,t2 are not
variables and |t1] < [12], by the pair X=t1 t1=t2. [f is the
number of occurrences of elements from FrVin ¢

Rule {dii2) limits the application of the replacement of a
variable by its non-variable binding. This is necessary to
ensure termination. 'With the old formulation of d{ii), we
would not terminate when the system contains a pair of
equations such as X=1(Y),¥=g(X) because of the absence
of dii). :

What is the relationship of the solved form A produced by
this algorithm 1o the original set E. For the unification
algorithm we have the result (R2.1). For Colmeraver’s
algorithm we must delete (F3) from the freeness axioms in
HET to produce the rational tree equational theery RTET.
We then have:

(R5.1.1) RTET |= Rg=Rp

Hence

(R5.1.2) A-false iff RTET |= Ry = false
However, we cannot also conclude

A is a assignment iff RTET |= Rg=false
becaunse an assignment does not denote a non-empty relation
for every interpretation, We must smengthen RTET with
axioms that tell us that every assignment does denote a non-
empty relation. Following (van Emden and Lloyd 1984),
the simple way to do this is to add the axiom scheme (E)JA ,
A any assignment, to RTET to give a set of axioms JRTET.
IRTET is a first order theory of the infinite rational trees
described in Colmerauer (1982). Such a tree contains a
finite number of sub-trees but some of the sub-trees can be
infinite. In this domain, the assignment X=f(a,X) has a
solution, which is the infinite rational tree
fla,flafla,.....))). We have:



(K5.1.3) Adsaassignment iff’ IKTEL |= Rp=false

Correctess of the Colmerauer scheme
(R5.1.4) (van Emden and Lloyd 1984)
For every RTS computed assignment A for poal G,

IRTET,P |= R¢3 contains R, R p=false
Independence of the computation rule and a result
analogous to the strong completeness result for SLD should
also apply.

Extending RTS to include the negation as failure rule for
safe computation rules is straightforward. Since the proofs
of (Clark 1978) rely only on the use of the completed
definitions and the analoguee of (R5.1.1), théy should with
slight modification apply to RTS. In the soundness results
we replace Comp(P) by RTETycompleted(P).
Appropriate versions of the completeness results of section
3.3 should also apply.

5.2 Equation reduction using an general equality
theory

Jaffer et al (1986) present a general scheme in which the
set of equations introduced at each computation step are
reduced to a substitution wsing an inference from a general
eguality theory E. The scheme is a generalization of GLD,
which we shall call GLDE. Instead of unification using the
Herbrand unification algorithm, the unit of computation is
finding an E-unifier of a set of equations E. The analogue
of property (R2.1) of unification is a property they call
urificarion completeness that E must satisfy.

Let t and t' be two terms. They are E-unifiable if there is
4 substitotion § such that E |= ¥(5 -> t = t'). Generally,
there will be many E unifiers, possibly an infinite number,
There may or may not be maximally general unifiers, the
analogue of the mgu. Even if there are, there may be more
than one maximally general unifier. The equivalent of
(R2.1) for a general equality theory E is that

E = V(t=tl «-> Sly.oySiy.....)
where Sly ...y Siv... i a disjuncton of all the E-
unifiers of tt. The <- follows by definition of an E-
unifier. The -> is the condition of interest. If this condition
holds, E is said to be unificarion complete. When there
are no E-unifiers, unification completeness tells us that

E =t
the property we need to justify negation as failure.

In GLDE, program clauses are implications of the form

A <-EB
where E is a conjunction of equality atoms and the B i5 a
conjunction of non-equality atoms. A is a non-cguality
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atom. A goal is the same form as a claose body.

A state of the computation is a three-tuple of multisets
<E,B,8> where each E iz a multiset of equality atoms, B is
a multiset of a non-equality atoms and S is a substiution or
false. The computation tule selects a subset
E'={el,.,.em} of E, a subset B'={Al,. An} of B,
m+ne), Let .

Al =- EL:B1 ... A'n < En:Bn
be n variants of program clauses. Let S' be an E-unifier of
Ey{A1l{S}=A"l,...An{S}=A"n}. That is,
E |= V( §' -> Ey{A1{S}=A'l,.,An{S}=A"n})
A next state of the compatation is

<E-E'yElyy..yEn, B-ByB 1. (B S{5")8">
If there is no such §', the next state has false in place of
the substitution compoment. A computation branch
terminates in success when E,B are both empty and S i5 a
substitution. As Jaffer et al. remark, in any instance of the
scheme, maximally generally unifiers should be used if they
exist, i

Taking £ to be the empty equality theory, we get GLD as
an instance of this scheme, 3'is then the mgu that can be
generated by the unification algorithm. Jaffer et al. (1986)
prove the following soundness and completeness result:
(R5.2.13If A is & ground atom, P.E |= A iff there is 2
successful computation for goal A using any computation
rule.

(R5.2.2) If A is a ground atom, completed(P)E |= ~ A iff
for a fair computation rule every branch of the computation
ends in failure, .

Note that the second result is not the exact analogue of
(R3.3.5) because the failure computation tree can be
infinite. This is because there can be an infinite number
maximally general unifiers of a set of terms, and so the
computation tree may not be finitely branching. If we
know that there are always only a finite number of
maximally general E-unifiers, it is the analogue of
(R3.3.5). .

The importance of the scheme is thatitis a very general
framework in which two crucial properties of a logic
programming language, (R5.2.1) and (R5.2.2), have been
shown to hold. Any instance of the scheme, proposed as a
programming language, must also have exira
computational properties. There must be an algorithm that
can be applied to the set of equations

SUEU{Al=A'l,..,An=A'n}
that returns a finite set of maximally general E-unifiers.
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¢ Schemes based on testing solvability of more
general equality formulas

6.1 Prolog Il - Colmeraner's equation, inequation
scheme for rational trees

In (Colmerauer 84) the equational selving algorithm for
the RTS scheme was exténded to apply to sets EI of

equaticns and inequations. An inequation is a negated.

equality tt', The algorithm divides EI into the set E of
equations and the set I of inequations. E is reduced to an
assignment A={X1=tl,.,Xn=tn} or false using. the
algorithm of the RTS scheme. If an assignment is
generated, for each inequation tes in E the algorithm is
reapplied to the Apj{t=s}. If this produces false, the
inequality t#s is discarded (because it is satisfied by
assignment A). If the algorithm successfully terminates
without generating any bindings for variables, t=s is
replaced by false (because the absence of bindings for
variables Y1,..,Yk in ¢=5 shows that t=s is satisfied for
assignment A for all rationzl tree values for Y1,..Yk,
hence that there is no rational tree assignment for these
variables that will satisfy tes and equations A). Ifs=tis
reduced to a set of bindings Yl=t'l,..Ym=t'm for
variables in t=t', then tet' is replaced by the the inequation
one(Y1,..,Ym) # one(t'l,..,t' m) (becanse one(Y1,.,Ym) =
onel'l,..,t'm) iff for some i Yiet iff 217, The result of
the algorithm is therefore either false or Al where T'is a
set of reduced inequations. Note that no variable bound in
A will appear on the left hand side of an inequation in I
The theory RTET justifies this algorithm, we have:

(R6.1.1) RTET |=RET = RA T

If neither A nor I' reduce to false, AyrS' is what
Colmerauer calls a reduced form set of equations. He
shows that a reduced from set of equations always has a
solution in the domain of infinite rational trees.

In Colmerauer (1986) this extended algorithm replaced
the unification step of a scheme that is the theoretic model
for Prolog I Programs essentally comprise implications
of the form

H<-El:G
where H is an atom, G is & conjunction of atoms and E is
conjunction of equations and [ a conjunction of inequations.
The rule is still read as universally quantified for every
variable. A goal, has the form of a clause body.

A state of the computation is a wiple <G,A,I> where G is
a conjunction of atoms, and Ayl is a redeced form set of

equations and inequations, or contains false.

The first step of a computation is the reduction of the E,1
of the goal to solution form, i.. to reduced form or false.
Thereafter, a computation step is the selection of some
atom Bi in G using the computation rule. If H<-E",I":G" is
a clause for the predicate of the selected atom Bi, a next
state of the computation is <G, A'I'> where G' is G with
Bi replaced by the conjunction G", A is the solution form of
AUE"y{Bi=H} and I' is the reduced set of inequations
produced by applying the above algorithm to each
inequation in IyjI" using the new assignment A'. The
computation terminates in failure if either A or I become
false. It terminates in success, if G=true, and neither A
nor [ contains false. Al is the computed answer, it will be
a reduced form set of equations and inequations.

The theory IIRTET, which is RTET augmented with an
axiom scheme (E)AI , AJ any reduced form set of
equations and inequations, gives us the comrectness result:
(R6.1.2) If AyyT is a computed answer for goal E,IG and
program P then PIIRTET b= Rg | G contains Ry 1 and
IIRTET |= Ry, # false

In an implementation of the scheme, the inequations can
actually be handled by a special negation as failure rule that
returns bindings.” After the assignment A' for the new state
has been generated, only the new inequations in 1", and any
inequations in 1 for which the left hand side variable Y has
become bound in A', need be tested. For each such
inequation, s#t, an attempt is made to establish s=t by
trying to show that s=t fails in the environment A", If s=t
fails, st is deleted. If s=t succeeds, without binding any
variables in § or t, s#t is false. If it succecds generating
bindings Y1=t'l,..,Ym=t'm for variables in the equation.
We have proved that, for theory RTET,

A" =z [s=t <> (Y 1=t'l,..,. Ym=t'm)]
The Yi bindings are undone (locations assigned to
¥1,..,¥Ym have there values reset to undefined) and
one(Y1,...,.Ym) # one (t'l,..t'm)
is returned as the ‘answer’ for the negated call s#t. This is
a single inequation representing the disjunction
Yl#t'ly..y Ymet'm which we have proved to be
equivalent to s#t in the environment A,



6.2 SLDCNF - the Chan Scheme

In 3.3 we hinted that result (R3.3.3) could be used to
allow negated calls to return answers. The handling of
inequations in the above scheme is a special case of this.
The SLDCNF scheme of (Chan 1988) handles answers
returned any negated call of a SLDNF style program.

Asg in the above Prolog IT scheme, a computation step
involves checking whether a set of equations and
inequations has a solution, but for the theory HET
underlying normal uwnification. Inequations can be
universally quantified for some or all their variables. As
with Prolog IT, the inequations are checked for solvability
by applying a specialized negation as failure rule. An
inequation (VL)s#t is true, and deleted from the current
set of inequations, if s=t fails in the environment of the
current binding equations. It is replaced by false, if it
succeeds without binding  global variables (variables not in
L). (This is one of the exiensions to the negation as failure
rule we discussed in 3.3.} Unlike Prolog II, the inequation
is not reduced to another inequation if s=t succeeds. In this
case, (VL)s=t is considered a primitive inequation and left
unchanged.

Program rules and poals are as in Prolog IT except that the
mequations can be universally quantified for some {orall )
of the variables in the inequation and body calls can be
negated as in SLDNF. A state of the computation  is of the
form <G.E,QI> where G is a conjunction of calls, E is a set
of equations and Q1 15 a set of quantified inequations. E or
QI can contain false, As with AGLD, we Iet S be the
substitution subset of E of globally broadcast bindings.

A computation terminates in success when G=true, Eisa
substitution 8, and QI is a set of primitive inequations PI1.
Since each primitive ineguation is satisfiable in the
environment of the substitution 5, the set S,PI denotes a
non-empty relation for theory HET. The computed answer
is a normalized form for 8',PI, where §° is 8 restricted to
variables in the goal G. §.PI is normalised by a two step
transformation to produce an HET equivalent answer.
Essentially, this process removes irrelevant inequalities (see
Chan 1988). In a normalised form each variable in an
equation, and each free variable in an inequation, is either in
G or it appears inside a constructed term of some binding
term in an equation. So, where there are no function
symbols in the bindings, every varizble in a normalised
answer is a variable from G.

Chan also gives a procedure which converts the negation
of a normalised answer N into a disjunction Ely....vEn,
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where each Eiis a conjunction of equations and quantified
inequations. This is needed to handle the answers returned
by a negated call ~B. The negation as failure rule of
SLDCNF, recursively evaluates B{S} even if it contains
unbound global variables. If every computation path is
finite, a finite set {MN1,..,Nk} of normalised answers is
returned. By an extension of (R3.3.3), the evaluation has
shown that B{8} <-> N1* y...yv Nk*, s0 ~B{§} <>
~N14,.. ~Nk® Each Niis converted info a disjunction
Elw...wEn and then the whole conjunction for ~B is
converted into disjunctive normal form. The résult is an
equivalence ~B <-> BElvy...yBEn where each BE{ is a
conjuncton of equations and quantified inequations.

The computation rule for SLDNF can select any call Bi in
the goal G, any equation in E to which a rule of the
unification algorithm applies, or any inequation in QI of
state <G,E,QI>. The rule does not need to be safe.

A selected inequation is tested to see if'it is true or
false in the environment § by the special negation as
failure rule described above. If neither, it is left in QI

If a positive call Bi is selected, let A <- E",QI":G" be a
clause for its predicate. A next state of the computation is
<G"E,QIjQI> where E' is the set of equations produced
by applying the rules of unification algorithm to
EpE"{Bi=A} until Bi{ 8}=Ai has been reduced to a st of
bindings or false. In this step, no equation in EE" is
selected, but it might be changed by the broadcasting of
bindings produced from Bi{S}=Ai.

If & negative call ~B is selected from G, a recursive
computation for goal B{S} is commences. If every path is
finite, a set of normalised answers {N1..,Nk} is returned.
This is negated and converted into an HET equivalent set of
{BEl,...,.BEn} representing the set of answers to ~B
consistent with the bindings 5. SupposeBEi is of the form
Ei, Qi where Ei is a set of equations. A next state of the
computation is <G EqyEi,QIyQlis-.

The commecmess result given by Chan is:

(R6.2.1} If every branch of the computation tree is finite,
and N1,.. Nk are the set of normalised answers for ils
success terminating branches, then comp(P) |= (VI[G <>
N1%y.. NEk"].

He gives no completeness results. It should be possible to
prove completeness for restricted classes of programs as for
SLDNFE. Certainly completeness should obtain for
hierarchical programs.

(Kunen 1987) gives an altemnative approach to allowing
negated calls fo return answers based on the manipulation of
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what he calls elemenrary sets. But at the time of writing I
could not see how to present his scheme as an extension of
SLD,

7 Constraint schemes
7.1 The CLP scheme - Joxan and Lassez

‘Joxan and Lassez (1987) present the most general schemne
yet proposed that is an extension of SLD. It is a
generalization of the scheme we discussed in 5.2, The
equality theory E becomes a constraint theory C and the
unification completeness property of £ becomes a
satisfaction completeness property of C.  The following
is a slight generalization of the variant of the CLP scheme
given in (Maher 1986}, which better fits the framework of
this paper. SLD, AGLD, AGLDE and Prolog Il are special
cases of this CLP scheme, .

The theory C is a theory for a set of constraint predicates
P (disjoint from the set of program predicates P) which
includes =, A primitive constraint is an atom with a
predicate from P, An allowed constraint is some subset
of all the first order formulas that can constructed from the
primitive constraints which minimally containg all equations
and is closed under conjunction. For SLD,  is HET and
only conjunctions of equations are allowed constraints. For
Prolog I, C is IIRTET, and conjunctions of equations and
inequations are allowed constraints,

Theary C must be satisfaction complete for the allowed
set of constraints. That is, for every allowed constraint C,
we have

Cl=(EC or C|=~(E)C
This is the generalization of properties (R2.2) (R2.3) of
HET. NIRTET has this property for the allowed constraints
of Prolog II.

Programs comprise implications of the form A =- C: G
where C i5 an allowed constraint, A is a program atom, G is
a conjunction of program atoms - atoms with predicates
from P. A goal is a conjunction of program atoms. The
lack of a allowed constraint in the goal is no handicap. We
can instead have an extra O-adic atom A in the poal with a
single rule A <- C: true.

A state of the computation is a pair <G,5,C> where G is
a multisets of program atoms, S is a satisfiable multiset of
allowed constraints, and C is a multiset of constraints. The
computation rule selects some multisubset G'={B1,...Bk}
of atoms from G, and some multisubset of C' of the
constraints in C. Let

Al = CL1: 31, ... Ak < Ck:Ck
be variants of k ¢lauses for the predicates of the selected
atoms. A next state of the computation is
<G-G'yGly..uCk, §,

C-C'yCly.yCky{Bl=Al,.Bk=Ak}>
where §' is Sy C' if C |- (E)S,C°, false if C |=
~(E)S,C'. A computation terminates in success if G=true,
C={} with the compuied answer the subset of the
satisfiable constraints 8§ relared to G. It terminates in
failure, if § = false. The constraints related to G are those
constraints that share a free variable with G or some other
constraint related to G.

The following soundness and completeness results apply
to any instance of this scheme (Maher 1987).

(R7.1.1) Soundness

If G has a computed answer C' then C, P |= (V)[ C'-> G]
{R7.1.1} Strong completeness

If F, C |= (V¥)[ C-> G] for some constraint C then for any
computation rule, G has a k successful derivations with
final constraints C1,...Ck such that € |= (V) [C -»
ClMy...yCk?] where Cit s the existential quantification of
Ci with respect to all variables not in C.

As an example of this result, Maher gives the example of
the program

pla,b)

p(X.b) < Xwactrue
where C is HET. For the constraint Y=b and goal p(X,Y),
we have

P,HET |= (VX,Y)[Y=b -> p(X,Y)]
but we need both the computable constraint answers
Yoeb,Xeq and Y=b, X2 to cover the constraint Y=b. We
have

HET |= (VX,Y)[Y=b -= Y=b,X=a v Y=b,X=2a]
When the constraints are limited to conjunctions of
equations, then k =1 in the above result because of the
strong compactness of sets of equations (Lassez et al 1988).

(R7.1.3) Soundness and completeness of negation as
Jailure

For goal G, comp{F),C |=~(E)G iff for a fair computaton
rule every branch of the computation tree for G is terminates



in failure,

This is the generalization of result (R3.3.5) for negation as
failure. If ( inclndes the normal axioms for equality, the
stronger form of this result should hold (1 have not checked
the details):

{R7.1.4) For goal G, if every branch of the computation
tree terminates and Cl,....,Cn are the answers for the
success branches, then comp{P),C |=(V}[G <= CI"

vy Cntl,

If the allowed constraints are closed under existential
quantification and negation, we can use this result to allow
negated atoms to return answers as in the SLDCNF
scheme. .

Maher (1986) extends the above scheme to incorporate
the notion of committed choice with the concept of
suspension until some subset GC of the allowed constraints
of a clanse is valid for the current environment of satisfied
constraints S, or is the only satisfiable constraint of the
alternative clavses. GC is valid if it can be satisfied for all
values that satisfy 5. The unifications with the input
argument terms and the evalaution of the guard calls in
Parlog and GHC meet this validity condition. The
satisfiability condition is similar to the commit rule of P-
Prolog.

Saraswat (1988) further refines this scheme to include an
ask component which must be valid and a tell component
which must be satisfied, atomically or eventually. In our
presentation of the CLP scheme, all constraints are satisfied
eventnally.

Frstances of the scheme

In any instance of the CLP scheme, checking whether or
not some multiset of constraints is satisfiable for theory C
must be implemented as an algorithm. We cannot have the
unit of computation be an inference from some first order
theory. As Jaffer and Lassez (1987b) remark, checking
solvability should also be incremental - when the
computafion rule selects extra constraints C' to be checked
with the existing solvable constraints S, it should not be
necessary to recheck 5. Also, solvable sets of constraints
should have a canonical form, an equivalent simplified
representation using a minimal number of constraints. This
would be used for presenting answers and, ideally, it would
also be used for the incremental checking of solvability.
This may not always be possible, or the the minimal
representation suitable for presenting answers may be
different from that needed to check solvability. For SLD
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and AGLD, this cancnical form is a substitution, for Prolog
it is a reduced set of equations and inequations. As with
the E-unifiability scheme, the great strength of the CLP
scheme is that it provides a logical framework for
extensions and meodifications of the unification based SLD.
We simply need 1o ensure that the algorithms that replace
unification when applied to some expression C correctly
determines whether or not C [= (E)C for some consistent
first order theory C of the constraint predicates. We then
know that the above logical properties hold of the the
computed answers. If the algorithm reduces C to a
solution form 5, we also need to establish that C |= (V)[C
<= 3],

Prolog I (Colmerauer 1987) is an extension of Prolog IT
where the constraints are equations and incquations over
terms, inequelities and linear equations of a special form
over rational numbers, and boolesn expressions over truth
values.There is one non-free term constructor . for list
concatenation enabling constraint equations such as
X.Y.X=[ 1,2,3,4,1] to be used and solved. The constraint
language is restricted to allow algorithmic reducibilty to
solution form of any allowed constraint.

CLP(R) (Taffer & Michaylov 1987) has equations over
t(F,V), and inequalities and equations of arithmetic
expressions over the real numbers. The implementation
only checks the sclvability of the term equations, arithmetic
inequalities and linear equations. Non-linear equations are
stored and checked only if the other constraints determine
values for some of the variables that make them lincar. If
this docs not happen, the non-linear equations remain as a
qualification on the answer returned.

CIL (Mukai 1985), CS-Prolog (Kawamura et al 1987),
CAL (Akdro et al 1988) and CHIP (Dinchas et al 1988) are
other constraint languages.

8 Concluding remarks

What does the future hold regarding logic languages. I
anticipate much activity in the area of algorithms for
checking solvability of richer and richer and sets of
constraints, extending the application of logic programming
into new areas.

The committed choice languages will be further refined
and will further converge to become powerful system
building languages for multiprocessor machines.

Finally, I expect considerable impact from the recent
developement of languages incorporating committed choice
and parallelism and either or=parallel or or sequential
search.
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