PROCEEDINGS OF THE INTERENATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1984,
edited by JCOT. @ ICOT, 1984

333

A KROTE ON THE SET ABSTRACTION IN

LOGIC PHOCRAMMING LARGUAGE

Takashi Yokomori

Internaticnal Instutite for Advanced Study of
Sorial Information Science, Fujitsu Limited
Numazy, Shizucka 410-03 JAPAN

ABSTRACT

The concept of set abstraction is
introduced as a simple analogy of that of
lambda abstraction in the theory of lambda
calculus. The set abstraction is concerned
with two extensions conceming FROLOG languacde
features : "set expression" and "predicate
variable"”. It has been argued in literature
that the set expression extension to PROLOG
doss really contribute to the power of the
language, while the extension of predicate
variables does not add anything to PROLOG.

Carbining these two concepts of extensions
to PROLOG, we define "set abstraction” as the
set expression in which predicate variables arve
allowed as data objects, In other words, the
set abstraction gets involwved in the higher
arder predicate logic. It is demonstrated that
with the help of predicate wariables sat
abstractions can nicely handle the world of the
second order predicate logic. Further, the
implementaion programs written in FROLOG and
Concurrent Prolog are presented.

1. Inmtroduction

Since a class of formulae in the first
order predicate logic called Horn clauses has
been shown to be guite useful by Howalski in
that it can provide with an interesting
computation medel, a programming language
PROLOG has been receiving much attention and
has been intensively studied. A Horn clause
program is often called a "Pure Prolog" program
in which no illogical construct i= allowed,
while a practical language PROLOG may contain a
control primitive like the "eut" operater and
other primitives to extend its language
capability. »Among those, the set expression
extension te PROLOG has been often argued and
implemented in several languages. For
example, there are predicates "setof" in DREC-10
Prolog(Bowen 1981),"set" in PARLOG{Clark and
Gregory 1983), "collect" in LM-Prolog(¥ahn
1984), and "enumerate" in KL1(Furukawa et al.
1984). The IC-Prolog{Clark et al. 1982} also
allaws the set expression in a query. The
introduction of set expressions enables ocne to

describe the set of all solutions to some goal
in a program. As Warren discussed in his
paper(Warren 1281), the extension of set
exprassions bo PROLOG really contributes to the
power of the language. In the paper above,
besides set expressions he also foocused on two
possible "higher order" extensicns to FROLOG :
"oredicate variable' and "lambda abstraction',
and stressed that thess extensions do not add
any extra power to FROLOG.

This paper is motivated by Warren's paper
above, The purpose of this note is to discuss
a possible extension to PROLOG called "set
abstraction" and to demonstrate the usefulness
of the extension., The set abstraction
discussed here can be regarded as an extension
of the set expression in which predicate
variables are allowed as data cbjects, It may
be also possible to take the set abstraction as
a simple analogy of the lambda abstraction.
Thus, in this paper we take the position to
distinguish the =set abstraction from the set
expression.

The concept of set abstraction is
introduced and the predicate “enumerate" is
proposed in Section 2. The predicate enumerate
considered here iz an extension of the one
introduced and discussed in reference to
KL1 (Furukawa et al. 1984). Section 3 presents
the implementation issue of the predicate
enumerate, Finally, discussion and concluding
remarks are given in Secticn 4.

The reader is assumed to be familiar with
the rudiments of PROLOG.

2. Set Abstraction

As mentioned in the previous section, one
can introduce the concept of the set
abstractien in a natural way. The set
abstraction discussed in this paper is a simple
analogy of lambda abstraction in the thecry of
lambda caleulus. One may obtain a function
from a term by means of lambda abstraction,
while with the concept of set abstracticn cne
can associate a relation implied by the term.

Laet P be a term contaning free coourrences
of a variable ®, whera the prime functor of P
is a predicate symbol. Then, analogously to
lambda abstraction, one can define the concept

334

of set abstraction in the following manner :
Using a pair of braces {} instead of a gresk
letter lambda and paying attentien to x free in
P, an expression

{}x.P

is called set abstraction, and its intended
interpretation is the set of all terms
{instances of x) satisfying the relation
implied by F. &s a notation, we write

{x|P}
for {}x.P.
Suppose that |, for example, a term
have property(x,F)

meaning that = has a property P is given. By
paying attention to x, one may have

{}x.have property(x,P).

Or, if P is taken for the cbject of
abatraction,

(1P.have _property(x,P)

is chtained.

The former, {x| have property(x,P)} in the
equivalent form, is nothing but the set of all
x's having the property P. On the other hand,
the latter has mcre meaningful flavor. When
dealing with predicates as data objects like in

{P| have_property(x,B) },

one immediately gets involved in the second
order predicate logic, and that is what we are
going to put great emphasis on through the
discussion in this paper.

In the segquel we argue that the set
abstraction extsnsion to PROLOG does really add
somathing new to the language. In the paper by
Warren (Warren 1981) he discussed the benefits
of introducing the concept of "predicate
variables(or predicates as data cbjects)",
"zet expression”, and "lambda expression” and
concluded that presicate variables and lambda
expression can be merely regarded as "syntactic
sugar” and that they do not increase the real
power of PROLOG, while set expressions do
indeed fill a real oap in the language,

We shall demonstrate the usefulness of set
abstraction exteénsion teo PROLOG. Set
abstractions considered here is concerned with
two extensions to the language: predicate
variables and set expression. As previcusly
defined, the set abstraction here can be taken
as the set expression in which the treatment of
predicate wvariables is taken into
congideration.

Suppose the following knowledge base is
given:

(1) child(jim,mary).
chi 1d{ tom,mary) .
il ld{mary, nancy) .
child({barbara,jchn).
child(jchn,nancy}.
likes(tom,barbara).
likes(mary,jim).
likes(jim,nancy).
likes({tom,mary).
pocrer(tom, mary) .
pocrer(barbara mary) .
poorer (mary, jim) .

where child(X,Y), likes(X,Y¥), and
poorer(X,¥) mean that X iz a child of ¥, X
likes ¥, and X is poorer than Y,

respectively,

(2) parent{X,¥} <-- child(¥,X}.
ancestor(X,Y) <-- parent(X,¥).
ancestor (X, ¥} <—parent (X, 2} ,ancestor(2,Y).
brother(X,¥) <-- parent(Z,X),parent(Z,¥},

not{identity(X,¥)).
cousin(X,¥) <-- parent(Z,X), parent(w,¥),
brother(2,W).
richer{¥, ¥) <-- pooter(¥,X).

richer(X,¥) <-- poorer(Z,X), richer(Z,¥).

whera P(X,Y) means that X is a P of ¥, for
each P in {parent, ancestor, brother,
cousin}, identity(X,Y) denotes that X is
identical to ¥, richer(X,¥) denctes that X
is richer than Y.

x-—l-mry X

Fim tem

Figure. A Family Trea

The Figure above illustrates a family tree in
the knowledge base glven.

We are now in a position to introduce a
predicate for set abstraction, The predicate,
we name it "enumerate", has the following
gyntax and semantics &

Syntas, emmerate(G,L)

where G is a set in either extensional
or intensional expression, L is a
variable, In the intensional
expraession, G is of the form
{X¥|conditions}, X is a term with
variahles, conditions are given as a
sequence of goals in Pure Proleg.

Semantics. emmerate(G,L) succeeds if and only
if G is nonempty. L serves as a stream
variable to bind elements of G if G is
infinite. Otherwise, L is a list
variable to obotain all elements of G.

In this paper we are mainly concerned with the
caze when G is finite, while the implementaticon
for tha predicate is given for both cases
later.

Suppose that one wants to get all pairs
{X,Y) such that X is a parent of ¥. The
procedure to be imvoked is i

7- emmerate({(X,Y)| parent{X,¥1}, L.

The answer to this guestion is obtained as a
list:

L = [{jchn,barbaral, (mary,jim), (mary,tom),
{m!jdm]: ‘m;m:]i

In the similar way, the respose to the guestion
?- enumerate({ X | cousin(X,barbara} }, L}
will ke .
L = [jim, tom].
That is,it is seen that "jim" and "tom" are
ecousins of "barbara".

Another type of the usage of
enumerate(s,L) demonstrates the usefulness of
the predicate, which distinguishes itzelf from
other set predicates proposed and implemented
in literature. Suppose that one would like to
know the relation between people. For example,
if one wishes to list up all relations holding
between, say, "tom" and "mary", then the guery
will be

7- emumerate({ P | P{tom,mary} }, L).

{ne will get the response

335

L = [child, likes, poorer].
Furthermore, for the guery
?- emmerate({ P | P(mary,tem) }, L)

the response
L = [ancestor, parent ,richer]

is obtained. It should be remarked that there
is originally no fact of the form Pimary,tom)
in the knowledge base at issue. Furthermore,
the guery

?- emumerate({ P | P{jim,barbara) }, L)
brings the response
L = [cousin, richer].

Mote that there is no fact of relation between
“"jim" and "barbara". In other words,
attributes "richer" and "cousin" concerning
"4im"™ and "barbara" are the derived results
from the knowledge base.

Thus, the predicate "enumerate”-achieves
the higher order inference function.

Besides these functions, the predicate
“"enumerate” also has a capability to handle an
infinite set., For example, if cne make a

?- enmerate({ ¥ | prime number(X}}, L},
then one can obtain an infinite stream of prima
numbers :

2,3,5 7, 11, 13, « . .

This kind of approach to handle an infinite set
has already taken in recent papers(Clark and
Gregory 1983, Purukawa et al, 1984).

Application Examples,

It iz easy to extend "enumerate" so that
the conditions part may allow arbitrary PROLOG
program goals. In faect, the DEC-10
implementation program for the predicate
enumerate is giwven as such later (see Secticn
il.

{1)Cress reference
Consider the following program :

crogs ref(Program,attribute, L)z -
emumerate| {P]clause_tuiy{?rm,ﬁttrﬂmte,ﬂ }.
L} -

whera clause body(Prog,h,Pred):-
Q=..[4,_], Y=..[Prog,(P1<—-X1],Y,
P=..[Pred,], memker temmiQ,X).

The predicate cross ref(P.A,L} takes a program
nams P and a predicate name & as inputs and
outputs a list L of attribute names referring A

336

in P, For axample, provided that the knowledge
base considered above is named "ax", a guery

?=cross ref(ax, parent, L)
would produos
L = [ancestor,hrother,consin],

{2) Higher order sets

The second order set {L|L iz the sot of
relations valid for some common instance in the
knowledge base above, and the cardinalitky r:.f L
iz 2} is cbtained by making a query :

?-emumerate({L|X" (emmerate({P|B(X)},L},
length(L,2)1},8).

Se=[{ancestor, parent], [hrother, richer], [child,
richer] Jcousin,likes], [cousin, richer]].

3. Tmplementation Examples

Two implementation programs for the
predicate "enumerate" are given in this
section. One is written in DEC-10 Prolog{Bowen
1381}, while the other in Concurrent
Prolog(Shapiro 1983). Both programs can run an
DEC 2060 system,

The DEC-10 Prolog, like many other
languages of PROLOG family, has no facility to
support the Aunction of dealing with predicate
variables. Anocther difficulty in implementing
the predicate under the circumstance mentioned
ahowe is that set predicates in conventiconal
PROLOG is only concerned with a finite set.
Further, in case of Concurrent Prolog
implementation one cannot expect the
backtracking function in order to collect all
solutions to a goal.

Through the task of implementing the
predicate emmerate it turned out that
(i} in DEC-10 Proleog implementation, the

predicate"setof” is essentially required, and
I:.he predicate "deme" plays an important role,
while
{ii) it is crucial for Concurrent Prolog
implementation of "enumerate" to achieve the
function of the predicate “eager enumerate"
under the circumstance of no backtracking
mechanism. {This will be discussed in more
detail later.)

These predicates ("demo" and "eager_

enumerate") have been already discussed in
literatura(Kunifuji et al. 1983, Hirakawa and
Chikayama 1984} in reference to the work on the
Fifth Generation Computer System, and the
attempt in this paper proves the usefulness of

those concepts.

Notes.

(1) The predicate “emmerate" written in DEC-
10 Prolog can handle only the case where
the target set is finite. The Concurrent
Prolog version , on the other hand,
generates a stream of all elements of the
get involed., Howewer, the DEC-10
implementation enables one to describe nobt
only Pure Prolog but any other PROLOG
programs for set conditicons.

(2) There are,in fact, several PROLOG languages
in which predicate warialbes are allowed
provided that they must have been
instanciated at the execution stage. The
DEC-10 Proleg, however, does not support
even this partial faecility. In the
implementation programs presented here , an
infix operator “holds for" is used for the
purpose of overcoming this weakness and for
the uniform treatment of predicates in a
Progran.

(3) The mredicate “emmerate" implemeted here
iz slightly different from the cne defined
in the previous section in that the
implemented specification allows only
intensional expression for sets. It is,
however, seen that one can easily modify
the program so that the full specification
may be satisfied, .

The top level procedure for "emmerate" is as
follews :

[in DEC-10 Prolog)

emumerate((X | Conditions }, L) :-
transform(Conditions,Goals) ,
setof (X,Geals,L).

where
transform(E™Conditions B Goals) i-
transforml] (Conditions,Goals).
transform(Conditions,Geals) -
transforml (Conditions,Goals).

transform] (((P holds for X),C),(eval(P,X),G)):-
var({F), !, transform! (C,G) .

transform (((P holds forX),C), (demolax,0),G)) :-
atem(B, ! ,0=..[F,X],
transforml (C,G).

transform] { (C1,C2), (C1,G)) :-
transform! (C2,G).

transforml ({P holds for X),eval(P,X)) :-
var(P}.

transforml { (P holds_for X),demolax,0)) -
atom{P),Q=..[P,X].

transformi (C,C).

The main role of the predicate "transform" is
to transform the of conditions given
as an input into the sequence of goals possibly
containing "eval" and “demo" predicates.

The predicate "dema" is an extended version of
the one originally proposed by Bowen and
Kowalski{Bowen and Kowalski 1982). It has bean
intensively investigated by Kunifuji et al.
{Kunifuji et al. 1983), The predicate
demo{ax,P) succesds if a goal P succeeds in a
program named "ax".

The procedurs eval(P,X) defined by

eval (B, X)1= ax(Y),¥=..[(2=)s8:_1s
Z=, . [P, X] ,demolax,T)

camits its evaluation to the predicate demo.

{ in Concurrent Prolog)

enumerate([}[| Conditions}, L) :-
prolog(cp transform(Conditions,Goals))|
eager_enumerate({ {X|Goals},L}.

The role of the predicate c¢p_transform is
gssentially the same as that of "transform".
(See below for details.) The predicate eval
here is slightly different frem the one in DEC-
10 Prolog implementaticn :

eval(P,X) i-
P holds for X, &=..[F,X], demola,2) .

The predicate “sager enumerate" plays a central
role in the Concurrent Prolog implementation.
The predicate ssger smumerate(G,L) takes a set
G as an input and gensrates a (possibly
infinite) stream of elements of G in an "eager"
way. It has been implemented by Hirakawa and
Chikayama(Hirakawa and Chikayama 1984} applying
tha AND-parallel mechanism of Concurrent Prolog
to the OR-parallel execution in Pure Prolog.
Therae is, on the other hand, another way of
achieving the sager enumerate function proposed
by Hahn(Kahn 1983} in which the OR-parallel
mechanism of Concurrent Prolog executes OR-
clauses of Pure Prolog in parallel, ‘The Kahn's
implementation is used here because of its
simplicity as well as efficiency to certain
types of programs.

It should be noted that in the Concurrent
Prolog implementation example given here , the
syntax of the predicate "enumerate" is
different from the one proposed previcusly in
that it has only one argqument, which comes from
the syntax of Kahn's "eager_enumerate'.
Further, note that besides the original
knowledge base named "ax" , the Concurrent
Prolog implementaticn requires ancther copy of
the knowledge base in which a represention " P
holds_for X " is used for " P(X) ".

[Froleg Implementation]

1=apl 200, 56, 'halds_fae).
s-apl 1800, =, -1,

enamirntal{X|Cosditiona] L=
tranaiorof Coodl tioos, Goals)
sekof(X, dcals, L) .

eommeratal {X[Condl tions) , Lii=
tranalers{Coadl tions, Goala),
setar({X Jeals,L}.

=

337

eranslforslE Conditicons, E"Joala) 1=
transCoral(Copditions, Gaala).

tranaformi Condl tions, Gaala)i-
Eraparosy] Cosdi tiona, Coala].

transfarsi{(P holdo_for K)eval(®,X1):-
var{Pl.

tranafermi{(F holda_res X} deseolax,Q})i=-
atas(F),
Ge..[B,X].

trasaformi {{ [P holda_for XJ,0),(ewal{P,X),0}) =
vaRr{F), 1,
Eramalarzi(C,G) .

traasfoent ({{F hokds_foe I},0),(demo{ax,Q),0)):i=
atenlFl, I,
Qz..[F,X].
Erensfarz1(C, 5] .

tranaformd ({21,02) , (81,0}) -
transfarnf (2, 0] .

tranafarai(C,).

Ta.. [P X],
doaalnz, I},

wa

demal Yorld, true .
ezl darkd, mat(P))=
mekanet{desa{ Herld, F1).
cazo{Wacld, (P;0)):-
(daselWorld, P) pdemo(Horld, Q1) .
dazalWarld, (P, 00):=
demalWarld, F) ,
deaolliorld, g} .
dexolborld, Plr=
myatemp{ P, I, P
desal{¥orld, P} -
matacalllKorld, (P<-=0) X},
dega(¥arld, 0.

setapob[Fli=
P, 0, fall,
metapok(_d.

petacall{¥, P Wpl:-
Wp=. W B] W

syaceaploonvar{_)).
srareap{vari_}}.
syatempl (L. [Y.Z]0).
syatesp{nl).

syatexpl (urital_))).
systenpl (K_writal_) 1¥.
aystenpl (X==T)}.

338

[Concurrent Proleg Implementation] [Knowledge Basel

ax({chilad{ Jim, mary) Ji-=tria)),

x((ehild({tom, mary) Jé—true}),
r=ap(200,20, 'helds_tont). ax({ehild({mary nangy] J¢--troe)).

ax| (ebildl { John, nanay) J€-—true)).

ax{ [ohild({Barbara, jobn) Ji=-treoe)).

ecumareto({X |Conditiona} L)1~ azl [1iken! (tom, barbara))€—<trunl).
prologiep_transforsl Copdi tions, Deala)) | axi [18kesi (mary, J4m) Je—krme)],
sager_epnugeracel (X lGealal L}, ax({ 12keas({ 1in, nanoy) €—true)) .
axl{Likes((tea, sary)) ¢=—=true}).
anmerztel [XiCondi tions] 1= #2[(poorer{(ben,sary)) tantrsal),
pralegiop_transforn] Condttions, Goals)) | axl {poscar{(sarbars, mary] J—trusl).
szger_snumerate{ (1 |0oalsl]. axi (peorer{{mary, Ji8)) {—true}).
- az{ (parent{{X, T}i¢-——obdla{{r,X1)1).
: = ax({ancestor (X, 1) }4=- parent{(X, Y31}).
u[f;ma.w{l:nn](—-mmt[:.:] Viancestes{{2,¥5)0).
op_transfors{(F holds_far X),eval(P,2}).
ap_transforn{[(P holds_for X),CH,{evaliP,X},3]1) = u.[thrnthlr{[x,r]]{--nnnh{[‘ﬂ.!}!.ﬁnu{t:.r!],Mt[lhuﬂiw{tl.!]”]?.
ep_tranafors(c, 3). ax{ {aousinl (X, ¥} j<-—parent((2, %)) . parent (W, ¥)) brothari (I, M) 31).
ep_transfora({C3,02),(C1,8)):-
ep tranafern(c2 0} -
op_traostfors(C, C). el {richer{(Z, ¥))¢-—poorer{{Y,%})]}).
ae{ (richer (X, ¥})¢—poorer((2, X)), rlcker({2, T11).
axi{idestity{ (X, ¥) }aaT==¥)).
eval(P, X)1=
{8 holds_for X),2s..[F, 1], cemo{ax, 7).] T —
1
shild bolda_far (Jis,sary).
child bolda_ror (tom,sary).
enger_nausaratel [L|F}]:- child halds,_for (Dary,sansy).
prelaglassert{e{T):-P}) b child holes fer [jobn,nansy).
rlalX) bk saild holds_for (Barbara, john},
probegicetract{{al(X):=Fi)}. Likea nelds_for (tee,barbara).
likea holda_for (mary, jim].
liken holds_far [fim, saney).
likes holda_far (tom,sary).
pridd:- pacrar holds_for (tea,mary).
pravella, g smritafd), faill) lErue. poorer helds for {(barbara,oary).
pri_) r-peolegliwrite{end)). poorer Bolda for (mary, Jis).
parent holds foc (X, ¥):-child helds_feor (¥, X1,
proveltrus), anceator helds for {X, T}r-parent holds for (X,T).
proveld) r=ayatesplh, A1) A1, amcestor helds_for (X, Y):-parent halds_for (X,2) ansistor holds far {z,¥.
provel{tres, B) b:-
prove(E) , brother hebds_for (X, Y):-parect holds_fer (2,%),parest helda_for {I,¥),
prowel ({4, B) yC}):= not{idestiby holds_foe (X,¥)).
provel(h,B,C)). eounin holds_for (¥, T):-pareat holds_fer (Z,X),parent hoids_Cor (H,T),
provol (k_write(A),B)] - brather bolda_for (Z,M).
proleg(lds.. (e,] noevar(X), writ={2) nl)) fprovelB) .
praval (&, B} - richer holds_fer (X,¥)i-poorer halda_for 3 %+
syskesnlh, A1) |A1bprove(B) , richer bolds_for (X, Y):=poorer holds for {2,X).rLcher bolda_for (2,7},
provel(A,B))=
apaystes(h, A1) lprolog (A1) bprovalB) . Identity helds_for (X,Y):i- IssY.
preval (A, B)Jr=
cpclauses(A, 2 assan)|
try_each{Clauses, i, B). 1
tey_exen{[{A:-01_T,4,0):- § [Mpplication exmoples]
peovel{B, {}1) [true.
tey_tachif_|Clansas], b, &) - % (1) Crosa reference 1

Ery_sach(Clagses, A, €] troa.
eraas_raf{W, A, L)~
enuzerate({Hislause_ body(¥, A, M)},L).

[
&

1= publis sypsteopdi,

1= Cofe syatemple,-). o bl i
Q=..[0,. 3,
Tu. LM (PIC--K}],¥,
aystespd (X\eY), prolegl [XhaT1]]), Pi=..[7, 1,
mystespi(X is T),peologl{X 13 111). seater_tara{(Q, 1)

syatenpl{X < T).prolog{(XcY)}).
myateap((X > ¥, prologl (X3E1)).
syatespl(X mod ¥),prologl (X mod ¥1)).

systesp{{X == ¥),prolog({X==7)}). § (2) Bigher order asts @

spatespl{ (X ‘ssl), prolog((Xh==Y1)). nd_pr

ayatenpl (X-T1, prolegl (X=1)]). Secandardiril) 2=

systanp((Xs..[Y,_1),prolagl(X=. (¥,]3]} ie({EIC (enmecatal(PIP halda for 31,2) lengea(2,200100

aystemplprint(X] ,profog{(print{X}i1).
spatespluritelX), prologl {nrite{X]1)]).
syscespinl, proleg (al}]). ¥
#fatempinet (P),pralegl (\v(F}1}).

aystenpidema(X, ¥, erolog{deno(X, 111,

mmber_ters(X, (X, Y)).
=mbor_tera(X, (¥,L) }:-zanber_term{¥,L).
Eaihap_term(¥, X).

[Execution Examples)

Prolog=20 werslon 1.0
Copyright (C) 1981, 1983 by D. Warren, F. Pereira snd L. Byrd

I 7= [=kest].
tont peconsulted

1811 wgeda 1.31 sea.

yes

| 7- snuzeratsl{Ilparent bolds for XhL).

L = [{johs,barkara},icary, jizb,(oary, ton} , (nanoy, Jann) , (nancy,caryl],
X=_29

yes

| 7- ame=merate! [X|brother holda _fee X},L).

L = [{jim,teal,(soan,sary) ,(oary, johnl,ites, Ji=)],
s 29

a3
| 7= emmarats([Xizoesin belds_for (X, bartara)l,L].

= [Jis, toal,

L
X =_29

yrs

| 7= eomerato{(P|l Bolds_for (tos,sary)b,L).
L = [ohdld, iikaa, poorer],

Ps 29

rea

| 7= emumeratsl[P|F holds_for [manoy,tes)}L).

L = [ancestar],
Pz _29

Yea
| 7= smmerate{[FIP bolda_fer (eary,toa}},L].

L = [amecstor,parent, richer],
F= _R9

yen
| 7= v_lmﬂ.ld{fﬂ'[‘ nelds_for (1o, bartara)], L),

L = [zousin, risher],
F=_25

yan
| 7= srcas_reflax, parent,L).

L = [mnesstar,brother,couain)

yos
1 7= second_srderil).

L = [[amcestor, parent],[beother, richer],[child, richar] [oousin, 1ikea],
[ocusin, righer]l

ComouFrent Frolaog verales 1.0 {cl 1983 Enud Shapiro

Fas
| 7= [-toste].

paste reconsulbed 2088 words 1.20 zea.
yes

I 7- ep enmeratel (¥ |pareat nolds_lar F{}
{eary, jiz)

{sary, ton)

[johm, bartarz)
eod "0 gyslest §

s _1k

339

es

! - op emeseratel{f]rather halds _for X1).
{iin, tea)

[toa, jim}

(eary, Jahn}

{ john, oary)

end ¥ gyelomn: 5

T=_31

ye3
1 %= op enuserztel (T lcoesin nolds_for (X, terearal).
R3E|

(-
andt® cyclon: §
s 31

yas

! 7= op seuseratel {FIP holds_fer (tom, sary})d.
child

1ikms

e

end®8 gyales: §

P _ I

yeo

| 7= ep emmeratel [F|P halds_for (naney.toall).
angeater

endfe8 cyoles; §

Pe W

yea

| 7= op anunecate!(P|P holds_for (=ary, tea)]).
parent

ancestar

richer

and ¥4V gyoleq: §

F=_31

ﬁ- op snumerate{(F|? holda_For [Jiz,barbacal]).
[TE R

richer

end B8 galas: §

F=_31

yes

| 7- cera 972080 (SIT12 lo-seg = 55866 Ri-seg)
hkp 3816 = 20415 &n uaw + 6%Q1 fprae
global 1809 u 16 En uae + 1433 free
leecal 1028 = 16 in uae + 1008 free
trail 211 = 0 S0 ose 4+ 211 fres

6.08 sad. far 1 GC3 gaindng 1100 wards
1.42 see, for 79 local shifts asd 113 Erall shifts
73.35 ase. rontime

4, Discussion

We have intredoced the concept of set
abstraction as an analogy of that of lambda
abstraction, and proposed a predicate
Venumerate” to count all elements of the set
implied. The set abstraction comprises two
common features concerning PROLOG : "set
expressicn” and "predicate variables". In the
usual sensa, the set expression proposed and
implemented in literature so far conceImns only
dealing with the first order data objects,
while as we have seen, the set abstraction
discussed here extends the set expression
function so that it may handle even the second

340

order predicates. That is why we distinguished
the set abstraction from the set expression in
this paper. There are, in fact, several
lanquages of PROLOG family where the predicate
variables are permitted at the syntax level, As
far as we know, howsver, none of them enables
one to deal with predicate variables as data
obijects of abstraction or to obtain the st of
attributes derivable from the axioms by
deductive inference, neither.

A matural extension to the sst abstractionm
suggests the possibility of introducing the
higher crder set abstraction such as the set of
gets of attributes. This immediately leads to
the problem of self-applicaticn. That is, in
the presence of self-application, the well-
known diagonal arguments bring us the Russell's
paradoxes, A trivial way to avold arising the
paradoxes may be to restrict object worlds to
finite sets. This will mot impose so strict
restrictions on the practical phase,

In this paper it has been shown that under
the current environment of PROLOG language
facility, one can easily achieve the set
abstraction function which has the capability
of dealing with the second crder predicate
logic.

The issue of efficient implementation
should be discussed and studied, which is at

prasent left open.

ACFNONLEDGEMENTS

The author would like to thank
Dr.K.Furukawa, the chief of the second
laboratoty, ICOT, and the members of the L1
design task group at ICOT, for their useful
discussion and suogestion. He would also like
to express his gratitude to the referees for
their useful comments on an earlier draft of
thiz paper.

Last but mot least, the author is very
grateful to Dr.T.Kitagawa, the president of
ITAS-5I8, Fujitsu limited, for warm
encouragement as well as sharp adviee.

Bowen,D.L., DECsystem-10 Prolog User's Manual,
Department of Artificial Intslligence,
University of Edinburgh, Dec.1981.

Bowen,K.A. and Kowalski,R.A., Amalgamating
Language and Meta Language in Ligie
Programming, in "Logic Programming”{eds. Clark
and Tarnlund) ,Academic Press{1382).

Clark,K.L. and Gregory,5., PARLOG @ A Parallel
Logic Programming Language, Ressarch Report
DOC83/5,May(1983) .

Clark,K.L. ,McCabe, and Gregory,S., IC-Prolog
language feartures, in "Legic
Programming"{eds.Clark and Tarnlund), Academic
Fress({1982).

Furukawa, K. Kunifuji, s, , Takeuchi,A.and Usda K.,
The conceptual specification of the Kernel
Language version 1, ICOT Tech. Reporb(1984).

Hirakawa,H. and Chikayama,T., Eager and Lazy
Enumerations in Concurrent Prolog, IOOT Tech.
Mema TM-0036(1984) .

Kahn,K., Pure Prolog Interpreter in Concurrent
Prolog, Presentation at ICOT, 1%83.

Fahn,K., A primitive for the control of logic
programs,1984 International Symposium on Logic
Programming, Atlantic City, Wy (1984).

Kowalski,R.A., Predicate Logic as Programming
Lanquage, Froc. IFIP-T4 Congress, North-Holland
PR.569-574 (1974).

Fuond fujd, 5., Asou,M., Sakai,K., Miyachi,T.,

Fitakami ,H. ,Yokota,H. , Yasukawa, H, andFurukawa, K,
Amalgamation of object knowledge and meta
knowledge in Prolog and its application,
Reprint 30-1, Knowledge Engineering and
Artificial Intelligence Working Group of the
Inform. Process, Soe. of Japan , also ICOT
Tech. Report TR-009 (in Japanese),1983.

Shapiro,E.Y.,A subset of Concurrent Prolog and
its interpreter, ICOT Tech. Report TR-
003(1983),

Warren,D.H.D., Higher-crder BExtensions to
Prolog Are They Nesded 7, D.A.I. Research
Fape Wo.154,University of Edinkburgh, also 10th
International Machine Intelligence
Workshop,Case Western Reserve University,
Cleveland, Chio, April 1981.

