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WHAT IS A VARIABLE IN PROLOG?
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ABSTRACT

We review the treatment of wvarizbles in Prolog.
Prolog does not have sufficient features to manipulate vari-
ables as data objects. This paper introduces two new
language concepts: freesing and melting of variables in
terms. Aceordingly, system predicates having the freezing
and melting capabilities, i.¢., those for input-output and
database handling, are revised and made more basic,

This revision of primitives inereases Prolog's ability
te handle variables, hence clauses, as data objects. As
a result, & more sophisticated debugger, global logt-
cal variables, efficient meta-inference, and so on become
realizable.

We prezent an efficient implementation for the freeze
and melt operations. In particular, melting of a frozen
term iz achieved in constant time irrespective of its size.

1 INTRODUCTION

Prolog provides several primitive predicates to manip-
ulate variables themselves as data objects. In the case of
DEC-10 Prolog (Pereira et al. 1978}, such primitives in-
elude var, nonvar, nuzbervars, ==(literal identicalness),
and y==. From the viewpoint of variable manipulation
as data objects, however, these primitives are neither
sufficlent nor well separated. We will examine this point
and give a solution.

Use of Prolog in various projects has led us to identify
some basic requirements for an underlying logic program-
ming language. One project contains s natural language
processing system with learning capability for new sen-
tences. During the learning process, a human teacher must
be able to tall the program the meaning of new grammati-
eal categories. For example, if the program starts without
knowing the concept of present participial, at a certain
stage of the learning process, the teacher introduces it by
giving an example such as:

The cat is eating.

At the time, the teacher must also indicate how to get
the basic form of “eating”, ie., “eat’. Borrowing DCG
format, the new grammar may become

(e (NP, T_ING}) -=>
np{NP) ,be,1n0g (ITNG), {trans(ING,T_ING}}.

L Order not significant.
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The syntactic part
g(s(NP, T_IKG))--> np(WP), ba, ing(ING)} (1)

is constructed automatically by the program. What the
teacher must give from a terminal is the semantic part

{trans(ING, T_ING)}. (2)

The problem here is that we have no means to tell
the aystem that the variable ING in (2) is the same as the
variableING in (1). In other words, Prolog treats variables
in an input term as completely different from those in the
program in execution.

As a elearer example of this problem, let us consider
the following assertion:

tost:-Tead(V),
plX, Y), ¥ X and Y becoms instantiated
writa(V).

The question is:

Can we utilize read to specify which argument of p
to be printed out?

Suppose that p is defined as
pla, B).

and wa type X for read. Print will (at best) just echo back
X, or in DEC-10 Prolog, scmething lilke _123. Anyway,
printing a is beyond hope in current Prolog systems. In
Lisp, om the cther hand, we can read a variable name at
run time and examine its value. That is, an input atom,
say X, is just a data object and ‘eval’ Interprets it as the
variable X.

In summary, Prolog lacks “eval® and ‘guote’ capability.

2 THE CURRENT STATUS

DEC-10 Frolog distinguishes variables from constants
when they are input from the terminal. Each varisble iz
given special internal represemtation, i.e., ssparate posi-
tions in the stack frame. Its printed representation is
gamething like

_123.
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However, we cannet use Lhis printed repregentation to
designate from the terminal specific variables in the sys-
tem. If we give the variabla

123

from the terminal, it 1s treated as an entirely new variable
with its own internal representation, and might be printed

a3
_291.

Prolog/KR distinguishes variables from constants
during unification. Internal representation of a whole
clause jz nothing but a list structure, and each variable
holds its print name. The printer prints a variable az

#%_123

where “*" iz a prefix for variables; “X* iz the name of
the variable; and ®_123" is the umigue postfix for this
variable to distinguish it from other variables with the
same name. However, here again, we cannot wse this
identifier to specify a specific variable. If the variable

*X_123

i given from the terminal, *X_123" is treated as the name
of the variable and might be printed as

*¥_123 458,
where “_456" iz a new postfix for the wvariable,

Sometimes we need to treat varfables in terms just as
data objects. For example, when we write a pretty prioter
or & interpreter in Prolog itzelf, it is anvoying if = variable
in a term matches a constant in the program and become
instantiated. For example, a routine for printing out a list
must firat flter out the "variable case™:

printlist(X):-writa('[*). printtall(X).
printtail{X):-var{X), !, write("|"),
priot(X), write(*]*).
primttail([]):-1, write{"]'}.
priottail{[XIY]):=!, primc(X),
write(’,"), priottail(Y).
printtail(X):-!, wrive(*]"'),
print(X), write(']").

Without the first clause of printtail, the “wariable case®
is treated by the second clause, and a list

[a, b, ¢ |X]
will be printed out as
[a, b, £].

Morcover, If the second and the third clauses were inter-
changed, the same list might be printed out as

[a, b, e, _1, _2, 8, ...,
which is a disaster.

To avoid this inconvenience, nusbervars is sometimes
used %o make variables ground terms. However, since
nuzbervars binds variables to constants, its effect must
usually be undone afterwards by backtracking. The con-
vention for thiz is to use double “not”s:

\+i+ ((mumbarvare(X,0,_), printlist(X))).

4 NEW CONCEFPTS: FREEZE AND MELT

Hete we propose 1wo new language concepts: freezing
and melting of terms. Freesing makes & copy of a term,
inactivating all its uninstantiated variables. A frozen term
looks like and can be manipulable as a ordinary ground
term; the difference is that it can be “melted back®, as
will be described later. Variables in frozen terms are in a
sense quoted so that they set just as constants,

Melting is the reactivation of the variables in a frozen
term. If a frozen term is melted, the resultant term shenld
be the same az the original term,

In current Prolog systems, freesing and melting are
usually done antomatically, and are not isolated as primi-
tive actions.

The current agsert implicitly freezes a clanse before
it is put into database, although there is no direct ae-
cesd to the frozen clause. 'When assert is ealled, instan-
tiated variables in the argument clause are replaced by
their value as usval. On the other hand, uninstantiated
variables are frozen, and lose relation with the eriginal
variables, For example,

t= ..., A=a, assert(p(a,X, X)), ...

= ..., sssertipla,Y, Y32, ..

have exactly the same effect as long as X and Y are
uninstantiated upom the execution of assert.

Printing a term also involves freezing. The printed
representation of a variable is no more variable; it cannot
be instantiated,

Clausge, retract and the call of an asserted clause
melts the clause but the wariables do not get back the
connection to the original ones. That is, a virtual copy of
the clanse is created and used. This feature iz sometimes
usad to rename a structure (l.e. to make a new structure
by systematically replacing ald one's wariables):

raname (01d, New) ; -aseert (${01d)) ,retract(t (Now)).

Read also melts a term as a new one. Therefore, when
the system reads back what it printed, the created term is
not the same as the original one, if it contains variables.
That. is, .

write(X), read(Y), X=Y.
does mot hold even if read just reads back what was
written by write. Of course,

write(X), read(Y), ¥=Y

and
write(X), read(Y), wvariante(X,Y)

will hold, where variants is a predicate that tests whether
two terms are the same allowing the renaming of variables.
3.1 New Primitives

An example of what we want iz "read without melt-
ing". If we distinguish “reading a term” from “melting



and making a virtual copy™, we can solve the problem
stated in Seetlon 1, i.e., we can utilize read to specify an
individual variable.

Before describing the process in detall, let us define
soveral primitives. First, we define a new primitive for
“frecze™ing o term:

freaze(<tare>, <ITozem-term’).

The freeze predicate freezes <torm* into <frezem-
term». Wariables in <frozen-ters> are inactivated and
are not regarded as variables (until they are reactivated
by melting). Note that

fraozel(X, Y), X==Y

bolds if and only if X is a ground term.

Then, we define a new primitive molt:
melt(<frozen-ters>, <now-term>).

The melt predicate melts <frozen-term» to get <new-
tarn>, The value of <now-term» becomes literally identi-
cal with the original term. That is,

froaze(X,Y), melt(Y,Z), X=1

holds.

Further, we need another kind of melt operation
which melts a frozen torm and makes a virtual copy, just
as the currént clause does. Let uws name this operation
malt_new, Since melt_new creates an equally-structured
but mew term,

trooze(X,Y), melt_new(¥Y,Z), X==IZ

does not hold unless X is a ground term.

Since we have introduced the comcept of frozen
terms, we must define unification involving frozen terms.
Ugification of two frozen veriables succeeds if and only if
they are identical, that is,

freeze(X, Xf), freeze(Y, YI), XI=YI

holds if and only if X==Y holds, Frozen variables are
regarded just as ground atoma in unification, so the above
rule in implied by the following mare general one:

Unifying two non-variable terms (possibly including
frozen wvariables) succeeds if and enly if they have
the same prineipal functor with the same arity and
each pair of their arguments are recursively unifiable.
Note that unifying a frozen variable and an (normal)
non-variable term causes a fallure.

If a frozen term and an uninstantiated variable are
unified, they become an identical frozen term. For im-
stance,

fraaza(L(X, Y3 ,F), F=f{Z,%)

fails because frozen X cannot be unified with frozen Y.
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In order to keep primitives disjoint, we must further
introduce alightly modified versions of assert, retract,
clause, Tead, and write. We call these asgertw,
retract®, clauges, reads, and write¥ respectively.
These new primitives are the same as the original cnes
excopt that they do no automatic freezing or melting. The
originals would be defined as follows using new ones:

assert(C) :~freszel(C, €2), assert=(C2).

rotract(C) ;~renama(C, C2), rotract={C2),
malt_new{C2, C).

clause(H, B) :-rename(H, E2}, clause+(B2, B2),
clavsemalt_new((H2:-B2), (H:-B)).

road(X):-read+(X2), molt_new(XZ, X).

writa () :=freozelX, X2), writow(X2).

where
ronamea (D1d, New) : -froeze (01d,X) ,molt_pew(X, New).

The definition of retract and clause must use renams,
becsuse the arguments of retract* and clauser will be
instantiated to frozen terms. These definitions may not
ba efficient since they involve term copying in freeze,
as will be described in Section 5. However, in an actual
implementementation, copying can be avoided by using
invisible destructive assignment.

Agsert*ing an unfrozen term and cleusesing or
retract¥ing it can be used to realize global logical varl-
ables (see Section 4.2). Applying clauses on an unfrozen
term should be almost the same a3 clause except that
doing it more than ones retrieves the identical clauses.
For example, suppose there {2 an unfrozen clause

plxd.
then,
clauze*(p(Y) YY), clauses(p(Z).ZZ), Y=a

also instantintas T to a,

¥rite+ing an unfrozen variable should cause an error
in a sequential Prolog system (which we assume in this
paper), beeause it has no *print name®. In parallel systems
such az Parlog and Concurreal Prolog, on the ether kand,
the prioter could wait the wariable to be instantiated,
instead of causing an error.

3.2 Printed Represemtation

Using reads, the example in Section 1 can be achieved
via

tost:-writeX or Y), write('t'),
readv (VL) , =melnlVL, W),
p(X, Y), ¥ X and T mey bocome instantiated
write (V).

If the user chooses and types the first alterpative, the first
argument of p will be printed.

Now read# combined with melt should exactly be
the reverse of writa. Thus after printing a certain term,
rosd*ing and melting it should produce the original term.
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‘To achieve thiz, the printed representation must be care-
fully designed. The easiest solution is to assign a unigue
print name to each variable. Suppose a variable X is
printed out as _014, then read+ together with melt should
map the sequence of characters **, *_*, "0", “1*, "4" and
“* to the original ocecurrence of X. ‘

In Prolog/KR, a variable is represented as the com-
bination of its name and a unique identifler for the vari-

able. For example,
*x_123

is the wariable »x with the identifier 7123, This con-
ventjon will provide better user interface.

4 APFPLICATIONS

4.1 Debugger

Onece the complata reveraibility of input and output
is achieved by read* and melt, the Prolog debugger can
be improved. We can tell the debugger to bind a certain
warizhle to a comstant, or even fo another wvariable; we
can axamine the current vzlue of & (previcusly unbound)
variable; and 5o on. An example follows.

Suppose we are tracing append, the current sequence
would be something like:

|?= trace appm([a b.e]l, [d],X).

{1) © call : append((a,b,c].[d], 68) 7 =
(2) 1 Call : append{[b,c],[d],_164) * ¢
(3) 2 Call : append([c],[d],_1T8) ? =&
(4) 3 call : append([], [4],_188) * ¢

{4) 3 Exit : appemd([], [d], [4])

(3) 2 Exit : append([e], [d], [c.4])

(2) 1 Exit : append{([b,c], [4], [b,c,d])

(1) o Exit : append([a,b,c],[a],[a,b,c, 4]}

X = [a,b,c,d]

We cannet, for example, examine the value of _868 at (2).
However, if we could designate _68 through read# and
molt, we could add another debugger command, say “e®,
for “e"xamining the value of & variable.

|?- trace,append([a,b,c], [4],%).

(1) © call : append([a.b.c],[d],_B8) ? e

(2) 1 Call : append([b,c],[d],_164) ? e _68
Value of 68 : [el_164] 7 ¢

(3) 2 €all : append(fc],[d],_1T8) ? = _6A&
Value of _68 : [a,b|_1T8] 7 ¢

(4) 3 call : appnnd(lL[dL_:lBuJ ? c

(4) 3 Exit : sppend([], [d4], [d])

(3) 2 Exit : append([c], [4], [e,4])

(2) 1 Exit : append([b,c], [d], [b,c,d])

{1} 0 Exit : append([a,b,c], [d],[a,b.c,d]}

X = [a,b,c,d]

4.2 Global Logieal Variables

In most current Prolog systems, a global database
facility includes primitives such as assert and retract.

However, since assert freezes its argument(s) and retract
or the call of the predicate melts it as a new clause, we
cannot use these predicates to manipulate data containing
free variables.

Let us consider a natural-language parser trying to
parse a sentence like

B ==> op, vp.

Here we require the “agreement of number (i.e. singular
or plural)® betwaen NP and VP. We could pass an extra
argument to carry that information as:

8 =—=* op(F), wp(P).

But since we are usually passing a lot of information be-
tween NP and VP, it is easier to do it through a global
database using assert. We sssert the number agreement
of HF while we are parsing NP and refer to the value while
we are parsing VP. However, for some nouns, like “fish,”
we cannot determine whether they are singular or plural
until we ses the verb. In this case the information must
be passed back from VP to WP. The current assert does
not have this capability. Even il NP asserts

&_p (Unknown) .

and VP retrieves it via,

s_p(8p)

gnd later binds Sp to singular when it seea the werb
"swims”, this information cannot be passed back to the
variable Unknown.

If we use assert#* to agsert g_p{Unkmown), the varl-
able Unknown is added to the database without freesing.
Thus Unknown is unified with 5p when s_p(8p) Is executed
in VP and can be further unified with singular when Sp is
unified with singular.

In short, using assert+*, we get global logical vari-
ables.

4.3 Meta-inference

Meta-inference deals with the demonstrability of a
predicate from a clause set gt the object-language lavel,
which iz introduced by (Bowen & Kowalski 1982) and
whose utility has been shown in (Miyachi et al. 1084). To
implement meta-inference, it must be possible to handle
clanse sets as Prolog terms and call them: the form would
be

demo(Clauge_gat, Goal_to_be_proved).

Clause_get above may be given in the following format:

[(eppend([], X, X)),
Cappend([A 1X], Y, [A |Z]):-append(X, Y. Z)2].
However, this format has the following problema.

1. The scope of variables in Clavee_get must not extend
outzide it. In other words, a variable in & ¢lause must



be distinguished from wariables that appear outside
Clause_got even il they have the same name,

2. Variables in the term Clause_get should not be
instantinted by unification. So, clauses should be
‘renamed’ befors they are selected and used for resolu-
tion.

If Clause_set is given in a frozen format, the first problem

does mot arise at all, and the rename operation in the

second problem is replaced by the more efficient melt
cperation [Bee Chapter §).

Usze of & frozen form also allows a clanse to have an
‘undefized part' (Furukawa et al. 1984). Suppeose we
want to compile a generic sort module by the following
predicate:

compile(Scurce, Callimg form, Object)

where

Seurce: source program(list of ¢lauses)

Calling_form: list of the most gemers! calling form
of predicates to be called from outside

Dbject: machine-language program.

The predicate for element comparizon must be left
unspecified, i.0. it should be the undefined part of Source
which will be instantiated later.

There appear two levels of variables in this example.
One is the object-level variables which are compiled into
target codes, The other is the meta-level variables which
remain as parameters in the compiled code. They are
distinguished as frozen vs. melted variables. Variables
in a clanse to be compiled sheuld appear in frozen forms,
While the undefined part should appear as a normal Prolog
variable. The resulting object program Object will be &
unary funetor, which, applied to the name of a comparison
predicate, becomes a complete program. For example, to
sort a list using the "standard’ ordering, Object should be
used in the following way:

Cozplete_object =.. [Object, *>'],
cnll (Completes_chjeect), sort{Li, L2),

5 IMPLEMENTATION

Here is a brief description of the implementation. We
assume the structure sharing method (Boyer & Moore
1972), zivee it enables very efficlant melting. In structure
sharing method, every nonvariable term is represented as
the pair of a template (denoting the skeleton of & term)
and an environment (a tabls of initially uninstantiated
wariables).

Freezing of a term requires scanning the whole strue-
ture and making a new template and an environment,
This scanning probably cannot be avoided, since we have
to jdentify all the occurrences of variables in the term
anyway. When a term is frozen, we further mark the cell
denoting the frozen term (i.e., pointing the template and
its environment) with a “frozen mark®.
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For example, if = term
1.
is frozen with substitution

{a/x, gz Y},

a naw template
I, gl_13)

is created with a new environment:

{2/}

With the “frozen mark® oz the cell, variables in the
template are treated as constanis by the unifier. Even if
some of them get values after freezing, they are ignored.

When we melt back the frozen term with the original
environment, we simply remove the mark from the cell {or
more precizely, copy the cell ignoring its frozen mark). In
the example above, since the variable _1 is bound to the
original Z by the environment

{Z/_1}.

it restores the original value through this binding. If the
variable Z has been bound to some term after freesing, the
binding is now visible from the melted term.

The melt operation can be done in constant time as
long as a frozen mark is put at the top level. A term to
be melted may sometimes not have a frozen mark at its
top-level, in which case the copy of the top-level template
muat be created and all the subterms must be recursively
melted.

When we want to melt it with a new environment, on
the other hand, we have to create s new environment

{}l

but it also can be done very efficiently. The astual im-
plementation of an environment may well be a frame on
the heap. In this case, a new environment can be created
simply by allocating 2 new frame on the heap and setting
each cell to ‘undefined’.

6 CONCLUSION

We investigated features of the Prolog language for
manipulating programs as data. We showed that certain
features are not clearly distinguished in Prolog primitives,
and are used implicitly in some of the system predicates.
Recognizing and separating these features as new primi-
tives in their own right should increase the expressive
power of Prolog.

We also showed that an efficient implementation is
possible for melting. On the other hand, the cost of freez-
ing is proportional to tha size of the term to be frozen.

* _1 indicates the firet accurrence of a variable.
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