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Abstract

We suggest that Prolog predicates should be
viewed as denoting direeted relations, the direction
being # set of partitions of the variables occurring
in it. Funclions are a special case of direeted
relations with a direction that contains a single
partition.  Complete relations are those whose
direction includes all partitions of the variables.

The paper explores some consequences of such a
realistic view of Prolog. We discuss the issue of
extending Lhe directionality of & relation and in
particular investigate ways of inverting funections
mechanically. Three algorithms for function
inversion are given and their - performance on
nontrivial problems, as well as their shorteomings,
are demonstrated.

Finally we present an interactive system that
traverses a directed compuatation tree, which is a
computation iree in which with each node we
associate information about the variables appearing
in it, and demonstrate its performance.

1 Introduction

The paradigm of logic programming requires the
view of procedure declarations as logical formulae,
and in the case of Prolog { [Kowalski 74], [Clocksin
& Mellish 81]) these formulae are restricted to Horn
elauses. The warious formal semantics of logic
programming provided in [Van Emden & Kowalski
76] define the (never implemented) *pure® Prolog
in the spirit of [Robinson 65). The inapplicability of
these semantics 18 made painfully clear to the
noviee nser of any existing Prolog implementation.
A recent attempt has been made to defline realistic
formal semantics for Prolog [Jones & Myeroft 83],
and we expeet to see further formal discussion of
the issue in the future.

We too are advocating what seems to us as a
realistic view of Prolog programs. The formal part
of the presentation is short and is intended mainly
a5 a motivation for the rest of the discussion which
deseribes  experimental techniques and initial

practical resulis.  Our position is that Prolog
predicates do not denote relafions but rather what
we torm as direeled relations, which we define in
section 2 as an obvious generalization of funetions.
Grabbing the bull by the horns in this way, we
explore ways of extending the directionality of the
predicates. The bulk of the paper is section 3
which deals the with the special case of function
inversion. Section 4 addresses the general problem
of exploring a direcfed computation tree, which is a
computation tree in which with each node we
associate two lists - the variables which are bound
when we enter the node and the variables that are
bound when we exit the node. In the last two
sections we survey some of the related literature
and summarize the main points made in the paper.

2 Directed Relations

Consider the familiar Quicksort, defined by, say:
qoort ([HIT),8) -

eplit(H,T,A,B},!,

giort (A, ALY,

geort(B,B1},

append (A1, [HIB1],8).
geert([], [1).

eplit(H, [AIX], [AIY),.E) :-
order (A, H), split(H,X.Y,Z).
split(H, [A|X].Y¥, [AIZ]) :-
not{order{A H}), split(H.X,Y,Z).
eplit( . [1.01.01).

erder(A,B) :- A<B.

One would  expest  invoecation of the goal
qeort (X, [1,2,8]) to bind X successively to all six
permutations of [1,2,3]. What in fact will happen is
that the interpreter will relurn two error messages
and fail. Werse still, consider the following
definition of Insertionsort:

insort (], [1).
imgert ([X|L] M} :-
insort(L.N) ,insert (3 N, M) .
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insert (X, [J, [X1).
imsert (X, [AIL], [X,AIL]) :-

order (X, A),!.
imsert (X, [AIL], [AIM]) -

insert (O, L. M) .
where erder is deflined as above. When the goal
inport(X, [1,2.8]1) is invoked the interpreter
diverges alter yvielding one permutation, displaying
an infinite number of error messages. A similar call
of an appropriztely defined Bubblesort diverges
immediately and another sort we defined resulted in
a circular lisi.

The problem is obviously that goals are invoked
with the *wrong® arguments instantiated, or in the
wrong *mode® to use Prolog-10 terminology. In
thizs case we might say that sortname(X.Y) iz a
function® from X to Y rather than a relation on X
and ¥. More generally one can make the following
deflinitions:

Definition: Let qul.....x_} be an n-

ary Prolog predicate with an intended
interpretation 1—{{11',...,L1j::-}, and let
‘v’={x1.,.,.x }. R is said to be a function
from from V1 to V2 il <VIVE> is a
partition of V, and for all instantiations of
¥1 {and thus partial instantiations of V)
invaking R will fairly generate all the
tuples in I unifiable with V,
Fer our purposes a partition of a set 5 is
a tuple <51,582> of disjoint sets whose
union is 5. A fair generation of a
sequence i3 one in which any given
aelement is generated after a finite amount
of time.

Example: gsert(LY) is a Ffunction
from [X] to [Y] and frem [X¥Y] to [, but
not from [¥] to [X].

Definition: A Prolog predicate R with
a given intended interpretation is said to
be a D-directed relation if D is.a set of
tuples {<V1,V2>} such that R is a
function from VI; to V2 for all i. Note
that a function from V1 to V2 is 2 special
case ol a directed relation, one that is
{<V1,V2>}-directed.

Example: gerort(¥,¥) is
{=<[XY].]] =, <X.[Y]> }-directed,

Definition: A Prolog predicate R is
called gomplete if it is D-directed for D
the set of all partitions of the set of
variables in R.

ZSince our formalization serves mainly to provide intuition
for the remainder of the paper, we allow ourselves some
freedem in using the terminology. As we will define the term
Junetion it will always denote a nondeterminstic function.

It is not immediately clear what the direetion of a
particular predicate in a program is - the traditional
view encourages regarding it as complete, while
typically it is written as a function. However once a
predicate is identified as a function a question that
arises naturally s whether its directionality can be
extended, perhaps even so as to make it complete
[in the latter case we will say thal the predicate
had been completed). A special case is where the
directed relation is a function from V1 to V2, and
we want to extend it to be
{<VI V2>, <V2Vi>])-direeted, that s we want
to invert the function. Section 3 deals with
function inversion, and scetion 4 deals with the
more general question of determining the
diréetionality of a predicate.

3 Function inversion

The general problem of funclion inversion is hard
and suggests some immediate caveats, For example
& solution to the general problem would yield a
[actoring algorithm and a statement on Fermat's
last theorem. In general automating the inversion
of number theoretic functions is problematic - such
a proeess would have to rely on a detailed
representation of mathematical objects, which
Prolog (like any other programming language)
lacks. That is not to say that engaging in such a
task is a wasted effort, only that such an effort will
center around representation issues (ef. [MeAllester
83|, [Lenat 82]). In fact our original motivation was
to  invert the knowledge of solving counting
preblems  in combinatories inte knowledge of
proving combinatorial equalities (see below]). What
we do in Lthis section is provide some simple
inversion procedures and begin to explore their
properties, The faver of the presentation is
empirical - the reader should expect demonstration
of the procedures’ power rather than a thorough
theoretical analysis.

_Wa first present a simple inversion algorithm
which stated roughly says *Given 2 conjunective
goal solve the conjuncts in reverse order. Given a
?:ngla goal reduce it if possible, otherwise execute
it

Algorithm 1: A slmple inversion

ipvgoal ({A,.B))} -

!, invgoal (B) . invgoal (A .
invgeal (A) -

clause (A,B) ,invgoal (B) .
invgoal (A} -

not(clause (A, )),.eall(A).

When we apply the above algorithm to the sorting

programs from section 2 we observe the following

behavior?

3 . )
All the examples in this paper were done oo a DEC)
running Prolog-10 version 3.47.



Example 1: inverting GQuicksort and Insort

- invgeal(geort(X, [1.2.3])).
= [1,2,3] ;
[1.3.2] ;
[2.1.3] ;
[2.3.1])
(s.1.2] :
[3.2.1] ;

o WG M L e —
nnu

g

7- invgoal(insort(X,[1,2,312).
= [1,2,8] ;:
[1.2,2] .
[2.1.3]
[2.3.11 :
[3.1,2] ;
[3.2.1] :

nmw i n

=]
=
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which is indeed what is required.

IL is surprising (at least to us) that a simple
procedure such as Algorithm 1 proves effective in
these nontrivial cases. Why does it work?

A Frolog program (by which we mean a list of
definite clauses, see [Apt & Van Emden 82]) and a
goal define an AND-OR computation tree. The
Prolog interpreter traverses this tree depth-first
from left to right.

Fact: Algorithm 1 simulates the Prolog
interpreter, preserving the depth-first strategy and
the left-to-right traversal at the OR nodes, but
traversing the AND nodes right-to-left.

Sinee any traversal of the computatiop trea
represents a sequence of steps in the resclution
process | [Robinson B85]), any traversal of the tree
constitutes & sound computation. This together with
the previous fact establish the soundness of
Algorithmn 1. OF eourse the more interesting
question revolves around its completeness - ia it
guaranteed to invert any funetion? The answer is
no, and we demonstrate it shortly. First however we
consider the cases where it does work. Like we said
earlier we will not present a rigorous analysis, but
will briefly give some intuition.

Consider a program P and a predicate R. All
(partial} instantiations of variables oceurring in R
define an AND-OR computation tree which is in
general infinite. There are two reasoms why a
successful goal may fail or diverge when the input-
output status of its variables is changed. One is that
the structure of the induded computation tree is
changed, that is some OR-nodes have a different
number of zons than previously {inalk‘h.tin.ﬁ].‘lﬂ i1
previously unbound wariable may reduce the
numhber of song and vice versa). In particular the
new tree may have a new infinite path; we will sce
guch an example shorily, The other reason has to
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do with Prolog's special features. In the Quicksort
example the feature was numerical ecomparison
{==<*), which requires its two arguments to be
instantiaied to integers. Algorithm 1 Only deals
with the second kind of problem, and is heuristic in
nature, It sssumes that the procedure being
inverted is "backwards deterministice®, to use
Dijkstra's terminclogy [Dijkstra 83].

Algorithm 1 s o bit simplistic in that it only
reverses the erder of computation. The following
procedure adopts the same basic algorithm, but
pays more respect to speeinl Prolog features.

Algorithm 2Z: A less simple inversion

imnvgoal (invgoeal (X)) :- call(0).

invgoal (assert(X)) :- retract(X).
invgoal (retract(X)) :- zssert(X).

invgoal (A is B+C) :- war(B).B is A-C.
invpeal(h is B+C) - var(C).C ism A-B.
invgoal (A ie B-C) :- var(B).B is A+C.
invgoal (A is B-C} :- war(C}.C is B-A.
invgoal(d is -B) :- B im -A.

% and any other mathematical

¥ inversions which are naeedad

invgeal ((A . B)) :-

!,invgoal(B), invgocal (A) .
invgoal(A) -

clause (A, B) ,invgoal (B) .
invgeal (A} :-

not(clanee (A, }) . call(Ad.

Armed with this slightly more meaty algorithm
we can do some more inversions. The next example
brings uws back to our original motivation, that of
inverting the solution of counting problems in
combinatorics. Sinee the example is not trivial, and
becanse we ihink automating the solution of
problems in combinatorics is of interest in itself,
this example will be a bit long and the reader's
indulgence is requested. In [Shoham 84] we deseribe
a program [FAME 1) for proving combinatorial
equalities by combinatorial arguments. The general

gtructure of proving an two expressions egual by a
combinatorial argument is showing that both are a
correct solution to the same counting problem. An
example of an equality is N%e(N-1,R-1)=R*c(N,R},
where {3, Y) stands for *X choose Y*, An example
of & combinatorial proof of this equality is that both
deseribe the number of ways to choose a team of R
players from N candidates and appoint a captain
from among them. The first expression describes
the process of first choosing the captain and then
the rest of the team, and the second expression
deseribes the process of first choosing the whole
team and then the captain. In that paper we
pointed out the shortcomings of our program,
namely that the knowledge of counting was only
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implieit in it and there was ne obvious way to
gracefully extend Lhe program to handle other
problems in combinatorics. The *correct® way to
go about it, we sald, was to write a program
(FAME M} that solved counting problems. Then
another program could be written that used the
knowledge of FAME [ to synthesize a program
similar lo FAME 1, by inverting the knowledge of
counting.

The following is an example of a sclving a
problem by FAME I (translated into English it
reads %In how many ways can you choose a set
sat2 of size r Mrom a sel setl of size n, and chocse
a set aet3 of size 1 from set2?).
| ?- count(
| [(eetl,n), (set2, o), (setd, 1)],

1 [subeet{aetd, satl)

| pubpet(aet2, satl)].
| Solution) .

Solutien = ef{r,1}*cla, T}
yes

I 7

We now ask the converse guoestion - *What
eounting problem s the expression e{n,r)}*c(r,1}
a solution to® by inverting count:

Example 2: inverting Count

| 7= invgoall
I count (X, ¥, cln, rd*c(r,13}).
#% Error: evaluate( 246)

X = [ 241,7), ( 368,1),
{_242.n) |_832],
[eubset( 241, 243),

gubset( 368, 241)] ;

b

E
1]

[¢ 369,r),( 368,1),
(242.n), (_241,7) |_948],

[subset( 241, 242),
subset ( 368, 369)]

-t
u

yaB

| 7

MNotice that these two solutions are correct, and
the most general - X may contain an arbitrary
number of (setecardinality) tuples, but Y is
restricted to exactly the two above subset relations.

The eode for count is too long to include here. To
give the reader a better feel for the two algorithms
consider the following definition of aba:

abeg (N, M) :- H<O,!, M ia -N.
abe (N,K) .

Given the goal abs (X,2) Algorithm 2 will execute
as follows:

Example 3: Inverting abs

| #- invgeal(abe(X,2)).

XxX= -2 ;

#+% Error: evaluate( 31)
X=2.

oo

| ?-

while Algorithm 1 will only return the second
{posilive) answer.

The last example can also serve to demonstrate
the effect of the cut sign on invertibility. On the
one hand notice that although one of the clanses of
abe contains a cut Algorithm 2 returned both
answers. The less happy news is the following:

Example 4t The perils of 1.

| #= invgoal{aba(X.-2)).
** Erreor: evaluate( 31)
X = -2 ;
ho
| 7=
The reason for this "error® is the use of the cut
symbol to improve efficiency. The way to eliminate
this bug is to change the definition of abe to:

aba (N, M) :- N<O.,M is -N.
aba(N.N} :- not(N<O).

and so the immediate lesson is that discipline is
required in defining a [unetion that is to be
invertible. k

The next algorithm, Algorithm 3, may seem at
first sight like an elaborate version of Algorithm 2.
It has two phases - In the lirst interactive phase the
system inverts functions, asserts their inverse to the
database and writes them to a file - all according to
the user's specification. In the second independent
phase the inverted code is simply run.

Az it is presented here, the inverse of a lunction F
is ecalled inw(F)}. The algorithm traveraes the
AND-OR like the two previous algorithms tree and
whenever a goal A’ is unifiable with a head of a
clause A := B, the user is given the choice of
continuing along that branch of the tree or quitting
it. Continuing means asserting the clause inw(A)
:= inv(B), and recursing on B. ‘This is in contrast
te the previous =algorithm where if a goal is
unifiable with a head of a clause the algorithm will
definitely recurse on the body of that elause. The
pdvantage of Algorithm 3 is that the user can
detect infinite recursion during the inversion phase,
and prevent it from oeceurring during runtime. In
this way the user can cope with the first problem
mentioned earlier - the change in the AND-OR tree
structure and in partieular the introduction of new
infinite paths, The disadvatage is that when the
user decides to quit pursuing a branch of the tree
he may lose information. The example we give is
the inversion of & function with side effects. The
predicate geneym is defined in [Clocksin £ Mellish
81 (p. 150), and since our definition is very similar
we will not repeat it here. The resder is reminded
that gensym({'strimg®.8) bind: S to "string®
concatenated with the ASCIH representation of the
(global) number associated with ‘string’, and that



number s incremenbod,

Algorithm 3: interactive inversion

Phase I: findinv

findinv(X) :-

nl.®¥rite('Do you want the resulting cede
agserted in the database? (y/an) °).

nl,read(A),nl,

write (' (¥Fhere) do you want to save the
resulting code? (filemame/pone)’),

nl,read (F},

findinv{X,A,F).

findinv (X, A,none) - 1, findinvl(N.A,.B0).
findiav(X.A.F) :=
tall{F) , findinvi{X, A, yen) , told.

tindinvi([AI1B].X,Y) :-
t.findinvi(A,X,Y),findinvi (B,X.Y).
findinvi([}._. ) - 1.

findinvi((A.B),.X.Y) :-
I, findinvi{A,X,¥),findinvi (B, X, Y).

findinvi(A,X.¥Y) :=

telling(F),tell(user),nl,

sritel(['Do you want to invert the
geal *,A,.'F (¥/n)']).:ml,

told, tell(F),

read(n),!.

findinvi (A X.Y) -
elausa (A, B)Y,invelause (A, B, X, ¥) , fail.
findiovi(_, , ).

invelauvsa (A, B X, Y) :=
invbody(B,C) ,invassert(A,C.X) .
inverite (A,C,¥),findinvi (G, X,¥).

invbody ((X.Y) .2 :-
!, invbody (X.X1), invbedy (Y, Y1),
andappend (¥Y1,X1,2) .

invhedy(X,X).

andappend ((A,B).C,D) :-
! ,andappend (A, {(B,C).D).
andappend (A B, (A.B)).

invassert(_,_ .n) - !.

invassert(A,C, ) -

assertal(inv(A) ;- iav(C))).

invwrite (A,C,ne) := !.
inverita(A.C,yem) :- ml,
writel([*inv(’,A.") :— diov(".C.").'1).
Phase II: inv

inv{inv(X)) - eallQX).
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inv((A im B+CQ)) :- B is A-C.
ipv{{A im B+C)) := C is A-B.
% and other math inversions

inv(assert (X)) :- retract(X).
inv(retract(3)) :- apsert(X).

inv{(A,B)) :- !.inv(A).inv(B).
inv(A) :- not(clause(A, )),A.

Example 5: inverting gensym
| 7- findinv(gensym(X.Y)).

Do you want the resulting code assarted
in the database? (y/2) |: ¥. :

(Where) do you want to save the
reanlting code? (filsname/ma) [: mo.

Do you want to invert the goal
gensym(_31, B2)T (y/z) |: 7.

Do you want te inovert the goal
name{ 62, 218)7 (y/m) l: 7.

Do you want to invert the goal
append(_217._218, 21907 (y/o) |: 7.

Do you want to imvert the goal
wrue? {(y/on) [: =n.

De you want to invert the goal

append ( 613._218, 515)% (y/nd) |: m.
Do you want to invert the goal
integernama{ 218, 218)7? (y/md |: y.

Do you want to invert the goal
integername (216, [1, 21807 (y/2)l: 7.
Do you want to iovert the goal
_626 im _216+487 (y/n) |I: 7.
Do you want to invert the goal

17 (y/n} 1: =,
De you want to imvert ths goal
_218¢107 (y/m) |: n.

Do you want to invert the goal
integername (827, [ 629), 218)%
{y/m) |I: n.

Do you want to invert the geal
_ 628 is 216 mod 107 (y/n) |: m.

Do you want to invert the goal
_ 627 is _216/107 (y/n)} |I: =m.,

Do you want to invert the goal
name (31, 217)7 (y/n) |: =n.

Do you want to invert the goal
getoungensym( 31, 2168)7 (y/md |: 7.

Do you want to invert the goal
apgerta(genpymnum( 31, 218})7
(g/od|: n.

o you want to invert the goal

2168 is 619+17 (y/n) |: n.

Do ;uu want to invers the goal 17 (y/m)

I: m.

Do you want to invert the goal
retract{gensymaum{ 31, 819))7
(g/fnll: mn.

Do you want to invert the goal
agserta(gensymoum( 31,1))7



312

(y/nd|: m.
X =_31,
Y = 52
yas
| - inv(genaym(X,input?)).
X = input
I!!
| 7=

Algorithm 2 will fail to invert genaym:

| - invgoal{gensym(X.input?)).
#+ Errer: svaluate( 562)

! more core needed
[ Execution aborted ]

| 2=

Finally, we demonstrate that evem when taken
together the above algorithms will not suffice to
invert all [lunclions. q:usidar the [following

Program:

fllalX]) :- g().
fIe1x1) - g0 .

glle. 1.
gy - f£(¥}.

Considered as a function from [X] to [], 0X) acts
as recognizer for the regular language [a+b)e.c Ls.
Inverting [ would cause it to act as a *fair®

generator of the same language (in the sense defined
in section 2). The reader should convince himself

that none of the above algorithms will invert f. The
reason  for  this i3 that  with its argument
instantiated, [ defines a [noite tree. With its
argument uninstantiated it defines an infinite tree
= there are an infinite number of OR-podes that are
roots of two infinite subtrees each [corresponding to
the first two elauses). MNeither the regular
interpreter nor the algorithms presented will
traverse both infinite subtrees of any OR-node.

At this point we should mention an obvious non-
solution to all inversion problems [and predicate
redirection in general) - conduct a breadth-first
search of the computation tree. Both aspects of its
" non-solutioness® [namely, its thearetical
completeness  and impracticality) can be
demonstrated on the above program. We have
implemented & breadth-first theorem-prover in
Prolog; Invoking the goal bf (@) will initiate auch a
proof.®

Example 6: Gencrating {a+b)*.c.E*
| 7= bECECA)) .

X = [a.c,_312] ;

AThe exaet definition of bY Is amitted for lack of apace

X = [b,e, Bi6] ;

X = [a.a.c._1342] ;

X = [a.b,c,_1818] ;

¥ = [b,b.a,a,c, 14865] ;
X = [b,b,a,b,e,_16398] ;
X = [b.b,b.a.c,_ 155411 ;

| morsa cere neaded
[ Execution aborted ]

| 7=

We actually have another implementation of bf
that, wusing side effects, wuses space more
economically. The prieel s in time - it took ten
minutes elock time to generate 90 strings.

4 Exploring directions of relations

In the previous secticn we dealt with the problem
of automatically or semi-sutematically angmenting
the directions of directed relations of a particular
kind in a particular way, namely ioverting
functions. However, while we may not know how
to invert a {<[XY Z],[AB,C|>}-directed relation
{i.e, a Tunction) we may be able to augment its
direction to
{<IX,Y.ZLIA,B,Cl>, <[X,Y,CLIA,B,Z]>).
Furthermore, while we may not know how to invert
either the <51858>.directed relation B or the
53,54 > -directed R, we may be able to actually
complete the {51,527 <53,54 > }-directed R (for
example, if 51=54==[X] and 52=83=[Y] ...). Since
the simpler [unction inversion problem iz already
complicated enough, we have not attempted to
sutomate the general problem of predicate
redirection. What we have opted for is an
interactive program that, directed by the user,
explores a direcied compulalion tree. By that we
mean an AND-OR ecomputation tree, where with
ench node we associnte two listg = the variables that
are instantlated wher the node is reached from its
parent and the variables that are instantisted by
the time the algorithm returns from the node to its
parent (obvicusly the [atter will be a superset of the
former). Exact definition of the latter is & bit
problematic, because different refutations may
instantiate different variables. In this program we
wdopt an optimistic view and take the union of all
sich variables. It is trivial to take their intersection
(see the predicate collectDd below), and possible to

implement a more sophisticated procedurs; our
experience suggesta that this is not a crucial isswe.

Before we give the algorithm, we dernonstrate its
behaviour on the Quicksort example from the
previous sections. iowalk(I.6)® will initiate a
preorder  depth  first search of the directed
computation tree whose root is <I1,0,G .

IE'Eihl:rl: wi borrow from the terminology of data dependency
[MeDrermote 83)



Example 7: Walking the directed
tree for Quicksort
7= dowalk({[¥],qoort(X,¥2).

Do you want to pursue the goal:

l:

geort{ 52, 28)
with the ipetantiated variables [ 29] ?
¥

The I0 relations in its subgeals are

The goal(s):

true with [] as input

The goal(s):

eplit( 480, 481, 482, _4B83),

geort(_482, 434} qpurt( 433 455)

append (_: 484, L 480|_486], -ITE'J
with L;i?ﬂ] a8 input

Do you want to pursue the goal: true

l: i
Do you want to pursue the goal:

l:

with the instantiated variables [] 7
o.

eplit( 480, 481, 482, 483)
with the instantiated variablea [] 7

Y-

The I0 relations in its subgoals are
The goalis): true with [] as input

The goal(s):

The goalis):

order( 1114, 1115),
split( 1114, 1116, 1 117, 1 118)
with [] as input
order ( 1123, 1124),
split( 1124, 1125 1126, _1127)
with [] as input

Do you want to pursue the goal: true

with the instantiated variables [1 7
n.

Do yeu want to pursue the goal:

order( 1114, 111E)
with the instantiated variables [] 7

¥

The I0 relations in its subgoale are

The goal(s):

Do you want to pursue the goal:

_1674< 1675 with [] as imput

_1674< 1875
with the imstantiated variables [1 ?

Y

Ko clausas Inr__}ﬁ?&q_;ﬁ?ﬁ

When the goal:

which of the variables [ 1674

2285 ie invoked
with the variables [] instantiated
,_1675]
become inetantiated? (list of numbers)
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At this point it Iz obvious where the problem lies

- if it wasn'l obvious when eplit was called with

no arguments instantiated, it certainly is when an
uninstantiated variable is posed as a goal.

The directed AND-OR tree search algorithm is
given below. The more straightforward utility
routines were omitted here for lack of space.

Algorithm B: lowslk

iowalk
iowalk(I,Goala) :-—

iewalk(I,0,Goalse).

iewalk(I.D, (Goal More@l) :-= !,
towalk(I,01,Goal) .
iewalk(01,.0,MereG) .

iowalk(I,O,Goal) :- !.
nl.writel{["Do you want
to pursue the goal: *,
Goall),
varsof (Goal, I1),
gtrict interoect (I,Z1.1I2),
nl,tab(2),
writel([® with the instantiated
variahles *.I2,° 7*1).
nl,read{A) .,
ioracurse ((I,0,Goal), A).

iorecurse
iorecurse ((I,0,Goal),m} — !,

iogquery(I.01,Goal) append(D1,I,0).

iorecurse((I,0,.Goal),¥) -
elauges of ((I.Goal) . L).!
pprels(Ll},
petof (01,
(Goali,T1.L)"
(momber ({I1l,Goall} L),
iowalk(Ii,01,Goall}),
Oliet),
collectD(0liet,List),
append (I, List,0) .

ierecarse ((I,0,Goal) ¥y} :-
writel ([*No clauses for °,Goall).
iequery(I,01,Ceal) ,append (01,1,00.

ioguery(I,0,G0al) :-
varsol (Goal, V),
strict diff(V,I.U),
icgueryl (I, U,0).

iogueryi (I, [1.[1y = 1.
iogueryl (I,U,0) :=-
nl.writel([’When the goal: *,Goall),
ol writel([' is invoked with the
variables *,I," instantiated®]),

nl, writel([*which of the variablem *,

U,* become instantiated?

{list of numbera)'ll.

al,read(N),
aetef0(X,Y" (member (Y. N) . ath (U, Y, X)) ,00.
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clauses of ((I.Goal) .L} :-
potof ({I1,8aall),
{I,I2,Conl, V)"
{clause (Goal,Goall),
varsof (Goall V).
varsof {I,I2),
strict intersect{I2,V.I1)),
L).

collectD(0liat, Lint) :-
gotel (¥,L" (member (L. 0liat).
nembar(V,L)) ,List) .

The iowalk sytem can be viewed ns 2 symbolie
trace package, Motice that beside represemting the
input and the output explicitly, this system also
allews the user to omit any part of the tree he
wants, This is not quite analogous to the =skip® of
the usual Prolog debugging package® sinee there the
pxocution i= actual and iz only invisible to the user.
Here the execution is symbolic and the user may at
any point supply information to influence the
remainder of the traversal,

The reader may have noticed that lowalk repests
trying to pursue directed relations, although similar
or identical ones have been encountered before. We
in fact have another system called iowalke which
caches results as it goes along, and in the future
tries to use those results belore querying the user.
Results can be cached either literally, or can be
generalized, For example, after the predicate
write (hello) is processed the user is given the
option of generalizing the result, and in this
example he would probably be wise to generalize
the argument to write. This raises the jssue
whether we allow errors in the cached results, If we
do, and our view at the moment is that we should,
we have to allow for correetions of the cache when
those errors manifest themeolves. We envision a
system in which directed relations will accumulate
over a long time and across many users, so that it
will be prohibitive to delete all the cached resulis
and start from seratch. The alternative we suggest
is a data-dependency system ( [McDermott
83, [Doyle 79]) that will direct the undoing of
wrong hypotheses seloctively, and we have an initial
implementation of such a data-dependency system.
Sinee the seope of of these issues is beyond what we
intended for this paper and because of the early
stage of implementation we will not pursue this
diseussion any further here.

5 Related work

In 1957 MeCarthy addressed the problem of
inverting  recursive  functions [McCarthy 58],

pointing out the difficulty of the problem.” The
one method he discussed explicitely” is  the
enumeration procedure, which is the analog of

Ser. *Prolog debugging Facilities® by Lawrence Byrd, in the
documentation lor Prolog-10.

proving a theorem by systematically generating
English text and testing to see il the text is a
correct proof of the theorem. He speculated on
what would be needed to improve upon this
procedure, and one ean consider the work described
here a continuation of those speculations.

Maore recently Dijkstra has also considered the
problem of program inversion. In [Dijkstra 83] he
gives a (manual) inversion of the veetor inversion
problem, As he himself says, that inversion is
straightforward because *the algorithm is
deterministie and no information is lost®, while the

general inversion problem remains opem.

In “an interesting paper Tolfoli [ [Toffoli 80])
suggests a way of transforming any computational
cireuit to an equivalent invertible one with a worst
case additional cost of doubling the number of
channels. While the scope of this paper does not
permit a detniled diseussion of his work, there are
two basic ideas - add *redundant® information to
tnsure function inversion, and try fo reduce entropy
by making the redundent information to one
function be esseniial information for another
[unetion. Other references to theoretical work on
reversible computations are [Bennett 73], [Burks
71), |Taffoli 77].

|Sickel 79] is work on imyertibility in the context
of logic programming. The npotion of
invertibility * developed there is different from our
netion of inversion. First, in [Sickel 79] a predicate
which is a function from 31 to 52 is j-invertible if
its direction includos the tuple
{SI.USEa{Vj},{"v’j}} where 'v"j is the j'th argument
of the predicate. More importantly Sickel does not
refer to the particular traversal order of Prelog, and
programs that she considers “invertible* would in
fact fail in Prolog. She gives two algorithms for
determining the =input-output mapping® of a given
prodicate which are similar o our iowalk system.

6 Summary

e We suggest viewing Prolog predicates as
denoting directed relations. For a
predicate denoting a relation with a
certain direction, we asked whethar its
direction can be extended. A major
part of the paper has been concerned
with the special cose of function
inversion.

TWe do not agrae with his ctabm there that solving any
swell specified® problem amoonted to the invarsion of some
Turing Machine. In our notation & specification procedurs is
a {=5]|>}-direcied relation R (ie. & function) for some 5
and 1, while the algorithm solving it is not the {<[.8>}-
directod B bul rather the {<<51,52> )-directed R for nome
pattition < 51,82 of §. Thiz hawever does mot affect the
relevance of his subsequent discwssion of inverting functions
defined by Turing Machines.



# We have presented essontially  two
effective  algorithms  for  inverting
funciions - Algorithm 2 and Algorithm
3. Both involve reversing the bodies of
encountered clauses, bui the latter is
more  gelective in which elauses are
inveried. Both allow for extra-logical
features of Prolog, namely inverting
assert fretract and arithmetic operations.
The trestment of the latter is wvery
cursory and ad-hoe, and if any non-
trivial  imversion of mathematical
Tupetions is desired the question of the
reprosontation of mathematical objects
requires closer attention.

o0t has been demopstrated that these
algorithms are offective in some nom-
trivial enses; and that there exist
funciions not invertible by either. We
have given SOIME intuitive
characterization of the [functions
invertible by oach algorithm; the next
step  should be to  make  this
characterization formal.

« A complete yet impractical algorithm
lTor  predicate  redirection  has  been
presented [namely a breadih-first search
of the computation tree) and its
performonce has been demonstrated.

s The eut sign should be used judiciously
in a function that is to be inverted, and
conversely we should handle it more
carefully in our algorithms.

We presented a system that helps the
user find out the consequences viewing a
predicnte as a relation with 2 certain
direction.
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