PROCEEDIMNGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1934,
edited by ICOT, © ICOT, 1984

UNIQUE FEATURES OF ESP

Takashi Chikayama

ICOT Research Center
Institute for New Generation Computer Technology

Tokyo, Japan

ABSTRACT

This paper briefly describes some of the unigie fea-
tures of the language ESF. ESF is the system descrip-
tion language of SIMPOS, the programming and operat-
ing aystem of the Personal Sequential Inference Machine
#. ESF is based on the Prolog-like machine language of
% called KLO (Kernel Language version 0). Thus, ESP
naturzlly inherits essential features of logic programming
languages from KLO, the most important ones among
them are the uniflcation mechanism for parameter passing
and the depth first tree search mechanism by backtrack-
ing. ESP is, at the same time, an object-oriented langoage
with the notions of objects with time-dependent states,
object classes and their hierarchical structure. ESP also
has o very flexible macro expansion mechaniam,

1 INTRODUCTION

1.1 Background

Az one of the first major products of the FGCS
(Fifth Generation Computer Systems) project, Personal
Sequential Inference Machine (PSI or) is now under de-
velopment (Uchids et al. 1083), SIMPOS is the program-
ming and operating system of ¢ (Takagi et al. 1984). The
objective of ¢ and SIMPOS is to provide a comfortable
programming envircnment for logic programming, which
will be used in almest all the research areas of the FGCS
project.

As SIMPOS is expected to be a truly usable system
for nsers with various abjectives, it canmot but be & con-
siderably large-scaled system. Besides, the first version of
SIMPOS is required to be released at the end of the first
stage of the FGOCS project (March 1985) to be available in
the following stages of the project.

If a certain standard abstraction methed should not
have been uzed throughout the system design, the system
would be over-complieated, and it would be impossible
to build it wp within the given rather short time period.
To enforee a certain standard abstraction method, it is
required, not if emough, to use a single language with
appropriate abstraction capability throughout the whole
system description.

ESP is primarily designed for thiz purpose, to en-
force the object-oriented abstraction method. Howaver,

the design of ESP resulted in the language features ap-
propriate not only for describing the operating aystem but
also for writing variows application programs, especially
for those requiring deseription of hierarchical knowledge
structure.

1.2 Language Summary

The sequential inference machine ¥, on which SIM-
POS is built, has a Prolog-like high-level machine lan-
guage called KLO. ESP is translated into KLO and then
executed by the machine. All the features of ESP is thus
built upon the features of KLO'. This is similar to the
case of the Flavors system of MIT Lisp Machine (Weinreb
and Moon 1081): ESF is to KLO as Flavors is to Lisp.

ESP has logic programming features, object-oriented
features and alio macro expansion features.

L.1.1 Logle Programming Features

ESP inherits logic programming features of KLO.
ESP uses parameter passing by unification and has the
built-in depth-first AND-OR tree search mechanism by
backtracking. Thus, any Prolog programs can be trans-
lated almost directly inte ESF without any essential
change.

1.2.1 Object-Oriented Fenturss

An object of ESF represents an axiom set in logic
programming view point. Sending a message to an object
is trying to refute some proposition using the axiom set.

Objects belong to a class. An ESP program consists
of one or more class definitions. A class may have cne
or more superclasses. The axiom set associated with an
object Is, basically, the union of the axioms defined in the
class and the axioms defined in the the superclasses of the
elags. This inheritance mechanism matches very well with
the semantic network model with IS-A hierarchy.

Besides its logic Janguage features, KLO also has Lisp-
like features corresponding to cons, rplacs, ete.. The no-
tion of time-dependent state has alio been intreduced to
ESF, based on such LISP-like features of KLD. Though
"Though certain KLO built-in predicates are planned to be

implemented spacially for ESP, they are utterly for improving
the efficiency. ’

this falls out of pure logic, it is required for utilizing the
ideas widely used on various operating systema on conven-
tional machines, including efficiency considerations.

1.2.3 Maero Expansion Fentures

ESP also has a very flexible macro expansion mecha-
nism. When macros are expanded, the invocation is re-
placed by the expanded form ss with other languages
with maero expansion capability. Besides, insertion of
certain goals into the clause in which the invocation ap-
pears can be specified. The exact position of such in-
gertions depends on where the macro invocation appears,
especially, whether in the clauss head or in the body goals.
By virtue of this mechanism, functional notations such as
arithmetical expressions can appear as arguments of either
a clause head or a body goal.

2 TIME-DEFPENDENT STATES
2.1 Modeling the Real World

Real programs must communicate with objects out-
side of the computer executing the program, such as /0
devices, other eomputers connected wia a computer net-
work, the user at the terminal, ete.; otherwise, the user
can mever tell the machine to compute what he or she
wants, and, even if she could, can never know the resuit.

Outer-world objects to be modeled may have time-
dependent states which are interesting to the program.
For example, it might be desirable for the program to
know what kind of expression is currently appearing on
the face of the user at the termimal to determine which
of the available error message display styles irritates her
the least. The system must build up models of such time-
dependency of the outer-world objects inside the the com-
puter.

2.2 Naive Implementation

In pure logic programming style, such time depend-
ency might be represented by logical relations between
time periods and corresponding states, Such relations
themselves are permanent and have no time-dependency.

This non-time-dependent representation is logically
elegant, but, unfortunately, its nofve implementation will
be quite inefficient. The reason of this ineficiency is the
fact that it is usually & little difficult to dispose of the part
of the relation information which is no longer reguired by
the program. The program will never want to know what
kind of expression was appearing on the user's face at 3
o'clock the day before yesterday.

Using a simple database management scheme, like
thoze uged in currently available Prolog implementations,
this total recall ability not only requires almost infinitely
large memory space, but also slows down the system un-
bearably.

2.3 Real-Time Programming Style

In conventional operating systems on conventiomal
computers, the time of the outer world to be modeled is

293

directly modeled by the time of the computation itself.
Time-dependent states of the outer world are represented
directly by the time-dependent state of the computation.
What is called real-time programming essentially means
this modeling style. Thus, it is usually impossible to recall
the state of the day before yesterday because the com-
putation is being dene pow.

This amnesia is profitable for improving the eficiency
of the program if such information will never be used.
Many of the ideas developed for operating systems of con-
ventional computers are based on this programming style,
ineluding the efficiency consideration.

By applying & certain unknown optimization tech-
nigue, keeping relations between time periods and states
in the database might be made as efficient as this real
time programming style some day, but we didn't have
time to wait for such an innovation. Thus, the notion of
time-dependent states iz introduced into ESP to facilitate
directly utilizing such already available ideas.

3 OBJECTS AND CLASSES
3.1 Methods

An object in ESP represents an axiom set, which
is basically the same concept as worlds in some Proleg
gystems (Van Caneghem 1952, Kahn and Carlson 1883,
Makashima 1083). The same predicate call may have
different semantics when applied in different axiom sets.

In case of the world mechanism, the axiom set to be
used iz determined by the exeeution context. In EBP, it
is determined by the object passed as the first argument
of the call. Such predicates with argument-dependent
semnantics are ealled methods as is in other object oriented
languages®.

Method calls are distingaished from calls to a built-in
or a local predicate by prefixing the call with a colom, as
in *: open(Door)". Here, the variable Door iz supposed
to have the value which is an object associated with the
axiom set including one for the predicate predicate open.

3.1 Claszes

An object belongs to an object class. An object class,
or simply a class, deflnes the characteristics common in a
group of similar objects. An object balonging to a class is
said to be an instance of that class.

An ESP program contists of one or more claas
definitions, A class definition defilnes warious attributes
of the class, including axiom set associated with the in-
stances of the class. A class itself is also considerad to
be an object which represents a certain axiom sef, mainly
concerning instance creation.

3.3 Ohjeet Slets
An object may have time-dependent state variables
LESP also has predicates whose gemantics deem't depend on

its first argument. Such predicates has the stabic scope of one
class deflnition, and thus are called local predicates.

294

called ohject slots. Slots are mot legicel variables; they
have constant values from the logic programming view
point. Values of slots can be examined using their names
by the method get alot defined in the axiom set cor-
rezponding to the ohjest. In othar words, the slot values
define & part of the axiom set asscciated with the object.

Instances of the same class has slots with the same
namaes. However, their slot valued can be different, while
the rest of their associated axiom sets are identical.

The slot values can also be altered by the method
set_slot. This corresponds to altering the axiom set rep-
resented by the abject, This feature is similar to assert
and reteact of DEC-10 Prolog, though the way of altera-
tion is quite limited. This limitation allowe an efficient
implementation of this feature. In DEC-10 Prolog, smsert
and retract are only possible for interpretive programs,
which are much less efficient compared with compiled pro-
Erams.

ESF provides short-hand notations! for manipulating
object slots, For example, "Xla” is for getting the value
of a slot a of X and “X'la := V* is for updating it.

4 INHERITANCE MECHAMNISM

4.1 Class Hlerarehy

A multiple inheritance mechaniem similar to that of
the Flavors system (Weinreb and Moon 1981) iz provided
in ESP. A class deflnition can have a nature definition,
which defines one or mere superclasses. I & superclass has
in turn a superclass, it is also a superclass of the original
class. Thus, superclasses of & class forms a tree structure.

This class hierarchy and all the inheritance relationa
between classes are determined statically at compilation
time in ESP, while similar inheritance between worlds is
determined dynamically at runtime in various Prolog sys-
tems with the world feature. This allows rather complij-
cated inheritance roles of ESP stated below without in-
troducing too much iaeficiency.

4.2 Inheritance of Methods

The axiom set associated with instances of a class is
the union of the axioms defined in the class definition of
the original class and those defined in its superclasses,

Some of the superclasses and the subclass which in-
herits them may have awioms for the same predicate.
Since basically the axiom sets of the superclasses are
smply merged, such axioms are OR’d together. Using
this inheritance mechanism, a semantic network consist-
ing of I5-A hierarchy can be very easily constructed.

Though the order in the OR'ed axioms has no
significance as long as pure logic is concerned, the or-
der might be essential when things outside the computer
should be treated. Thus, ESP allows the specification of
the arder of inheritance, which is the same as tha order
of trying axioms when several classes have axioma for the
same predicate.

Macros actually. See below for details.

4.3 Inheritance of Slots

Instances of a class have the slots defined in the class
definition of the original class and the slots deflned in its
superclagses. However, if some of these slots have the same
name, instances have only one slot with that name.

A PART-OF kierarchy can be implemented using IS-
A hierarchy with the object slot featurs. Assume that
we want to make a lock to be & part of a door. First,
the definition of the class of simple doors without any
lock should be given. Then, a class with_a_lock should be
defined so that its instances have a slot which kolds an
instance of class lock. Finally, the class door_with_a_lock
is defined to be inheriting both the class door and the class
with.alock: A door_with.a_ lock is a door and also ir gn
object with_a_lock,

Here, we have defined the class with.o fock a3 a
separate class rather than directly maldng the class door.
with_a_leck inheriting the class door. This is the recom-
mended way to fully utilize the multiple inheritance fea-
ture of ESP; the class with o_lock may be used afterwards
for defining classes svch as window_with_a_lock.

5 NON-MONOTONICITY
5.1 Motlvation

By only the inheritance mechanism stated above, the
axiom set of a subclass is bound to be a superset of thosze of
its superclasses, Thus, & predicate call successfully refuted
in a superclass is bound to be successTally refuted also in
tihe subclass. Inheritance mechanism having this nature is
said to be monotonie,

Because of this monotonicity, door_with_a_lock can-
not be a subclass of door. This is because an instance of
the clazs door with.a.lock cannot be opened when locked,
while a door can always be opened. For utilizing the simpla
monotonic inheritance mechanism in this case, the class of
simple doors without a lock should be a subeclass of doors
with a lock. The designer of the class hierarchy must have
in mind when designing the class door that some day some
one might want to use a door with a lock.

It is very diffienlt to predict all such extensions to
the class hierarchy when designing only the top-most part
of it, especially when the system to be designed is con-
siderably large and complicated. Program development
will be far more easier if non-monototils knowledge can be
inherited.

5.2 Cut

ESP provides two mechanisms for introducing non-
monotonicity. One is & somewhat extended version of
the well-known cut operation. The cat built-in predicate
of KLO has the ability to prune alternatives up to the
specified predicate call nesting level.

One of the most important usage of cut ks for method
overriding, Le. replacing the axiom defined in a super-
class by one defined in its subclass. This can be effacted
by placing & eud in the axiom definition of the subclass

295

elass bird han nature animal;
Instance

Aly(Bird) - ...}
end. o
class penguin has nature bird;
Instanee

fly(Penguin) - 1, fail;
) .-
Figure 1. Penguins Do Mot Fly

which cuts up to an appropriate level so that the axiom
of the superclass should be cut out. As this overriding is
ofton required, cut symbols (1) appearing in the toplevel
of method clauses® are automatically translated into such
multiple-level cut instructions.

Negative knowledge can be implemented uring over-
rlding and explicit failure. For example, in Figure 1, birds
fly, penguins are = bird, and yet, penguins do not fiy.

Using multiple-level cut along with fail, a control
structure similar to that provided by catch and throw in
certain Lisp systems ean be implemented. This control
structure is indispensable for implementing error handling
mechanism required almost everywhere in the operaiing
system.

5.3 Demons

The other mechanism for imtreducing non-mone-
tonicity is by using demons. To explain how the demon
feature of ESF works, we will give below a little more
detailed description of how clauses given in the class
definition of a class and in the deflnitions of its super-
clanses are organized into one method,

5.3.1 Detalls of Method Inheritance

Method elanses given in class definitions are classified
inte three categories: principal clauses, before demon
clauses, and after demon clauses. Demon clauses are dis-
tinguished syntactically by the qualifier before or after put
bafore them. Principal clauses given in a class defipition
for the same predicats name and the same arity form a
principal predicate, just a3 & set of clauses form a predi-
cate in ordinary Prolog systems. Similarly, before demon
clauses form a before demon predicate and after demon
clauses form an after demon predicate.

A method is implemented by a method predicate.
The bedy of a method predicate consists of an AND com-
bination of the following three:

* AND combination of calls of all the before demeon predi-
cates defined in the inherited classes, in the order of
+ OR combination of calls of all the principal predicates
deflned in the inherited classes, in the order of in-

*Principal clauses, sctually. Ses below for details.

method predicate(d;, ... ,zllm} =
h{d-l.l '”:-"'"H}l L | bﬂ{"h "'I'Aﬁ}l
[PI[A'IJ == -AIII]; B FI{AII CIC 'l"'lll]]l
anldy, ..., Am), s BulAy, ..o Am).

Figure 2. Method Combination

elass with o leck has

instanee

component lack In [ock;

before.open(0b7) :— unlocked(Obiflock);
elass door has
lostanes

component stafe = closed;
wopen(Door) = Doorlstate = open;
end.

elass door_with_a_lock has
nature door, with o lock;
end.

Flgure 3. Door with a Lock

horitanca,

* AND combination of calls of all the after demon predi-
cates defined in the inherited classes, in the reverse or-
der of inheritance. The order is reversed o that before
and afier demon predicates defined im various eclasses
nest properly.

All of these calls share the same arguments.

When a class has n superclasses (inelueding the erigi-
nel class itself), and each classy has before demon, prin-
cipal and after demon predicates by, py and g correspond-
ingly for the same method, then the method predicate will
be as showz in Figure 2.

5.3.2 '.Il[ng Demons

Aszume, for example, that the class door with_a_lock
should have the methéd open which only succeeds when
the door s vnlocked. Wa alrcady have a class deor which
has the method open, but this always succesds. We should
define the class with o_lock so that it has a before demon
clause for open which checks out the status of the lock and
fucceeds only when it is unlocked. Mow, inheriting two
classes, we can define the desired class door with o lock
(Figure 3). In this case, the method open of the class
dear_with_a.lock will be something lile:

door_with a Jock

erith_a_leok doar
ﬂ““mcﬂﬁ o pF‘“I-:fvre H

» CPER o ineipal -

In general, ome of the principal predicates does
the main job for the method. In the sbove example,
opentell .o plays this role. Before demons, if exist,

296

check out whether the object is in an appropriate state for
receiving the message and whether the arguments given
to a method eall are also appropriate. In the example,
opmz:ft:':"‘ checks out the state of the lock of the
door. After demons check out the return values. When
a principal predicate returns some value, it iz through
unifieation of the variables in given arguments as is com-
mon in logic programming languages. As after demons
receive the same arguments, they can be examined there.

This demon mechanism is used in various parts of
SIMPOS. Egpecially, the window subsystem, one of the
modules requiring the most complicated control, fully util-
izes thizs mechanism. Without thiz kind of non-monctonic
mechaniem, the design of SIMFPOS would have been much
more complicated job.

& MACROS
6.1 Motivation

Oune of the most-heard-of complaints of the program-
mers using logic programming languages is that the lan-
guages basizally do not allow functional notations except
in certain special places (e.g. arithmetical expressions in
DEC-10 Prolog). For example, to pass the sum of X and
¥ as an argument of a predicate p, it is wsually required
to write a program such as “edd(X, ¥, 2), p(2)".

The metivation of introducing maero expansion fea-
ture to ESP is to allow functional notation such as “p(X
¥}, which is apparently more readable eapeclally when
the expression becomes a little longer. To merely solve this
problem, simpler schemes such as one proposed by (Eggerd
and Schorre 1982) would have been enough. However, we
sought for more general and flexible way.

8.2 Meta Language

Macres are for writing meta programs which specify
that programs with so and so structures should be trans-
lated into such and such programs. One of the most cru-
cial points in designing the macro expansion feature Is
choosing the meta language for this meta program.

There are two widely used language families in which
mactos are extensively used: Lisp-like languages and as-
sembly languages. Macros are by far easier to use and also
more powerful in Lisp than in assembly languages. This
is because the meta language is Lisp itself in the case of
Lisp, while, In assembly languages, the meta language is
essentially an uiterly different language with specialized
functions though it usually Jooks quite similar.

Meta language can be itself because programs can
ba easily treated as data in Lisp. From this view point,
Prolog-like languages are similar to Lisp: Programs can
be treated as data. Thus, we've chosen ESP as the meta
language for ESP. With the built-in pattern mstching
and logical inference capabilities as a logic programming
language, definitions of macros can be made even more
flexible than in Lisp.

€.3 Expansion Mechanlsm

Fattern =2 Ezrpansion
when Generator where Checker
= Condifion.

Figure 4. Macro Definition

In various languages with the macro expansion
capability, a macro invocation iz simply replaced by
its expanded form. Though this simple expand-and-
replace type macro expansion mechanism might be power-
ful enough for Lisp-like functional languages, it is never
enough for a Prolog-like language. Fer example, a
macro which expands the goal *p(s, f{(X + Y))" to
a goal sequence “add(X, Y, Z), pla, f{Z))* rather than
to “pla, fledd(X,¥Y))" cannot be defined with a simple
expand-and-replace mechanism.

The full macro definition format of ESP iz as shown in
Figure 4, The pattern which is unifiable with the Pattern
is expanded to the Expansion if and only if the Condition
succeeds. At this time, the Generator and the Checker
are alsa spliced into the expanded program at appropriate
places, that is:

* When a macro invocation appears in a body goal, the
Generator is inserted before, and the Checker are ap-
pended after the goal including the macro invoeation.

#» When the invocation appearz in the head of a clause,
the Generator is appended at the end of the body and
the Checker are inserted at the beginning of the body.

For example, in the macro definition:
X +Y => Z when add(X, ¥, Z)

"X + Y" is the Pattern, "2 is the Ezpansion, and
“add(X, ¥, Z)" iz the Genergtor. The Checker and
the C'ondition are empty in this example. This same
definition can be used in two ways. The clause:

increment(M, M 4 1).
is expanded into the clause:
tncrement[M, N) ~ add{M,1, N).
while the body goal:
o P(M F1), ...
is expanded into a goal sequence:
oo 0dd{M, 1, N), p(N), ...

Note that, in complicated maecro definitions, the
Condition can be wsed not only for deciding whether the
invecation pattern should be expanded or not, but also for
computing a part (or whole) of the Ezpansion by writ-
ing variables in the Fzponsion and instantiating them in
the Condition. Simple optimizations such as computing
values of constant expressions in compilation time can also
be achieved using this featura.

7T IMPLEMENTATION
T.1 Current Implementation

Currently (Aogust 1984), a cross compiler from ESP
to KLO is available on & main-frame machine. Linking the
ohject code with a amall runtime support system written
directly in KLO, the program can be executed on the &
machines.

The implementation of the object oriented features
in rather straightforward. An object {s represented by a
vector zllocated in one of the heap aress®: Its first entry
i* a pointer to the object descriptor which consists of
two table addresses. This deseriptor is shared by the
instances helonging to the same elass. Thug, only one
word per object is dedicated for the object-oriented calling
mechanism. Other entries of the vector are for storing
object slot values.

One of the tables pointed from the object descriptor
is called the method table. The method table associates
the predicate name atoms with the method predicates.
Another table is called the slot table which sssociates the
glot mame atoms with the slot position offset inside the
object. These tables are actually represented as a KLO
predicate in the corrent implementation.

Object-oriented method inveeations are translated by
the ESP-KLO compiler into calls to a runtime subroutine
with the method name atom and the original arguments
as its arguments®. The rantime subroutine looks at the
original first argument, which is the vector representing
the obiject, and then its first item, which is the object
descriptor, and then its first item again, which is the
method table. Thiz methed table is looked up (called,
actually) wsing the method pame and the number of ar-
guments aa the key, obtaining a code object, which is the
method predieate. Finally, this predicate is actually ealled
with the original arguments using the higher order feature
of KLO.

In most cases, some of the predicate calls appearing in
this object-oriented invocation mechanism are redundant.
For example, when a method consists of only one principal
predieate, there is no need for the method predicate which
implements the demeon eombination, Several compilation-
time optimization of this type iz made.

Tke eficiency of the current implementation of ESP,
etpocially concerning its execution speed, 13 not quite
satisfactory. Method calls are 3 to 4 times slower than
calling KLO predicate directly. Accessing slots has almost
the same overhead. The sources of the overhead are the
calling overhead of the runtime support subroutines and
the overhead of methed and elot table lookup.

7.1 Planned Improvements

Introducing several new built-in predicates of KLO for
reducing the overhead in the current implementation is
*The logical memory space of o is divided inte up to 256 arean

and any of them can be freely allocated for heap and stack
araas.

" This is actually effected by the macro expansion feature.

287

being planmed, The calls to the runtime subroutines will
be roplaced by built-in pradicate calls and the function of
the runtime subroutine will be realized by the Armware.
The calling overhead of runtime subroutines will be re-
placed by almost negligible opcode fetch overhead, Slot
accesses will also be compiled inte bullt-in predicate calls,

Though the method table lookup mechanizm in the
current implementation works fairly cficiently by virtue
of the built-in elanse indexing mechanism of KLO, it can
be further accelerated by the planned firmware support.
In the firmware implementation, the tables will be imple-
mented as hash tables rather than general KLO predicates,
which not only reduces the execution time but also the
memory space roquired for storing the tables.

In the planned frmware implementation, method
calls are expected to be roughly twice as fast as in the
current implementation. Improvement expected in slot
accesses is even more drastie, because it will not include
any predicate call at all.

7.3 Further Optimization

It might also be effective for reducing table lookup
overhead to make cache for several most recently called
method names, their first arguments (i.e. receiver objects)
and the corresponding predicate code addresses. However,
to obtain reasonably high hit ratio, the size of the cache
should not be too small, becauze it is not usnally the casze
that the same methed of the same object is called many
timed consecutively. Thus, for reducing lookup everhead
for the cache, certain special hardware such a3 an sssocia-
tive memory system would be reguired.

8 EXPERIENCES
8.1 SIMPOS

Preliminary versions of the three lowermost layers of
SIMPOS — called the kernel, the supervisor and the I/O
subsystems — have been coded in ESP and are almest
Tully debugged on 4. [mproved versions of these modules
and several other parts, mainly the programming system,
of SIMPOS ara alse being debugged currently.

Through the development of SIMPOS, it was made
clear that the multiple inheritance mechanism made shar-
ing of codes quite easy. For example, functions of
the module ealled supervisor, which provides wvarious

table structures, directory handling, process handling,

stream-criented inter-process communication, ete., conld
be directly used by higher level modules by only inheriting
one or several of the classes defined there.

Revizions of program modules were also found to be
quite easy. As modules of SIMPOS are separately devel-
oped even when they are closely related, facility of such
revistons seemed to be one of the most crucial point in the
SIMPOS development effort. In most cases, no changes at
all is required in modules other than the revised one if its
interface specification remains the same. Af worst, what
in required is only recompiling the claszes inheriting the
revised class,

298

Hewever, sometimes such mistakes as linking pro-
grams inheriting different versions of superclasses were
made. In such cases it was a little hard to find what was
wrong. Some sort of automatic management of program
versions seems to be indispensable.

The macro expansion mechanism was profitable for
improving the readability of the programs. Especially,
allowing arithmetic expressions as arguments was most
profitabla.

Modifleations of the language details of ESP have
bean very frequently required for these several months for
various reasons. However, the corresponding moedifications
of the compiler were quite easy because many of the
language features of ESP, including those requiring
rather complicated compilation, are actoally implemented
using this macro expansion feature. Almost all of the
modifications required rewriting of only a few lines of such
macro definition code.

8.2 Other Applications

A natural langusge parser has been implemented in
ESP (Miyoshi and Furukawa 1884). The hisrarchical strue-
ture of the grammatical categories Is mapped to the class
hierarchy of ESP in this attempt, reducing the number of
paramaters of the parsing routine required otherwise.

Currently, a project of re-implementing another
natural language parser BUP (Matsumoto ot al. 1983) in
ESF is also going on.

9 CONCLUSION
Though we only have had quite briel experience
with ESP, its language features already have proved their
merits. If SIMPOS were directly ceded in KLO, the design
and development of SIMPOS would have been much more
tollsome job.

As inheritance relationship among classes is analyzed
etatically at compilation time, certain programming sup-
port for the management of program versions is indispen-
sable. This function will be included in SIMPOS as the
library feature.

The current implementation of ESP does not yet have
the required cfficioncy, especially in its execution speed.
By introducing several built-in predicates, it is expected to
be greatly improved. Further improvement requires cer-
tain special hardware such.as method table cache using
associative memory, which is left to the future investiga-
tions,

ACKNOWLEDGMENTS

In the earliest design stage of ESP, a design task
group was organized and the basic functional design of
ESP was discussed. The group included the author,
Toshio Yokoi, Takashi Hattori, Toshiaki Kurolkawa, Nori-
hike Yoshida, Akihiko Konagaya, Hideo Shimazu snd
many others in the SIMPOS research and development
group. Shigeyuki Takagi implemented KLO compiler
which compiles the object of the ESP compiler into binary

format executable on 4. The design of the firmware sup-
port for ESF was only possible with the help of Minoru
Yokota and other members of the ¢ firmware development
Eroup.

HEFERENCES

Chilmyams, T. ESP Reference Manual
nical Report, TR-044, 1984.

Eggerd, T'. R., Schorre D. V. Logic Enhancement: A
Method for Extending Logic Programming Languages
Conference Record of the 19582 ACM Symposium on LISP
and Functional Programming, T4-80, 1582,

Kahn, K. M., Carlsson, M. LM-Frolog User Manual
Release 1.0 UPMAIL, Dept. of Computer Science,
Uppdala University, 1983,

Matiumoto, Y., Tanaks, H., Hiralaws, H., Miyoshl, H.,
Yasukawa, H, BUP: A Bottom Up Parser Embedded
in Prolog ~ New Generation Computing 1, 2, 145-158,
1983,

Miyoshl, H., Furukawna, K. Object Oriented Parser in
the Logic Programming Language ESP International
Workshop on Naturdl Language Understanding and Logic
Programming, Rennes, France, 1984, to appear.

Naknshima, H. A Knowledge Representation System
Frolog/KR Mathematical Engineering Technical Re-
port, METR §3-5, Dept. of Math. Eng. and Inst. Phys.,
Univ. of Tokyo, 1983,

Takagl, 5., Yokol, T., Uchids, 8., Kurokawa, T., Hattorl,
T., Chikayama, T., Sakni, K., Tsuji, J. Overall Design
of SIMPOS Proceedings of the Second International
Logic Programming Conference, Uppsala, 1984,

Uehida, 8., Yokots, M., Yamamoto, A., Taki, K., Nishi-
kawa, H. Outline of the Personal Sequential Inference
Machine PSI New Generation Computing 1, 1, T5-T9,
1983,

VYan Caneghem, M. PROLOG [T Manuel D'Utilisation
Groupe Intelligence Artificielle, Faculté des Sciences. de
Luminy, Marzeille, 1982,

Weloreb, D., Moon, I. Lisp Machine Mannal 4th
ed., Symbelics, Inc. 1981,

ICOT Tech-

