PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1984,
edited by ICOT, © ICOT, 1984

259

HOTES ON SYSTEMS PROGRAMMING IN PARLOG

Eeith Clark and Steve Gregory

Department of Computing, Imperial College
Londen SWY 2BZ, England

ABSTRACT

Several topica connected with systems
programming in the parallel logie programming
language PARLOG are discussed.

We argue that a parallel language needs a
muoh mere elaborate metacall faeility thanm the
gimple sucoped=-Cail metacall of PROLOG. In
order to progrem an operating aystem shell
which is failsafe, allows abort termination of
processes and which makes vialble any inore-
mentally constructed cutput of a user process,
a three-argument metacall primitive is needed
which alweys succeeds. The first argument iz
the ¢all to be evalumted, the second ia the
atatus or result of the evaluation and the
third iz an input argument which can be used
by some othér process to control the evalua-
tion of the oall.

1 INTROIUCTION

1.7 Brief intredustion to PARLOG

PARLOG (Clark and Gregory 198%a) is a
parallel logic programming langusge featuring
both and- and or-paralleliss, For this paper
wé need to use only the and=parallel subast of
PARLOC, which we shall briefly outline here.
This language, based on Horn olauses, differs
from FROLOD in three erueial respects: "don't
care non-determiniss®, parallel evaluation and
"fmoda™ declarations to apecify communication
conetralnts on shared variablea. PFach rela-
tion eall can be evaluated as a separate pro-
cess. The shared variables aect as communica-
ticn channels along which messages are sent by
incremental constructicn of streams, which are
lists of mosaage terma.

1.1.1 Don't care pnon-determiniss
A PARLOG clause takes the form

r(tly..,tk) <~ <guard conditioms> :
<body conditions).

where the © signals the end of the guard and
t1,...,tk are argument terms.

Both the <{guard conditions> and the <body
conditions’> are conjunotions of relation
calls, There are two types of conjunction:
the parallel "and™ (C1 , €2) in which the con-
Junots €1 and €2 will be evaluated in parae- -
1llel, and the sequential "and™ (C1 & C2) where
G2 will only be evaluated when C1 has succeas-
fully terminated.

In the eveluation of a relation call
FE1",...,Ek"), all of the clauses for rela-
tion r will be searched in parallel for a can-
didate clauwse, The above clause is a ocandid-
ate clause if the head r{tl,...,tk) matches
the call r{t1%,...,tk') and the guard suc-
ceeds. It is a non-candidate if the mateh
falls or the match supoceds and the guard
falls. If all clauses are non-candidates the
call fails, otherwise one of the candidates is
solected and the call is reduced te the subs—
titution inatance of its body. There i3 no
backtracking en the choles of candidate
clause. We "don't care" which candidate
clause iz selected. In practice, the Cirat
one (chronologically) to be found is chosen,

During the search for a candidate clause,
no variables in the call are bound, There is
no cutput binding to variabies of the ecall
until the evaluation commita to the use of
some olause. Because there is no backbraoking
there is never any need to reseind a2 measage
sent via a shared variable of the call,

The search for & candidate claunse can be
controlled by the use of the ; operator bet-
wean clauses. If a relation is defined by the
sequence of clauses

Clausel.
Clause?;
Clausze3.

Clause3 will not be tried for candidacy until
both Clauael and Clause® have been found to be
non=candidate clauses.

1.1.2 MHodes

For every PARLOG relation definition
there is a mode declaration which states

300

whether each argument is input (7) or output
("}. For exsmple, the relation merge(x,y,z)
has the mode (2,7,”) to merge lista x and ¥ to
list z (lower case identifiers are variables):

mode merge(?,7,").
merge([uix],y,[ulz]) <- merge(x,y,s).
merge(x,[viyl,[viz]) < merge(xz,y,z).
merge(l],¥,¥).

merge(x,[]1,x).

Concurrently evaluating relation calls
communicate via shared variables; the modes
impose & direction on this communication.
Mon-variable terms that appear in input argu-
ment positions in the head of a clause oan
only be used for input matching. If an argu-
ment of the call is not sufficiently instan-
tiated for an input matoh to proceed, tha
attempt to use the ¢lause suspends until some
other process further inatantiztes the input
argument of the eall. For example, the first
clause for merge has [u]x] in its first input
argument position. Until the call has g list
ar partial list structure of the form [ulx] in
the first argument position the first clause
is suspended.

If all clauaes for a call are suspended,
the o0all suspends. A candidate clause can be
selected even if there are other, suspended,
clauses,

1.2 Congurrent PROLOG

Concurrent PROLOG (hereafter CPF} (Shapiro
1983) ia very similar to the and-parallel sub-
set of PARLOG; the main difference is that CP
uses read-only vardable annotations on vari-
ables to apecify the communication const-
raints, where PARLOG uses modes.

Beoause both PARLOG and CP are deriva=
tivea of the Relational Language of (Clark and
Gregory 1981),; they both feature don't care
non-determinism, goarded clauses and the prop-
arty that no bindings are made te a oall until
the evaluation commits to the use of socme
elause. (However, Shapirc has recently pro-
posed a possible relaxation of this last pro-
perty; we discuss this in section 8.)

1.3 Syatems programming in PARLOG

In (Shapiro 1984), Shapiro develops in CP
a fallsafe Unix-like shell program to run
foreground and background commands and handle
ARORT interrupts for foreground commands, Hia
approach relies on evaluating commands as cone
ventional suecess-or-fail metacslls in the
guards of the shell program. The fundamental
problem with this approach is that the output
of guard processes i3 not made available until
the guard terminates. Hence, incrementally
constructed output of & user procesa ia not
visible whilat the process is evaluating,
This preventa interactive communication

between a user process and the user or between
a user progess and a filestors process, fop
axample.

We follow through the examples of Sha-
piro's paper and show how they can be rewrit-
ten with user commands evaluated outside the
guards, and hence with incrementally econat-
ructed data made viasible, by using a three-
argument metacall primitive that always suscc-
eeda, The first argument is the call to be
evaluated, the second is the status or result
of the evaluation (e.g. SUCCEEDED, FAILED) and
the third is an input argument which ozn be
used by some other procesa to ocontrol the
evaluation of the oall,

The use of this primitive not only allows
interactive user progrems but allows us to
brogram a more powerful shell that allows the
selective aborting of background processes as
well as foreground processes. It also permits
scheduling strategles to be imposed on pro-
ocsages.

As well as solving several problems in
systems programming, the three-argument meta-
call subsumes certain PARLOG features such as
negation as failure and the ssquential "and",
and allows us to reduce the ar-parallel evalu-
ation of the guards of alternative clauses to
and-parallel evaluation. We contend that for
these reasons the three-argument metacall is
the patural metacall primitive for parallel
logie programming languages like PARLOG and

2 A STMFLE SHFLL

We begin by writing in PARLOG (Program 1)
a aimple shell that handles a strear of comm-
ands to run foreground and background process-
e8 without input or sutput. The relation
shell({cmds) acts as a process which consumes a
strean of commands emds and invekes each as a
process using the call metacall, The commanda
are labelled by FG (foreground) or BG {back-
ground) .

mode shell(?).
shell([]). (51}
shell([BG{proc) |ecmds]) <-

call{proc), shell(emds). (32)
shell({[FG{proc) |emds]) <-

call{proc) & shell{emds). {83)

Erogram 1: a simple shell

Clause (21) terminates the shell when the
command list is closed. {352) desls with a
background command BG(proe) by invoking proc
concurrently with resuming the shell to pro-
ceas the next command, (53) is similar but

handles foreground commanda., It waita for the
command process to terminate successfully be-
fore accepting the next command., This ia due
to the use of the sequential "and™ (&) in
place of the parallel "and® {,).

Program 1 is similar to the one given in
(Shapirc 1984) except that, in the latter,
foreground commands are evaluated in a guard
as in alausa (S53).

shell([FG({proe) lomds]) <-
call(proc) : shell(cads). (553)

The use of the guard to enforae sequential ex-
eoution is acceptable only if the foreground
command dees not produce any output, or if it
is acceptable that all the output generated by
tha feoreground prooass ia only visible to the
shell user when the process terminates. More
realistically, the shell process should expli-
oitly merge ocutput atresms from esch invoked
process o that messages from the processes
can be displayed to the user or transmitted to
other processes in the operating system,

3 A SHELL WITH OOTEUT

To make owr shell program more useful we
allow commands to produce stream output which
is accessible as stream output of the shell
whilst the process is running., This is imple-
mented by Program 2, for the raelatien
sholl{cads,so). cmds is an input list of com=
mands, as before except that a command is now
of the form BG(proc,co) or FG(proc,co). proe
ia the process to be executed while co is the
output atream of prooe that should be paased
ocut of the shell process via the shell cutput
stream so. For example, & possible command is
BG(primea(x),x) where x is the stream of
primes to ba displayed st the terminal,

epode shell(?,).
shell{[1,[1}. (081}
shell([BG{proc,co) |emds],s0) <=

merge(co, nso,50) ,

call(proc), shell(cmds,nso). (0s2)
ahell{[FG(proc,co) |eads],s0) <~

merge(co, n8o, 80,

{ eall({proc) & shell{emds,ns0)}). (033)

Erogras 2 4 sbell with cutpuf from copmands

Ezch time a command i3 received, the
shell creates a new merge process to run con-
currently with the command. (The merps in
{053} could be replaced by append with no
change to the behaviour.)} Any output generat-
ed by the command process is merged onto the
ahell's output stream immediately. This is
true of both foreground and background com-
mands, If we were to lollow Shapiro's method

301

of placing the sall to proe in a guard in
{023), any cutput generated by a foreground
command would be invisible until the command
termimated. This would make it imposasible to
run interactive foreground programs,

Thiz example illustrates cur point that
the guard should not be used to enforce Seqg-
wential evaluation; it is far too powerful.
What is needed is the sequential P & Q cons-
truct which delays the eveluation of Q without

delaying the output of P.

By running sbell in conjunction with a
mesmage handler wa can allow any sort of out-
put message to be produced by a process, inc-
luding requests for input via yariables in the
messages, Thus, 2 message of the form

fileztore(GET, filenane, x)

would be routed by the message handler as a
GET requeat to the filestore. The retrieved
file would be returned te the requesting pro-
ceas as the binding for the variable x which
will be local to the sending process. In thia
way the processes being run by the =hell can
have input as well as output cemmunication.
For more details of the technigue of two-way
communication uaing variables in messages,
which is dus to Shapire, we refer the reader
to (Shapiro 1983} or to (Clark and Gregory
1984a).

4 PROCESS FATLURE

Az Shapiro points out in (Shapiro 198%),
the shell of Program 1 will erash if any of
the commands fails since they are part of the
same conjunction as the recursive shell inve-
cation, To overcome this, he replaces the
metacall call{proc) by enovelope{proc) which
always sucosads, The definition of envelope
can be adapted to PARLOQ az follows:

mode envalope(?).
envelope(proe) <- call(proe) :;
onvelope(proo).

where we have used the sequential search oper-
ator j between the clauses to ensure that the

saconhd elavse iz used only if the guard of the
rirst clause faila.

This suffers from the same fatal flaw =s
that described in the previous seotion: since
the command is evaluated in a guard ita output
will not be made available until it haes succ-
esafully terminated.

4.1 A two-argument metacail

Qur solution to this problem is to gene-
ralize the metacall primitive by adding a sec-
ond argument ;

call(goal?,status®)

302

Such a metacall evaluatea its firat argu-
ment goal and =lways succeeds with an output
binding for atatus: SOCCEEDED or FAILED deap-
ending on the success or failure of goal., Any
output generated by the evaluation of goal is
available immediately, as it would be in a
call eall(geal). The difference is that even
if goal subsequently fails, the output genera-
ted up to the point of fallure remains since
the metacall succeeds.

The behavieour of a shall which evaluatas
commands {i.e. user programs) using this more
general metacall seems to be what one would
expect of a practical ocperating aystem. IFf a
user program fails (resulting in a FATLED re-
sult from the metacsll), the operating system
will not erash. Moreover, output from a user
program is inorementelly available whether or
hot i1t ultimately fails, The output trace of
& failed program is therefore available for
debugging and other purposes.

A third poasible value of status is
ERROR, which will be issued if a run-time
error ocours during the evaluation of a meta-
call. Again, the metacall itself will aucceed
in this case. We can now define a relaticon
terminated(status) which succeeds when a meta-
call evaluation has Ffinished: .

mode terminated(%}).
terminated (SUCCEEDED) .
terminated (FATLED).
terminated (ERROR) .

More generally, the ERROR message might
be parameterized to ineclude information about
the type of error (invalid use of scoe prim-
itive for example) and the eall that resulted
in the error. Finally, if the metacall is
further generalized to accept inputs via bind-
ings for variables in its error messages, we
have a building bloak with which to implement
Error recovery.

b.2 Sealing the output atream of 3
terminated progess

A program that fails or encounters an
error (or even succeeds) before it has fin-
ished its output will leave a "dangling
stream", f.e. a list with a variable as some
tail sublist. The consumer of the cutput of a
program evaluated by the two-argument metacall
must therefore monitor the result of the pro-
gram atd close the dangling stream if the pro-
gram terminates, For example, the second
clause of Program 2 must be changed to

shell{[BG(proe,co) lemda], so) <-
dmerge(status, oo, nso,s0),
call (proo,status),
shell({omds,nso). (0s21)

Frogram 3 defines dmerge which is similar
to merge except that it has an extra argument:

the status of the metacall process producing
its first input stream. The extra fifth
clavse effectively closes this stream cn the
termination of its preducer process by termin-
ating the dmerge process when its a argument
is SUCCEEDED, FATLED or ERROR and there is no
output from the metacall waiting to be passed
through (the var test)., The 3 argument ia
acting as a termination message about the
firat ipput atream,

mode dmerge(®,7,7,7).
dmerge(s,[ulx],y,[ulz]) <- dmerge(s,x,y,z).
daerge(s,x,[viyl,[v]z]} <- dmerga{s,x,y,z).
m{aj[]frrr}t

dmerge(s,x,[],x).

dmerge(s,x,¥,¥) <~ terminated{a), var(x) :.

5 ABORTING FROCESSES

In (Shapirc 1984) Shapirc extends his
shell program so that the current foreground
procesa is aborted on receipt of an ABORT (or
Control=C) interrupt on the command streszm,
Hi=z solution again relies on the execution of
the ccmmand process in the shell'a guard as in
(223). He does this by having two clausea to
handle foreground commands:

shell{[FG{proc) jomds]) <~
eall(proa) : shell{emds). {3383)
shell([FG(proc) |cmds]) <-
search(ABORT, cmds, nomds) :
shell({ncmda), [S34)

mode search(?,7,”).

gearch(u, [u]x],x).

searchiu,[vix],¥) <- u =/= v :
search(u,x,¥).

The command process of the metacsll
call{proc) runs in parallel with the process
gearching for an ABORT since both are in the
guards of clauses and will be evaluated in
parallel in the search for a candidate clause,
The successful termination of elther guard
progess aborts the other guard and the shall
process is continued at the appropriate point
in the input ecompand stream.

For the reasons that we have already giv-
en regarding the need to accesa output of com-
mands during their evaluation, we regard any
aplution that places a command evaluatien in a
puard as unsatiasfactory., Moreover, the racing
of guards will only allew abort termination of
foreground processes, or of all processes.

§.1 A general metacall primitive

pur solution to the problem is onece more
to generalize the metacall to a three-argument
form:

pall{goal?,status”,control?)

The third argument eomtrol will normally
be an uninstantiated varlable, If it is bound
to the term STOP by ancother process, the eval-
uatien of goal will be terminated with status
bound to STOPPED. We must now add another
glauvse to our terminated relation:

terminated (STOPPED).

5.2 Aborting foresround comsands

Program 4§ gives our version of a shell
that handles ARORT interrupts for foreground
processes with an ABORT command given in the
normal comtmand stream. When a foreground oom-
mand is received {AS3), the evaluation of the
command and the search for an ABORT command
ara imvoked as and=-parallel metaoalls, each of
which can be prematurely terminated by a STOP
message from the third proceas, arb.

The arb process moniters the results a1
and a2 of these metacalla: it STOPs the com-
mand proceas if the search for an ABORT is
successful, or STOPs the search if the command
process terminates. It also seleots the appr-
opriate ccmmand stream continuation point
{cads or acmds) depending upen whether the
usar process or the ABORT-seelding procass has
terminated first. This is then passed on to
the recursive shell process whioh starts as
soon as the arb process has terminated, either
on a normal termipation of the foreground pro-
geas or on an ABORT being found.

mode shell(?), arb(?,?,”,",7,7,").

shell{[]}. (&51)
shell([BG(proc) |emds]) <=
WHWW.#.OL .d:&lltmda}. (-“32}
shell({[FG{proc) jemds]) <~
call(proc,al,cl),

oall{=earch(ABOAT, cmds, acmds) , 22,02),
{ arbia1,s2,01,c2,mda, aceds, ncads) &
shell{ncmd=a)). (A53)

arb{al,a2,c1,5T0P, cnds, acnds, emds) <-
terminated(al) :.
arb{al ,SUCCEEDED, STOP, ¢2, cnds, aceds, acmds) .

Frogram 4; @ shell that handles ABORT
Aipterpupts for foreground proceases

303

5.3 Abortine backeround commands

Program 5 has an output stream for com=
pands (as in Program 2) and allows the abort-
ing of background commands. It does this by
keaping a procs list of all the active back=
ground processes (those whose result variables
have not yet been instantiated) identified by
a proc=id. A message linking the command with
its proo-id is cutput to the uwasr when the
process is invoked. When the special command
EILL(proc-id) is received, the current proca
1ist is searched by the kill process and the
identified process is stopped by =setting its
control argument to STOP, using the as=zignment
upification primitive :=. The insert proceas
that adds a new record to the process list
alac generates the proc-id snd may also gar-
bage collesct the current proceas list by del-
eting all the processes with a bound status
variable.

The clause for kshell that deala with
foreground commands has been omitfed. It will
be a slight meodification of that in Program 4
to allow for an output atream merge. It need
not add the foreground process to the process
1ist and it can abort as before on an ABORT
command.,

mode Hhﬁll{?;‘} ¥ kﬂh&ll{?:?!*]]
ki11(7,%,").

sheil(cmds,so) <= kshell(cmds,[],s0}.

kshell([ETLL(proc-id) jemds], proca,
[ETLLED{proe-id)}|sc]) <~
kill({proe-id,procs,nproes}),
kahell(cmda, nprocs, so). (K52)
kahell([BG{proa,co) |emds], procs,
[NEN=FROC(proc-id, prog,co) jao]) <-
insert(PROC(proe-id, 8, ¢}, procs, nprocsa),
dmerge(s,co,ns0,50),
call(proe,s,c),
kshell(emds, nproes,nso) . (KS53)

kil1{proe-id,[1,[1).
ki1l{proe-id, [FROC{proc-id,s,¢) [procal,
proes) <=
¢ = STOP.
kd1l{proc-id, [PROC{p-id,s,c){proca],
[PROC{p-id, s,c) jnproca]) <~
proe-id =/= p-id :
kill(proc-id, procs, nprocs).

304

& PRIORITY SCHEDULING
6.1 Suspending evaluations

Our final refinement to the gensral meta-
call primitive eall(?,”,?) is to allow the
evaluation of a metacall te be temporarily
suaspended and restarted by another process.
The eontrol argument can now be bound ineore-
mentally to a list of SUSPEND or CONTINUE nes-
sages, posaibly terminated by the term STOP.
Each time a SOUSPEND message is sent on the
control argument, the messsge is echoed on the
status argument and the evaluation enters a
suspended state. It can only be resumed by
Sending a CONTINUE message, which again is
echoad on statua.

6.2 A priority shel]l

In our previous shell programs, back-
ground processes continue running even when a
foreground process is invoked. We might wish
to give a higher priority to the foreground
process, sc that background processes run only
when there is no active foreground process,
This iz implemented by Program 6.

mode ‘shell(?), pri-shell(?,7).
shell(cmds) <= pri=shell(cmds,bge).

pri=~shell([],bge). (P21}
pri-shell([BG(proc) | cads],bgo) <~
eall({proe,s,bgo),
pri-shell(cmds, bge) . (Ps2)
pri-zhell([FG(proc) |cmda],bge) <~
bge := [SUSPEND|bgol] &
call(proe,s,fge) &
bgel := [CONTINUE jnbgc] &
pri-shell(cmds,nbge). (E33)

Erogram €; s shell with priority to
foreground commands

Background commands are evaluated in par-
allel with the shell, as before, but share a
compmon control argument. When a foreground
command i3 invoked, a SUSPEND message is sent
on this control argument, causing all back-
ground processes to suspend. When the fore-
ground command terminates, a CONTINOE is sent,
reactivating the background processes.

T A PRIORITY SHELL WITH INPUT

We now treat the case of a lereground
command taking input data from the shell'a
command stream. This input must be demand-
driven: the command process will generate a
atream of request vardiables, each of which
will be bound to the next data item on the
command stream when it is available. 4 com-

mand of the form FG(proc,ci) will invoke proa
a5 a foreground process and treat of as a liast
of variables te demand items from cmds. When
the foreground command terminates, the remain-
der of cmds will be passed back to the shell.

Az in Pregram 6, we shall give a fore-
ground process priority over background pro-
cesses. Hewever, if a foreground process has
to walt for input from the command stream,
contrel can be relinguished to the background
processes. This is implemented by Program 7,
which gives a new fourth olause (PSU4) to be
added to the shell program of Program 6.

mode mim{?lzl:lnll?l?l.)l
N0).

pri-shell{[FG(proc,ci) lemda]l,bge) <=

call(proe, s, fgc),
switeh(ei, s, fge, bgel ,nbge, ends, nemda) ¥
pri-shell{ncmds,nbge). (P3h)

switch(ed, s, fge, [CONTINDE {bge], bge,
omds,cmds) <~ terminated(s) ;.
switeh([reqleil,a, fgo, bge, nbge,
[data|cmda],nomda) <= var{s) :
req := data,
=witch(ed, s, fgo, bge, nbge, ceds, nemda) .
switch([reqlei], s, [SUSPEND |fgc],
[CONTINUE | bge], nbge, cmds, nomds) <-
var{a), var(emds) :
[SUSPEND}na] <= =,
mw(req,cl,ns, fge, bge, nbge, cnds, nomds) .

sw{req,ci, s, fgo, bgo, bge, cads, cads) <-
terminated{a) :.

sw({data, ci, 3, [CONTINUE |fgc], [SUSPEND |bga],
nbge,[data |emds],nemda) <~ var(s) :
[CONTINUE{na] <= s,
switch(ei,ns, fgo, bgo, nbge, cads, nomds) .

Erograp 7; extensions to Propram §
Lo allow ipput

When a foreground command of the form
FG{proe,el) is received, a SUSPEND message is
sant to the background processes, as in (B53),
and the command process is evaluated. A
awlteh process monitors the status = of the
eveluation and the stream of request varisbles
el that it generates,

There are three cases for switch. The
firat clause handles the termination of the
foreground process: it sends a CONTINUE mess-
age to the background processesa and passes
back te the shell the ocurrent point in the
(input) command stream and the (output) back-
ground process control atream. The second
clause iz a candidate if the foreground pro-
cess has not termimated (the war(s) test in

the guard) and there is & request for input on
el and data is available on the command stream
{e.g. by type-ahead). In thisz case, the
available data is assigned to the request
variable.

The third clause for switch applies when
the foreground process has not terminated and
there is a regquest for input but no data is
available on the command stream (the var{cmds)
test), MNow a SOSPEND measage i3 sent to the
foreground process, a CONTINUE sent to the
background processes and the switeh process
entera a new state switehl. The call te <=,
the PARLOC matshing unification primitive,
skipa over the SUSPEND message that is echoed
on the status stresm of the foreground pro-
ceas.

While the foreground process is walting
for input thers are two possibilities, handled
by switeh?, The first clause handles the ter-
mination of the process as befors. The second
clause is applicable if an item arrives on the
shell's command stream. In thia case, the
item iz masigned to the request variable, the
background processes are suspended and the
foreground process is resumed.

8 CONCLULING HEMARES

8.1 Discusaion

We have proposed the addition of a new
metacall primitive call(?,”,?) into PARLOG and
related languages to facilitate the writing of
operating aystemsa, The one-argument and two-
argument forms of call can be defined in terms
of thiz primitive:

mode eall{?,”).
call(g,s) <- call(g,s,2).

mode oall{?).
ecall(g) <- eall{g,s,c), = = SOCCEEDED.

The metacall approach seems sound since
operating systems are necessarily at a differ-
ent level than user programs. An operating
syatem program is not coneernad with the det-
ails of user programs, only the results that
they produce. In addition the system must be
able to initiate, terminate and suspend the
execution of user programs. The proposed pri-
mitive meets these criteria.

The suitability of the three-argument
metacall as the metacall primitive is reinfor-
ced by the fact that it can be used to program
two other control features of PARLOG: negation
and the sequential ®and®, and to reduce the
or=parallel evaluation of altermative guards
to an and-parallel evaluation.

Program 8§ defines negation as failure,
and &, using the twe-argument form of eall.
It evaluates a & b by exeouting a call to a in

305

parallel with a process which is input-sus=
pended until the evaluation of a succeads,
whereupon b 1s called.

mode T 7.
~ a ¢= eall{a,ns), s = FATLED.

mode 7 & 2.
a &b < eall(a,s), rexteall(s,b).

mode nexteall(?,?).
nexteall(SOCCEEDED, b) <-
call(b).

Program 8: definition of negation and
sequential "and™

PARLOG programs with clauses with non-
empty guards can also be compiled into pro-
grams with a single guard clauae in which the
different guards are evaluated in and-parallel
using three-argument metacalls in a manner
gimilar to that used im Program 4. An arbi-
traticn process then monitors the results of
these guard metacalls, selects the appropriate
body, and explicitly kills the other guard
metacalls., The details of this representation
are given in {(Clark and Gregory 1984b).

The general metacall primitive should be
readily implementable on any architecture that
properly supports PARLOD or zimilar languages.
This is certainly true of ALICE (Darlington
and Reeve 1981). 411 that iz required ia the
ability to access the result of an evaluation
{SOCCEEDED, FAILED, ERROR) and to terminate
and suspend an evaluation.

The primitive has been implemented in the
PROLOG-based PARLOG system (Oregory 1984).
Copies of this syastem, for either miore=PROLOG
er DEC-10 PROLOG, are available from the auth-
ara, It has been used to test all example
programs presented in this paper.

8.2 Related work

"irite-early™ varigbles have bean propos=
ed recently by Shapiro and desoribed in (Furu-
kawa et al, 1984) as a way of making the out-
put of a guard visible before the guard has
succeeded., A write-early annotation ® placed
on a variable in a goal signals that any bind-
inga to the variable are made public immedi-
ataely, even if they occur in clause guards.
This feature can be used to partially imple-
ment the thres-argument call as followz (CP
syntax is used):

eall({Goal,3tatus, Control) ==
eall1{Goal”™,Status, Control?).

306

ealll({Geoal, stopped,stop).
eall1{Goal,Status, Control) :-
call{Goal,Status) | true,

call{Goal,succeeded) := call(doal) | true.
call{Goal,failed) :- otherwise | true,

The use of the write-early annotation ia
potentially very dangerous: it overrides the
security of the elaborate and expensive uni-
fication of CP. Thia approach iz an attespt
to use the guard for purposes for which it is
not intended., Our appreach is to design the
three-argument eall as the primitive (it iz a
aimple and flexible concept), and then use it
to implement the guard as can be dome in
mel

The three-argument call haa some similar-
ities to the meta predicate aimulate proposed
for KL1 (Furukawa et al, 1984):

simulate(World, NewWorld,Goal, Resul t, Control)

This evaluates Goal relative to a local pro-
gram World which can be updated to NewWorld.
The Combrol argument here apecifies some con—
trol strategy to be used, such as breadth-
first or depth-firat, while Result returns
arbitrarily detalled information about the
progress of the evaluation.

Like call, simulate can be used to obtain
the success/fallure result of an evaluation.
Tt is not intended to allow an eveluation to
be stopped or suspended, though there should
be no diffifoculty in allowing this. As it is
desoribed in (Furukawa et al, 1984), it ap-
pears that an ispertant difference between
eall and simulate is that the latter does not
allow incremental communieation between an
evaluation ("ebject world") and the outside
program ("mets world"™) unless write-early var-
igbles are used,

simulate is intended a= a general purpose
meta inference predicate having many different
uses, some of which aesem to reguire an inter-
pretive evaluation. In eontrast, we are pro-
posing the three-argument call as a primitive
of the language: one which is simple enough to
implement effilciently but powerful enough to
enable the programming of realistic operating
gyatems.

ACENONLEDGEMENTS

Thiz work was supported by the Science
and Engineering Ressarch Couneil under grant
number GR/B/9THTI.

Many of the ideas germinated in discuss-
ions with Udi Shapiro and the members of the
KL1 design team whilst the authors were visit-
ing ICOT in October 1983, We would like to
thank ICOT for imviting us and for providing a

very stimulating researsh enviromment.,
REFERENCES

Clark E.L. and Gregery 2. (1981), & relational
language for parallel programming. In Proc,
Lonf, on Functional Programming Languages and
Lomputer Architecturs, ACM, pp 171-178.

Clark E.L. and Gregory 5, (1984a), PARLOG:
parallel programming in logilc. HResearch rep-
ort DOC BH/B, Dept. of Computing, Imperial
College, London.

Clark K.L. and Gregory 5. (1984b), Notes on
the implementation of PARLOG. Research rap=
art, Dapt, of Computing, Imperial College,
London.

Dariington J. and Reeve M.J. (1981}, ALICE: a
multi-processor reduction machine. In Proc.,
Lonf, cn Functienal Programeine Languages and
Compubter Architectura, ACM, pp 65=75.

Furukawa K., EKunifuji S., Takeuchi A, and Ueda
E. (1984), The conceptual specification of the
Eernel Language version 1. Technical report,
ICOT, Tokyo,

Gregory S. (1984), How to use PARLOG. Unpub-
lished report, Dept. of Computing, Imperial
College, London.

Johnsor 3.D. (1981}, Circuits and systems:
implementing communications with streams,
Technical report 116, Dept. of Computer
Science, Indiana Univeraity.

Shapire E.Y. (1983), A subset of Concurrent
Prolog and its interpreter. Technical report
TR=003, ICOT, Tokyo.

Shapiro E.Y. (1984}, Systems programming in
Concurrent Prolog. Ino Prog, 11th ACM Symp, on

