PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1984,
edited by ICOT. © ICOT, 1984

317

EFFICIENT STREAM/ARRAY PROCESSING
IN LOGIC PROGRAMMING LANGUAGES

Kazunori Ueda

C&C Systems Research Laboratories
MEC Corporation

4-1-1, Miyazaki, Miyamae-ku, Kawasaki 213 Japan

ABSTRACT

The Concurrent Prolog predicate for merging n in-
put streama s investigated, and a compilation technique
for getting its efficient code is presented. Using the tech-
nique, data are transferred with a delay independent of
n. Furthermore, it is shown that the addition and the
removal of an input stream can be done within an average
time of @[1). The predicate for distributing data on an
input stream to n cutput streams can also be realized as
efficiently as m-ary merge. The compilation techniqoe for
the distribute predicate can further be applied to the im-
plementation of mutable arrays that allow constant-time
accessing and updating. Although the effciency stated
above conld be achieved by a sophisticated compiler, the
¢odes should be provided directly by the system to get rid
of the bulk of source programsa and the time required to
compile them.

‘1 INTRODUCTION

When we implement a lzrge-scale distributed sys-
tem in & parallel logic programming language such as
Concorrent Prolog (Shapire 1983) and PARLOG (Clark
and Gregory 1084), the performance of the system will
be influenced significantly by how efficiently streams as
interprocess communication channels can be merged and
distriboted. This paper deals with implementation tech-
niques of the predicates that merge many input streams
and those which distribute data on o single input stream
into multiple output streams.

The language we chose for the following discussions
is Concurrent Prolog. However, the results obtained are
applicable also to PARLOG. For readers unfamiliar with
Conecurrent Prolog, an outline of Concurrent Prolog is
described in Appendix I.

This paper focuses on implementation on conventional
seqquential computers. Of course, to demonstrate the
riability of Concurrent Prolog on parallel computers, the
scope of discussion cannot be limited to sequential com-
puters. However, even on a parallel architectura, it would
be very likely for each processor to deal with multiple
processes for the following reasons., First, the number
of processes a user can create should not be limited to
the number of processors available. Second, even if a lot
of processors are avallable, the best way to allocate two
processas which communicate intensively with each other

and

Takashi Chikayama
ICOT Research Center

Institute for New Generation Computer Technology

1=4-28, Mita, Minate-ku, Tekye 108 Japan

and have little portions executable in parallel may well be
to allecate them on the same processor. In that event,
the techniques presented here will ba directly applicable
to communication within each processor.

L1 Importanee of Sireams in Coneurrent Prolog

Parallelism or coroutining in Concurrent Prolog is
realized by expressing individual processes via predieate
calls or goals which are executed in AND-parallel, and in-
terprocess communication via shared wariables appearing
a1 arguments. The shared variables express lists of data
or messages flowing among (usually two) predicates: As
program execution proceeds, the values of the lists are
gradually imstantizted to the end. The definition of a
predicate is the specification of (the relationship between)
values that the shared variables as its arguments can taks,
and a geal can be regarded as a process which processes
the sequences of data represented by shared variables from
the top downwards through tail recursion. We use the
term “stream’ to refer to shared varinbles which are used
in this manner.

Note that in Coneurrent Prolog, ‘process” and ‘stream”
are nothiog but pragmatic concepts.

As is clear from the above explanation, communics-
tion with other processes is accomplished not by specify-
ing their process names, but by instantiating (in the case
of sending) or by checking (in the case of receiving) the
streams which have already been laid between processes.
Therefore, the efficiency of stream operations—sending,
rectiving, merging, and distributing—are of crucial im-
portance.

1.3 Neeessity of Dynamie, Multiway Stream Merging and
Distribution

Btreams nead not be merged or distributed if several
processes are linearly connected by shared variables to
perform pipeline processing. However, if there is a process
that needs to receive data or messages from many other
processes—e.g., & process that manages shared resources—
a merging process must be put at the front-end:

-~ F"Gl]l Fﬂ':l]:- wey Fﬂ{clll
merge(C, O, Cal, ..., Cnl), shared.resource(C7).

In order to accept messages from an indefinite number

318

of processes, it must also be possible to dynamically vary
the number of input streams to be merged. In other words,
if a process needs to communicate with a shared process, it
must izsue a requast to the front-end merging process (by
uzing other input streams or a ‘request’ stream), and set
up a new input stream. Alternatively, a new stream could
be laid by attacking a binary merge to one of the existing
input streams, but a delay proportional to the number
of communicating processes will arise if this methed is
repeatedly used.

As for message distribution, if it iz done as broadeast-
ing, each process need only share the broadcast stream.
However, il a process wants to communicate with another
process to which none of its streams directly leads, com-
munication must be enabled via the manager of the des-
tination procesz. The manager process must appropriately
distribute messages according to the destinations attached
to the messages.

Again, it must be possible to dynamically change the
number of processes to be managed.

1.3 Previous Repearch

{Shapiro and Mierowsky 1984) deals with the problem
of merging an indeflnite wumber of streams (henceforth
the number of input streams will be denoted by n). They
demonstrated

(1) a methed to ensure n-bounded waiting and a maxi-
mum delay of Ofn) by using an unbalanced tree con-
sisting of binary mergers, and

(2} a method to ensure n-bounded waiting and a maxi-
mum delay of Oflog n) by using a 2-3 tree (Aho et al.
1874) consisting of binary and ternary mergers.

The term ‘n-bounded waiting' was defined by them
tio mean that any message arriving at the merging process
will be overtaken by no more than n Input messages from
other streams.

The delay of O(n) in Methed (1) above is probably
unacceptable when n is large enough and the traffic is
heavy. This method may be practical, however, in tho case
of essentially costly communication such as interprocess
communication in multi-processor environments.

Method (2} is » major improvement over (1) in terms of
delay. In procedural languages, however, the delay of in-
terprocess communication does ot depend on the number
of senders as long as it is simulated on a sequential com-
puter. Therefore, also In logic programming languages, it
is desirable to achieve a constant-time delay.

(Kusalik 1984) also deals with bounded-wait merging
of n streams. He showed a method to ensure bounded-wait
merging without resert to operational characteristics of an
underlying machine or interpreter. One of his solutions
has Oflog n} delay, but the pumber of input streams can-
not be changed. The other solutions can merge indefinite
number of streams, but they are inefficient.

The above two papers concentrate on how to program
n-ary merge having the desired properties. Oa the other

hand, this paper is devoted to how to compile a rather
infuitive n-ary merge program.

Gelernter (Gelernter 1984) discusses the suitability of
Concurrent FProlog for the deseription of muli-process
gystems. He concludes that interprocess communication
using merge networks are ‘not only bulky but unduly con-
stricting’. It should be noted, however, that this criticism
is not from the viewpoint of descriptive power or efficiency.

2 OBIECTIVES
We have the following two objectives:

(1) When the number of input streams n is fixed, to
realite on & sequential computer fi-ary merge and
distribute with a maximum delay of O{1).

(2) To extend the solution to (1) to the case where n varies
dynamically.

It is clear that (1) cannot be accomplished through the
combination of binary and ternary mergers or distributors,
The predicates must process all messages directly at the
top leval:

rﬁ:rre{[X]]’s],X.,...,pfixk],....x.,]
= merge(Ya, Xy, ..., Xal, ..., X,)

ﬁ#l‘.ﬁbﬂtﬂ[[ﬁ. x} le‘], Yl: runy [-x I Yi]l rery Yh}
= distribute{ Xa?, Ny Ty o, Tad

If these predicates are interpreted, the time for tail
recursion can be proportional to the size of each clause
(=0(n)). However, if compiled, these predicates promise
to yield higher efficiency, as will be discussed in 3.1.

When considering the above n-ary merge and distrib-
ute, we cannot define ‘delay’ as the depth of a tree. So we
will define the word *delay” as

* the time passed from the arrival of a message at & goal
in an input-wait state until the original input-wait state
i# restored by tail-recursion, during which the message
is transferred to output streams.

The delay is caleulated by the number of primitive GPErE-
tions which ean be accomplished within a unit time on a
sequential computer.

2.1 OQutline of Sequential Implementation of Concurrent
Prolog

Examples of Concurrent Prolog implementation on
a sequential computer include (Shapiro 1983) and (Nitta
1984), but both are interpreters. Here, we assume the
implementation of a compiler which follows the guidelines
stated in (Shapire 1983 (unpublished)). What follows is a
brief explanation of the process management technigque.

The descriptors of conjunctive goals make up a eir-
cular list called an AND-loop, and the descriptors of un-
committed clauses composing a predicate make up a cir-
cular list called an OR-loop (Figure 1).

Each element of an AND-loop is, until it is committed,
the parent of an OR-loop comprising candidate clauses;

f i

[Pred. Call Pred.

Call | [Clause Je=-==] Clause }= = CIa;lse |

{a) AND-loop (b} OR-loop

Figure 1. AMD-loop and OR-loop

Figure 2, Tree Structure Constructed by AND/OR-ioop

comiit
® I e

(The Program)

(ed) - m

(i) p = oM, g12 1611, M2,
(c2) p := 021, g22 | true.

g

319

S
| 'i— failure
I .

’T"— fallure

Figure 3. Charges and Their Propagation of AND/OR loap

g2

320

after commitment, it is replaced by a doubly-linked list
representing goals of the body. If the body is empty, the
clement of the original AND-loop disappears. The parent
of an AND-loop, having lest all elements, is considered a
success, On the contrary, failure of any AND-loop element
is the failure of the parent (Figure 3).

Each element of an OR-loop represents a candidate
clause which has not been committed yet, and is the
parent of the AND-loop whose elements represent goals
of the guard. The success of an OR-loop element im-
plies the commitment of the corresponding clause, On the
contrary, when some element of an OR-loop fails, that
clement simply disappears. The parent of an OR-loop,
baving lost all elements, is considered a failure (Figure 3).

The system has a quens called Process Queue in which
leafl elements of a tree composed of AND/OR-loops (i.e.,
elements which are not parents of other loops: see Figure
2) await scheduling. In unification, a sespended clause due
to some read-only variable is added onte the waiting list
attached to that read-only variable instead of waiting in
Frocess Quene. This clause will be re-scheduled when the
read-only variable is instantiated.

One possible optimization of the above method is to
perform the unification of a clause head and the execution
of simple geals in a guard as an indivisible operation. We
call this immediate check. If an immediate check susceeds,
we can avoid creating an OR-locp. In other cases, an OR-
loop s created for those clauses which hawe suspended
during immediate check and which have succeeded in im-
mediate check but have complex guards, and they go into
a wait state.

3 IMFLEMENTATION OF THE
MERGE PREDICATE

3.1 Examination of n-ary merge

The n-ary merge can be expressed by n clauses of the
Tollowing form if ene ignores the ‘base cases’ for termina-
tion which will be dealt with in Section 3.3.5.

& The kth clause:
m"ﬁ"ﬂx I Y’il Xy - ,[I i IL]. vea |xrl}
- merge]l Ya, Xy, ..., Xi!, ..., X.)

This predicate has the following characteristics.

(1) ‘To see if the cth clause is selectable, one need only
test the unification of the Oth and the eth arguments
{henceforth we number the arguments starting with
).

{2) Upeon the tail recursion employing the cth clause, only
the Oth and the eth arguments change compared with
the original call. Therefore, the argument list of the
tail-recursive call can be made by slightly modifying
that of the original eall.

(3] When all clanses are in a wait state and one of the
argument variables is instantiated, there is only one
clause (or two, even including the base case) which
needs to be re-examined.

Now we will consider tail recursion. The arguments
which do not change by tail recursion have the general
property that they do not alter the walt condition of each
of the clauses. Suppose that a predicate is called, that its
eth clause is not selected due to the suspension (or Tailure)
of the unification of the kth argument, and that the dth
clause is selected instead. In this case, even after the tail
recursion, the unification of the kth arpument of the cth
clause should suspend (or fail) provided:

» the kth argument of the dth clause does not change by
tail recursion, and

= the read-only variable that suspended the uniflcation of
the kth argument of the cth clause does mot become
instantiated by the unification of other arguments of
the dth clanse,

If we state this in terms of n-ary merge, we get the
following,
{4) Upon the tail recursion employing the cth clause, the
following elauses become new candidates:
(a) the eth elause itself
{b) clanses which were candidates in a previcus call
but have not been examined
(c) eclauses which need no longer suspend as the result
of the instantiation of read-only varjables.

Possibility (e) does not exist under normal eircum-
stamces, 30 We can ignore it. Possibility (b) refers
to the clauses that have been ‘carried over’, so that
once they are examined, they will either become non-
candidates (by suspension or failure) or they will be
selected and again become candidates after tail recur-
sion. Therefore, the average number of clauses to be
checked after each tail recursion does not depend on
the total number of claunses.

From the above considerations, we can conjecture that
N-BIY fMerge can process each message within o constant
time. Note that the implementation technique of sequen-
tial Prolog that takes advantage of the characteristics (1)
and (2) appears in (Warren 1980).

3.2 Implementation Teehnique for the Fixed-Arity Merge

To efficiently implement s-ary merge, the following
alé Oecessary.

(1) Even if all clauses suspend, an OR-loop (having O(n)
elements) is not created for them, and they are made
to wait at the predicate-call level.

(2) The argument list is re-utilized.
(3] In order to prevent examination of clanses not worth

examining, candidate clauses are managed within the
prociss descriptor (descriptor of the goal).

The implementation technique of predicates that fol-
lows these guidelines is deseribed below in Sections 3.2.1
to 3.2.3. Sinee the description is gemeral, it is applicable
to predicates other than merge as long as they have no
goards, Hereafter, the number of clauses composing the
predicate will be denoted by M, and the number of argu-
ments by i,

ki K Ky

" . 1 i......_..
¢, <=k, 4&-'_;;
G, -i.——--—-—u--- kZ

Cy -t——\-| K1 . - ka
Figure £. Sample Data Structurs of Suspend/Fail Table

3.2.1 Coenfiguration of & Procezs Descriptor
A process descriptor has the following items.

{1) AND Brothers: Two pointers for constructing an
AND-loop.

(2) Proceas Queue Pointer: A polnter for designating the
next element in a Process Guete.

(3) Candidate Queue: A quene of candidate clauses of the
eall managed by the current process deseriptor. M
clements.

(1) Clause States: An array indicating whether each
clanse is in the condidate, suspend, or fail state. A
elements,

(5) Clause Backward Pointers: An array of pointers for
designating entries on the waiting listz of read-only
variables that suspended unification. M elements {one
element for each clause). Each pointer is meaningful if
and only if the corresponding Clause State is suapend,

(8) Suspend/Fail Table: The reasons why a particular
clanse was mot selected can be attributed to some
of the caller’s arguments. Thus, if these arguments
change upon tail recursion, that clause may becoma
selectable. Therefore, a table of pairs (e, k), where ¢
is the number of the suspended or failing clause and k
iz the number of the argument that may be the canse,
is maintained. This table must enable eficlont

+ saqoential retrieval of elements containing e, and
= deletion of elements containing k.
For example, the structure shown in Figure 4 fulfills
thiz condition. The maximum number of elements
depands on the program; in the case of merge, it ia
O(N+M)=0{(n).

{T) Fail Count: The total number of clauges that cannot
be selected for the current call.

(8) Program Code: A pointer to the predicate’s code.

(9) Argument List: IV aloments.

332 Operatlons

A. Crestion of a Process Descriptor

When a predicate is newly called (ie., not az a tail
recuraion), the area for the process descriptor is allocated
and its emtries are set up as follows:

321

= all clauzes are entered in Candidate Queue (3),

o all Clause Staleas (4) are set to candidate,

* all Clause Backword Fointers (5) are left undefined,
» Suspend/Fail Table (B) is cleared,

« Fail Count (7) is set to 0, and

* Program Code (8) and Argument List (3) are set up.

The completed process descriptor is enmtered in the
AND-locp by appropriately modifying AND Brothers (1)
of this and neighboring goals. It is also entered in Process
Queue by making it deslgnated by the last element’s
Frocess Queue Pointer (2).

B, Selection of a Clause

B-1. If Candidate Queue 13 not empty, instructions for
unifying the arguments of the first candidate (say the cth
clause) and the arguments of the caller (Argument List of
the process descriptor) are executed, Inthe case of merge,
only the instructions for the Oth and the eth arguments
are executed.

 If this succeeds, the body is executed (see D),
+ If this fails,

(1) tke gencrated binding is undone,

(2) Fail Count is incremented by 1,

(3) Clause State of the clause is set to fadl,

{4) Suspend/Fail Table is updated (ef. 3.2.3), and

(5) other candidate clauses are tested.

« [f this suspends,

(1) the gemerated binding is undonas,

(2) Clause State of the clanse is set to suspend,

(3) Suspend/Fail Table is updated,

(4) the pair (p, ¢], where p is the pointer to the process
descriptor and e i3 the mumber of the clause, i3
entered in the waiting list of the read-only variable
that caused the suspension,

(5) Clsuse Backward Pointer for the clanse is made to
point to the pair entered in (4), and

(B) other candidate clauses are tested.

B-g. It Candidate Queue is empty and Fail Count is
equal to M{= the number of clauses), the goal ends
with failure. Otherwise, execution of the current goal is
suspended.

C. Instantiation of Read-Only Variables

When a read-only variable is instantiated, the follow-
ing is done for each entry (p, ¢) in the waiting list of that
read-enly variable.

The following is done for the process descriptor desig-
noted by p.
(1) Clause State of the cth clause is set to candidate,
and ¢ is entered in Candidste Queue.
(2) All elements of the form (z, —) ('—' means *don’t
care’) are deleted from Suspend/Fail Table,
(3) This process descriptor is entered in Process Queue.

D. Ezecution of the Gody

If & recursive call is contained in the body of the
committed clavse {say the cth clause), the following tasks

322

are done.

(1) Asaume that the arguments of the head 2pd the argu-
ments of the recursive call differ in the kyth, Eath, ...,
Ejth arguments. For each k; (i=1,..., 1), the following
are done.

» Elements of the form (d, k;) are searched from
Suspend/Fail Table, and for each d, the following
are done.

o Il Clatise State of the dth clause is fail, Fail
Count is decremented by 1. If it iz suspend, the
entry of the waiting list pointed to by Claouse
Backward Pointer is eliminated.

* Clause State of the dth clanse is set to candidate,
and d is entered in Candidate Queus.

+ Elements of the form (d, —) are deleted from
Suspend Fail Table.

The kith element of Argurent List is rewritien.

{2) The cth clause is entered in Candidate Queue.

{2) Clause selection {cf. B) takes place,

I calls other than a recursive call are contained, new
process descriptors are generated for them.

If there is no recursive call, the area for the original
process deseriptor can be released after the pointers from
the waiting lists of read-only variables are eliminated.
However, there are cases in which this area can be re-
utilized for optimization (cf. 3.4).

3.2.3 Management of Suspend,/Fasl Table
If the cth clauvse of n-ary merge is called as follows,

Oth cth
= merge(¥s, ... Xo,...)

unification of the cth argument suspends. In this case,
the cause of suspension lies only in the cth argument of
the caller; even if another clause were selected and tail
recursion took place, this would not remove the cause.
However, we cannot always attribute the suspension or
failure of the unification of the eth argument only to the
eth argument. Consider the following example:

ot st cth
i~ merge([3 | Ye],[3]24],...,[2] X4),...).

If upification is done from the left, unification of the cth
argument Tails, but we should attribute the cause alse to
the Oth argument. Actually, if the first clause 35 selected
and tail recursion takes place, the cth clause immediately
becomes selectabla,

To generalize, when the unification of the kth argu-
ment of the cth clanse suspends or fails, all arguments
(numbered ky, ..., & ..., k) ‘related to' the kth argu-
ment in the cth clause should be entered in Suspend/Fail
Table in the form (e, &;).

Here, the term A is “related to’ (henceforth denoted by
F;) the term B if and only if there are variables within A
Which are ‘related to’ variables within B; and the variable
V1 is related to the variable ¥y means that V; and V% are

related by the reflexitive transitive closure of the following
rﬂlﬁt-llun Rm

* Relation R,: both variables appesr together in a goal
of the guard (if the guard is empty, R, is the sameness
ef the variables).

Ezample : For the cth clause of n-ary merge, the quotient
A[R of the set of arguments A by R; is

{{0, e} {1}, {e—1 L {e+1},..,{n}}.
For the clauze
o(I,J,K, L, M) =~ a(l,J), b[J,K), (L, M) | true.

we get
{{0,1,2},{38,4}}.

However, to efficiently implement m-ary merge, the
above rules for updating Suspend/Fail Table must be
slightly modified. If (0, ¢) is entered in Suspend/Fail
Table when the cth clause suspends, the cth clause will
be returned to Candidate Queue even by the tail recur-
sion of another clause and the desired sfciency is not
achieved. However, the Oth argument usually does mot
cause suspension, and in this case, {0, c} need not be
entered in Suspend/Fail Tuble. Therefors, in cases of
suspension where

{1) the kth arpument of the caller is a read-only variable
(viewed at execution time) and

(2) the kth argument of the head is & non-variable term
[viewed at compile time),

only (¢, k} should be entered in Suspend/Fasl Table, This
is all right because the cause of suspensicn in clearly not
in the other arguments related to the kth argument. The
number of elements that are simultanecusly entered in
Suspend/Fail Teble does not exceed

BiE the 8
2 (oot of argummenta)f e ments of)

elauses

I the case of n-ary merge, this value iz O(n).

3.3 Properties of the Fized-Arity Merge

We will now examine the properties of n-ary merge
compiled using the technique presented in 5.2, The exist-
ence of base-case clauses will not be considered here. It
will be discussed Iater in 3.8.5.

331 Space Effielency

The zize of each item of a process deseriptor other
than Suspend/Fail Table is clearly no greater than Ofn),
and the size of Suspend/Fuil Table is O(n), as indicated
in 3.2.3. Therefore, the size of each process descriptor is
O(n). The size of the program code will be discussed in
3.3.4

3,32 Time Effclency

A. The generation of process descriptors: @{n), but this
need enly be done once at the beginning.

B. Urification : The time required for the unification of
the head of each clause is O(1}, because unification
must be attempted for no more than two arguments.
I a data strueture such as the one shown in Figure
2 iz assumed, the time reguired for the tasks accom-
panying suspended/failed unification (i.e., updating of
Suspend/Fail Table and the waiting lists of read-only
varigbles) is also O(1).

C. Instantiation of a read-only wariable: O(1) for each
tazk.

D. Tail recursion: When the cth clanse is selected, the
Oth and the cth arguments change. However, as long
as merge is uged in 2 ususl manner, the Oth argument
will not be the cause of wait or failure, and the only
¢lanse waiting at the cth argument is the eth clause
itself. Consequently, the only new candidate is the cth
elanse. Furthermore, only two entries of Arpument
List need be rewritten. Therefore, the overall time
required iz O(1).

The above shows that the time required for processing
a message reaching n-ary merge in an input-walt state
does not depend on n.

233 Order of Clause Cheeking

Individual clauses of n-ary merge are checked in the
order they are entered in Candidate Queue. BSince a
selected clause is reenmtered at the tail of the queue, n-
bounded waiting is achieved. Moreover, suspended or fail-
ing clauses are not in Candidote Queue, 2o they do not
influence the efficiency.

3.34 Program Size

The codes for operations A and in 3.2.2 is commen
to all predicates and have the size of O(1). The size of the
code for n-ary merge is O(n), becanse the code for each
clause describes operations B and D, whose sige is O(1).

However, since the codes for individual clauses are
almost the same, they can be parameterized with respect
to the clause numbers. If this is done, the code sise for
the whole predicate is drastically reduced to Of1).

This parametarization could be accomplished by =
sophisticated compiler capable of detecting similarities
among the clauses. However, even if such s compiler
were employad, it would not reduce the size of the source
program [O{n®]) and the time required for compilation.
Furthermore, there may be ounly s few programs which
can benefit from this optimization. Considering all these
things, the most realistic approach is to let the system
provide the code for n-ary merge.

Mow we have n-ary merge at a code size of 3(1). This,
hewever, is still unsatisfactory. The system has to provide
n-ary merge for every n. I these were to be provided
individually, the amount of code would be Onmas), Nmas
being the maximum value of n.

However, here again, drastic optimization is pessible.
Because the code for n-ary merge remain almost the same
if m changes, it can be parameterized with respect to n,

323

This being done, the amount of code for merging any
mumber of inputs becomes O(1).

Note that it iz mandatery that these codes be provided
by the system, because the size of the corresponding aource
program is O(nmas?).

3.2.5 Base Case

To terminate the call of merge, a clause describing
the base case or termination condition miust be carefully
supplied. The clause

merge([], [], ..., []).

iz logically correct, but it cannot be efficiently processed
by the above implementation technique—unification must
be performed for every argument. An alternative solution
uses otherwise construct:

merge([], [1, ..., []) = otherwise | true.

An otherwise goal in a guard succeeds if and when all
cther guards fail (Shapire and Takeuchi 1983). Imple-
mentation of this construct iz simple: a clause contain-
ing otherwise in its gouard should be put inte Candidate
Queue only after Fail Count reaches the number of clauses
not containing otherwise. With otherwise, the base-casa
clause retains the eficiency of the predicate.

3.4 Dynamie Change of the Number of Input Streams

A fixed-arity merge predicate is useful only when the
number of inputs is statically known. We will now expand
this to allow the addition of new streams and the removal
of terminated streams. The program shown below has an
additional (the (—1)th) argument for accepting requests of
new input streams.

s The kth clause (transfer)
merge(5, (X | Yo, X1, .., [X | X), ..., Xa)
= merge(S, Yo, X, ..., Xl ..., Xa)

» The Oth clanse (addition)
merge([Xava | 81, Y8, Xy, ..., Xo)
— merge(SN, Y, Xu, ..., Xa, Xaga)

» The {—k)th clause [remowval)

’HE"FG{-';J I'r xll wiw E;r sne g xn—ir xn}
— merge(S, Xo, Xy, ..., Xy, ..., Xaza)
» DBase Case

merge([], [])-

The clauses for stream addition and removal are not
tail recarsive. However, if process descriptors for the goals
in the bodies can be constructed by slightly modifying the
original ones, it will be much meore eficient than to create
ones from scratch.

In Concurrent Prolog, process descriptors must be
managed by a general memory management techmigue,
not by a simple stack scheme. Here we will assume that
the Buddy system (Knuth 1968) is employed. The size of
each partitioned area will then be a power of two, and each
process descriptor is created in one of these areas. When it

324

is ereated, its fields must be placed according to the size
of the area allocated so that the cost of relocation with
the addition and remowval of streams is minimal. Then,
even if the number of inputs changes, most of the existing
information need not be moved as long as the same area
can accommodate the new descriptor.

Here we will show the operations to be performed
when the (—n)}th to Oth clauses are selected and the
process descriptor can be reused. When considering the
reuse of process descriptors, unused must be added as one
of the possible gtates that Clauwse Stgte can take, and
when the area for Clause States is allocated, the unutil-
ized portion should be filled with unused's.

A, When the Oth Clause i3 Selected and a New Stream
£8 Added)

(1) (Operations accompanying the addition of the
+(n-F1)th clanses) If Clause Stotes of the (n+1)th
and the —(n+1)th clauses are nol candidate, they
are aet to candidete and those clauses are entered in
Candidote Queue.

(2} The 0th clause is entered lo Candidate Queue.

(3] The (—1)th argument of Argument List is updated,

(€) The program code is replaced (Il the program i3
parameterized with respect to n, only the parameter
valite is replaced).

B. When the (—c)th Clause (e>0) fs Selected and an
Empty Stream is Removed

(1) (Operations accompanying the change of the cth ar-
gument) Elements of the form (¢, ¢} (only (e, ¢) can
exist, if any) are retrieved from Suspend/Fail Table.
For each ¢', the following is done.

s If Clause Stale of the c'th clause is fail, Fad Count
is decrementsd by 1. I it is suspend, the entry
in the waiting list pointed to by Cleuse Backward
FPointer for the e'th clause is deleted,

* Clause State of the c'th clause Ia zet to candidate,
and &' is entered in Condidate Queue,

¢ Elements of the form (¢, —) (only (¢,) can exist,
if any) are deleted from Suspend/Fail Table.

{2) (Operations sccompanying disappearance of the Lnth
clauges)

o If Clause State of the nth clause is fail, Fail Count
is decremented by 1. The same is dome for tha
(—n)th clanse.

» Elements of the form (+n, —) are deleted from
Suspend/Fatl Table.

[MNothing is dene with the Lnth clavses In Candi-
date gJuene. When they are dequened, nothing iz
due other than to change their Clouse States to
tinde fined.)

(3} The {—e)th clause is entered in Candidate Queue.

{4) The ¢th argument of Argument List is updated,

(5) The program code is replaced.

It is clear that both A and B can be accomplished
within a constant time.

If the ares for the current process descriptor cannot

be reused to add a new stream, it is pecessary to allocate
a new area of twice the size and to move to that area. On
the contrary, if it becomes possible to express the process
descriptor with half the size of the current area [by the
repeated removal of streams), the process deseriptor can
be packed and the unused ares collected can be freed.
Thess eperations are shown belaw.

A'. Addition of Streams Entailing Moving to s New
Area

(1) An area twice the size of the current process descriptor
area iz allocated,

{2) All items of the original process descriptor are copied.

{3) The entries designated by all meaningful Clause
Backward Fointers (i.e., ones for suspended clanses)
are made to point to the new area.

{4) The operations described above in A are done.

B, Deletion of Streams Entailing Compaction
{1) The operations described above in B are done.

(2) Candidate Quere is examined and the +nth clanses
are deleted, if any.

(8) The original process descriptor is packed in the top
half of the current area.

(4) The bottom half of the area iz released.

We will now consider the time complexity of A' and
B, If the time needed for memory allocation and releass is
ignored, both A' and B can be done within a time propor-
tional to n. The time complexity of memory allocation
and releaze by Buddy system is

O{log(size of the whole area managed by
the Buddy system)).

This value, however, iz determined enly by the exeeution
environment of the program, which is independent of n.
Therefore, if the execution environment is fixed, the time
needed for A" and B' is O(n).

In order to add and remove streams within an average
time of O(1), it must be guarantesd that the frequency
of doing operation A' or B' is at most once every Ofn)
times. This is easily achieved by doing &' only when it
becomes possible to represent the process descriptor with
(for example) one-fourth of the eurrent area.

4 IMPLEMENTATION OF THE
DISTRIBUTE FREDICATE

For the implementation technique of the distribute
predicate, only cutlines will be presented here.

4.1 Distribution to a Fized Number of Output Streams

The predicate distribute with n output sireams is
expressed by n+1 clauses of the following form:

« The kth clause
distribute([(k, X) | Xs], ¥y, ..., [X | T3], ..., Ya)
= distribute] X7, Hpeeew Yoy e ¥a)e

The 0th clause
diztribute([], [1, ..., []).

First, we will consider the situation where there is
no wait. Handom accessing of clauses must be imple-
mented because, if the 15t to nth clauses were individually
checked, the time complexity would be O(n). The DEC-
10 Prolog compiler (Warren 1977) generates a code that
selocts clauses using the hash value of the principal functor
of the first argument. However, this is inadequate for
stream-oriented programming. In the caze of distribule,
hashing by the tertiary funetor (a fumector of the third
level) of tha first argument is necessary to aelect o clause
within & constant time.

Next, as we did with merge, we will consider how to
nchieve the code size of O(1l). Parametarisation of the
codes of each clause in of course necessary. In the case
of distribute, we shounld further make use of the fact that
clauses can be selected by simple indexing which does not
involve hashing: a hash table requires an area of O(n).

What if there is a wait! In usual situations, the
cause of wait is the Oth argument. In this case, if the
1t to kth clauses all individually go into wait, the desired
efficiency cannot be achieved. Those clauses should al-
ways be managed together: not only when indexing, but
alwo while waiting. In other words, they should be entered
in the waiting lists of read-only variables as a cluster
of elauses. When their suspension is released, the ap-
propriate clause should be selected by indexing,

4.2 Dynamle Change of the Number of Output Streams

As in the case of merge, dynamic change of the oum-
ber of output streams i important, This can be imple-
mented by adding the fallowing elanses:

= Addition

distribute([grow(Yo 1) | Xa], Y1, ...,)
i~ distribute(Xat, ¥i, - Yo, Yauad.
& Delation

distribute([shrink | Xs], Y1, ..., Yoo1, Ya)
= distribute{ Xal, Yip ooey Y1)
In order to efficiently change the number of output
streams, & method similar to the one described for merge
in 3.4 can be applied.

5 APPLYING IMPLEMENTATION TECHNIQUE
OF DISTRIBUTION PREDICATES
TO MUTABLE ARRAYS
The lack of mutable arrays (arrays of rewritable ele-
ments) iz often mentioned as one of the problems of
Prolog. Of course, arrays can be simulated by assert and
retract, but such arraye are not logical arrays, One direc-
tion to reallze logical arrays is to make a correspondence

» Arrays: data of the array type

¢ Operations on arrays: predicates having array argu-
ments

and to gain efficiency by a dedicated data strocture.

However, it is also possible to make the following corre-

spondence

'Recently this was pointed out aleo by Erikeson and
(Erikseon and R:.rl:;p:ﬂ' 284). ¥ R-a.:nur

325

» Arrays: goals (processes)
¢ Operations on arrays: messages in streams

by the program

arrayin, §) - array(S, Xy, ..., Xa)
array({ftudﬂ' II]I 5, Xy, .., Xu, ..., Xa)

:~ array{ Xyyoonny Kiy ooy Xy
(for k=1, ...,)

array([‘WFI’!B{E,Y;} l S|, Xyy .oy X, - + Xu)

= array(51, Xy Yiy oo, X))

(for k=1, ..., n).

This is & rather natural solution if we regard arrays
as mutable objects. This program has properties very
similar to distribule, and If the implementation tachnigue
for distribute In applied, constant-time accessing and up-
dating is realised. It is alto possible to add clauses for
inquiring and/or changing the number of elements. Note
that all transactions with an array object are done through
the argument § of the binary array predicate; s program-
mer need not have direct access to each element,

6 CONCLUSIONS AND FUTURE WORKS

The properties of n-ary merge written in Concurrent
Prolog were investizated and an implementation which
transfers each message with a delay independent of n
was presented. Furthermore, it was shown that an input
stream can be added and removed within an average time
of O(1). With respect to n-ary distribute also, cutlines for
an implementation as efficient as merge were presented.
Mutable arrays that allow constant-time accessing and up-
dating were shown to be realizable by the same implemen-
tation technigue as that for distribute.

However, it was comcluded that these predicstes
should be supported directly by the system. If the system
provides them, merge and distribute for all aritios can be
realized with the constant-size code. On the other hand,
it is unrealistic to obtain the code by compiling a source
program provided by the user, not from the viewpoint of
the efliciency of the code obtained, but from the viewpoint
of the bulk of the source program and the time nesded for
compilation. Nevertheless, it iz favorable in many respects
(e.g., for the construction of programming systems) that
tho semantics of the system-supplied code is expressible
a1 a Concurrent Prolog program.

The suggested technique for the implementation of n-
ary merge has a problem that it does not work efficiently
when a bounded buffer (Takeuchi and Furnlaws 1983) is
connected to the output stream. However, it Is expected
that thiz problem can be solved by improving clause wait
and scheduling.

The most iImportant future tasks are to describe large-
scale systems in Concurrent Prolog, to estimate the cost
of interprocess commaunication, and to confirm the useful-
ness of the suggested capabilities. It is also important to
constder an efficient implementation of interprocess com-
munication in parallel environments,

326

ACKNOWLEDGMENTS

The authors thank to Katsuya Hakozaki, Masahiro
Yamamoto, Kazuhire Fuchi, and Kouichi Furukawa for
providing a stimulating place in which to work. Thanks
are alzo due to Ebud Shapira for offering them hints to
embark on this atudy, as well as to Akikazu Takenchi for
valuable suggestions,

APPENDIX 1

The outline of Concurrent Prolog is given below by
quoting (Shapire and Takewchi 1983).

A. Syntaz

A Concurrent Prolog program iz a finite et of guarded-
clauses. A puarded-clause is a universally quantified logi-
cal axiom of the form

A= G1, G2, ..., Gm| BL, B2, ... Bn, m, n=0,

where the "3 and the B's are atomic formulas, also called
unit goals. A is called the clause’s head, the 's are called
its guard, and the B'a its body. When the guard is emply
the commit operator “|" may be omitted. Clauses may
contain variables marked read-only, such as X7, We follow
the Prolog-10 syntactic conventions: constants begin with
& lower-case letter, and variables with an upper-case letter.
The special binary term [| ¥] is used to denote the list
whose head [car) is X and tail {cdr) is ¥'. The constant []
denotes the ampty liat.

B. Semantics

Concerning the declarative semantics of a guarded
clause, the commit operator reads like a conjunetion: A is
implied by the 'z and the B*s. The read-only annotations
can be ignored in the declarative reading.

Procedurally, a guarded-clause functions similar to an
alternative in a guarded-command. To reduoce a process
A using a clause A1 — @ [B, unify A with Al, and,
if successful, recursively reduce & to the empty syatem,
and, if snceessful, commit to that clanse, and, if successhal,
reduce A to B.

The reduction of a process may suspend or fail during
aslmost any of these steps. The unification of the process
against the head of the clause suspends if it requires the
Instantiation of variables ccewrring as read-only in 4. Tt
fails if A and Al are not unifiable.. The computation af
the guard system & suspends if any of the processes in it
guspends, and fails if any of them fails.

The commitment operation is the most delicate, and
grasping it fully is not required for the understanding of
the example programs in this paper. It suffices to say
that partial results computed by the first two steps of the
reduction—unifying the process against the head of the
clause, and solving the puard—are not accessible to other
processes in A's system prior to the commitment, and that
after commitment afl the Or-parallel attempts to reduce
A using other clauses are abandoned.

The reduction of all processes in a system can be at-
tempted in parallel, and similarly the search for a clause

to reduce a process. Two restrictions prevent an all-out
parallelizm. Regarding Or-parallelism, only the guards
are executed in parallal. Onee a guard system terminates,
the computation of other Or-parallel guards are aborted.
Regarding And-parallelism, read-only annotations can en-
force rather severs constraints on the order and pace in
which processes can be reduced.

REFERENCES

Abo, A, V., Hoperoft, 1, E., and Ullman, J. D., The Design
and Analysis of Computer Algorithms, Addison Wesley,
Reading, Mass., 1974,

Clark, K. L. and Gregory, 5., PARLOG: Paralle! Program-
ming in Logie, Research Report DOC 844, Dept. of
Cemputing, Imperial College, London, 1934,

Eriksson, L-H. and Raymer, M., Incorporating Mutable
Arrays ioto Logic Programming, Proe. Second Interna-
tional Logic Programming Conference, pp. 101-114, 1984,

Gelernter, D., A Note on Systems Programming in Con-
current Prolog, Proc. 1984 Int. Symp. on Logic Program-
ming, pp. T6-82, 1984,

Kouth, D. E., The Art of Computer Programming, Vol.1:
Fundamental Algorithms, Addison-Wesley, Reading, Mass.,
1968.

Kusalik, A. J., Bounded-Wait Merge in Shapire’s Concur-
rent Prolog, New Generation Computing, Vol. 2, No. 2,
pp. 15T-169, 1984,

Nitta, K., Or Coneurrent Prolog Interpreter, Preprint of
the 8th WGSF Meeting, Information Processing Society
of Japan, 1984 (in Japanese).

Ehapiro, E. Y., A Subset of Concurrent Prolog and [ts
Interpreter, ICOT Tech. Report TH-003, Institute for
Mew Generation Computer Technology, 1983,

Shapira, E. Y., Notes on Sequential Implementation of
Concurrent Prolog: Summary of Discussions in JICOT,
1983 {unpublished).

Shapire, E. and Mierowsky, C., Fair, Biased, and Sell-
Balancing Merge Operators: Their Specification and Im-
plementation in Concurrent Prolog, Proc. 1984 Int. Symp.
on Logic Programming, pp. 83-00, 1984,

Shapiro, E. and Takeuchi, A., Object Oriented Program-
ming in Concurrent Frolog, New Generation Computing,
Vol. 1, No. 1, pp. 25-48, 1983,

Takeuchi, A. and Furukaws, K., Implementing Interpro-
cess Communjcation in Concurrent Profog, 2Tth [PS]
National Conference, 3E-7, 1983 (in Japanese).

Warren, D. H., Implementing PROLOG—Compiling Pred-
fcate Logic Programs, Vol.1-2, D. A. 1. Research Report
No. 3%, Dept. of Artificial Intelligence, University of
Edinburgh, 1977.

Warren, D. H., An Improved Prolog Implementation
Which Optimises Tail Recursion, Proc. Logic Program-
ming Werkshop, pp. 1-11, 1980.

