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ABSTRACT

The aim of this paper is given . so-
me ideas hew to analyze data using lo-
gie tools.

1 IHNTRODUCTION

The aim of this paper is to define
a logic which enables us reasoning a-
bout data. Data are considered to be
things or entities and properties mean-
ingful for these entities., One of the
main problems in data analysis is to
induce patterns in a set of data items
(Benzecri (19%73}). This problem con-
sists of two tasks :

(l) To agregate data into sets
which can be adequately characterised
by means of some of the given proper-
ties.

{2) For a set of data given a prio-
ri to choose those properties from a
given set of properties which are ade-
quate for defining this set.

That is the scheme of task (1) is:
of data items
from

from properties to sets
and the scheme of task (2) is
sets of data items to properties.

The similar problems are conside-
red in the fields of information sys-
tems {Pawlak (1981)), knowledge repre-
sentation (Pawlak (1983), Konrad et al
(1981), Orlowska {1983)), and pattern
recognition (FU (197&}).
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In our approach the formal coun-
terparts of data are a non-empty set of
objects and a family of equivalence re-
Objects will be
interpreted as data items and relations

lations on this set,

correspond to properties of data items.
Hamely, each property induces an equi-
valence relation such that an eguiva-
lence class of the relation conslsts

of those objects which are the same
with respect to this property.

In section 2 we give a detailed
explanation of (1) and {2) on the level
of semantical structure. In section 7
we Introduce a syntactic structure to
be used to represent the given semanti-
cal requirements. We present a language
in which facts concerning tasks (1) and
(2) can be formulated in a formal Way.
Such appreoach is necessary if reasoning
Is to be carried out by a computer.
Mext, we provide a deduction method for
the language which enables us te prove
facts eoncerning tasks (1) and (2).

Our approach follows the ideas and
methods developed in Pawlak (1982), Or-
lowska and Pawlak {1981), Orlawska
(1983), Harel (19%8) and Mirkewska
(1881).

2 DEFIMABILITY OF DATA

In this section we present a for-
mal framework which enables us te ex-
press facts concerning relationships



between data items and properties of
We use the basic notions
and

data items.
introduced in Konrad, Orlowska,
Pawlak (1981), Pawlak (1982}, Orlawska
(1983). The new lidea is5 to conslider
what is ecalled strong definability of
sets of data items. It emables us to
reflect an adeguacy of properties for

gharacterization of sets of data.

We conslder a non-empty set 0B
whose elements are interpreted as data
items. The elements of this set are re-
ferred to as objects. Each property
meaningful for objeets from set OB in-
duces an equivalence relation in set
0B, Mamely, two objects are in the re-
lation corresponding to a property if
they cannot be distinguished by means
of this property. Equivalence relations
in set 0B are referred to as indiscer-
nibkility relations, if a
characteristies "colour" is meaningful

For example,

for elements of a set 0B then we consi-
der indiscernibility relation "to be of
the same colour™ which enables us to a-
gregate objects inte classes according
to their colour. These classes are e-

gquivalence classes of the indiscernibi-

lity relation in gquestion,

Given a pair of indiscernibility
relations, say R and P, we consider the
intersection R M P and the transitive
closure R P af these relations. Clear-
ly Rev P oand Ry P are equivalence re-
latibns, Equivalence classes of RO P
and R ¢y P are obtained from equivalence
¢classes of R and P by making their in-
tersections and unions, respectively.
Relations RV P and R ¢ P can be consi-
dered to be indiseernibility relations
correspeonding to properties which are
eomposed in some way from properties
related to B and P. Let us consider a

simple example.

tion Rn W Fi+
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Example 2.1. Assume that we are given

seven objects :

05

The natural properties meaningful
for these objects are : number of cir-

cles, number of crosses, number of squa-
res. Indiscernibility relations HD R,
and Rg corresponding to these properties
provide the following classes :

R, (0,,0,) {04,0,) {05,0,.0;}

R, (0,,05} {0,,0,] {0,,0,) {04}

Rg 0,3{0,}{045}{0,}{05,0,) (0}

The classes determined by relation
R n R+ are as follows :

R, N R, {0,1(0,}{05110,}(05}{0,05)

The classes reflect the pattern cor-
responding te property "te have the same
number of circles and the same number of
crosses”,

The classes corresponding te rela-

are as follows :

Ro WR, 10;,05,05,0,}1{05,04,05}

The property corresponding to this
pattern can be expressed as "number of
crosses and number of circles less than
aw,

In general, a property correspon-

ding to the intersection of indiscerni-
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bility relations R and P can be defined
as a conjunction of properties corres-
ponding to R and P. In the case of

R P there is no such straightfoward
relationship between the underlying
properties, However the property corres-
ponding to R ¢ P can be defined as a
certain relation between properties cor-
reszponding to R and P.

Given an indiscernibility relation
in a set 0B of data items, we consider
the problem of definability of aubsets
of set 0B in terms of the property cor-
responding to this relation. Let X and
R be a subset of set 0B and an indis-
cernibility relation in set 0B, respec-
tively,

A lower approximation RX of set X
with respect to relation R is a union
of those equivalence classes of R which
are included in X.

An upper approximation RAX of set
X with respect to relation R is a union
of those eguivalemce classes of R which
have an element in common with X.

In terms of approximations we can
define positive, negative, and border-
line instances of a set, namely :

RX set of pesitive instances of
X with respect to R

0B-FX set of negative instances of
X with respect to R

AX-RX set of borderline instances
of X with respect to R.

By using the notions given above
we can express facts cencerning the
kind of data amalysis in which we are
interested in the structure within a
given a priori set of data. In this
kind of task we assume that we are gi-
ven a subset X of data items determined
by means of a certain extermnal condi=
tion and we are interested in establish-
ing a relationship between X and the
structuring of data provided by indis-

cernibility relations,

We say that set X is definable
with respect to indiscernibility R iff
R_K:x:ﬁ'}:.

In other words a set is definable
with
tion
lence classes of this relation.

respect to indiscernibility rela-
iff it can be covered by eguiva-
This |
means that a pattern provided by X can
be expressed by means of a property cor-
responding to this indiecernibility,

IT a set X is not definable with res-
pect te an indiscernibility R then we
can express the pattern given by X with
a certain degree of inexactness. Set of
positive instances of X with respect to
R is the greatest definable sét included
in R whieh represents the nattern. cor-
responding te X, set of negative ins-
tances of X is the greatest definable
set whose elements do not obey this
pattern, set of borderline instances
consists of elements for which we can-
not decide whether they obey the pat-

tern or not.

We say that set X is strongly de-
finable with respect to indiscernibili-
ty R iff AX = X = RX and X is an equi-
valence class of R.

We make distinction between a pos-
sibility of covering a set by one equi-
valence class and by mere than one class
te reflect an adequacy or properties
for characterization of sets of data,

If a set is strongly definable with res-
pect to a relation then we will consi-
der a property corresponding to this
relation to be adequate for describing
the set.

Example 2,2.
set OB = {ﬂl,ﬂz,...,ﬂ?} given in exam-
ple 2.1., and indiscernibility relations
RG.R*, and Ry . Set X = {DI,QE.OJ.U“J
1s definable with respect te HO'R+’

Let us consider the

and



Hﬂ’ but It is not strongly definable

with respect to these relations. How-
ever X is strongly definable with res-
pect to relation Huﬂ;R+. Set ¥ = {ﬂl,.
"’02'0?} is not definable neither by
HD,R+, and Ry, nor by Rﬂﬂ H+, and
Rﬂﬂ RE. Set Y is definable with respect
to n+n HD, but nene of the relations
cbtained from BO. H+. and Ry by using
operations ¥ and i is sufficient to
provide the strong defimability of Y.
The approximations of set ¥ with res-
pect to some of the indiscernibility
relations in question are given below.
. go\f = {0,,0,)
. HoY = {Dl,Da,US.UG,ﬂ?} positive
instances of ¥ with respect to
Ru : 01,02. Hegative instances
of ¥ with respect to Ra'ﬂj’ua'
Borderline instances of ¥ with
respect to R Ogs0,004
« RAR_Y = {0,,0,]

. RoAR,Y = (0,,0,,0,,0,)

In terms of the notions defined
above we can discuss the ability or pro-
perties to define sets of data. We can
consider a certainm property P to be bet-
ter than a property P' for characteriza-
tion of a set X of data iff the appro-
ximations of X with respeect to the in-
discernibility determined by P are clo-
ser to X (with respect to inclusion)
than the approximations with respect to
the indiscernibility corresponding to
P,

In the following we list some pro-
perties of approximations,

RX C X

RRX = RX

R{XAY) = RXNRY

RXURY < R{XUY)

If X <Y then RX < RY

RXVSX < RO SX

X < Rx

RRX = AX
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R(Xuv Y) = RX U RY
A(xN ¥) = AXx N Ry
If X< Y then KX < RY

R_I* SX < RX M SX

In.the next section we present a
formal language in which we can express
facts concerning definability of data
discussed in the present section. The
set-theoretical notions introduced here
provide a basis for semantics of the

language.

3 THE LAMGUAGE OF LOGIC DAL

Expressions of the language of lo-
gic DAL are bullt from the symbols of
the following pairwise disjoint sets

VAR propositional wariables
VARREL relational wvariables
M, A, vy 4, + classical proposi-

tional operations of negation, conjunc-
tion,
pectively.

™ , M binary operations on rela-

implicatien and equivalence, pes-

tions
[ ],< » unary modal propositional
eperations
(1 brackets
We asssume that sets VAR and VARREL
are non-empty, at most denumerable sets.
Set EREL of relational expressions
is the least set satisfying the folle-

wing conditions ;

VARREL < EREL
R,5 & EREL implies R ® 5, RNS5S =
EREL

Relational variables are intended
to represent indiscernibility relations,
and operations M and ¥/ will be inter-
preted as the intersection and the tran-
sitive closure of the unlon of relations.

Set FOR of all formulas of the lan-
guage is the least set satisfying the
following conditions :

VAR < FOR

A,BEFOR implies=A, A v B, AnB,
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A+ B, A ¢ B e&FOR

A€ FOR and R € EREL imply [R]A,

<A>A < FOR.

Formulas are intended to represent
sets of data items. In particular for-
mulas built by using modal operations
correspond to approximations of sets.
Since in the language of DAL we allow
compound relational expressions, we can
express relationships between approxi-
matlons with respect to varicus proper-
ties and we can explicitly describe in-
discernibility relations corresponding
to these properties.

4 SEMANTICS OF THE LANGUAGE
OF LOGIC DAL

To define meaning of formulas of
logle DAL we should fixe a set OB of
data items and a family of equivalence
relations in set OB corresponding to
properties of these data. To be more
formal, we define the notions of model
and satisfiability of the formulas in
a model. By a model we mean a triple :
M = (0B, {F‘R-}RE- EREL'm]’ where 0B is
a non~empty set; for any R < EREL PR is
an equivalence relation in set 0B such
that pp 5 is the greatest equivalence
relation in set 0B included both in PR
and Pgi Pg a5 is the least equivalence
relation Including both pr and pe ;

m : VAR ! VARREL + P{0OB)wv pr}H e EREL
is a meaning funetion such that :

. mip) < 0B for p = VAR
++ m(R) = pp for R € EREL

Given a model M we say that a for=-
mula A is satisfied by an cbject o in
model M{M,o0 sat A) iff the following
conditions are satisfied :

M, o sat P iff oemi{p) for p&£ VAR

M, o sat A Iff not M, o sat A

M, o sat A v B iff M, o sat A or

M, o sat B

My o sat Ap B iff M, o sat A and
M, o sat B

M, o sat A + B iff M, o sat ¢1AVE)
H, o sat A <+ B iff M, o sat

(A& + AN (B = A)

M, o sat [R] A iff for all o'e 0B
if (o,0')a Pp then M, o' sat A
My o sat <R>A iff there is an

o' € 0B and that [u,u*}ﬁpn and
My o' sat A,

Given a model M, to each farmula
A of the language we assign a set of ob-
jects called an extension of A in model
M{E:{tHA} :

ext,A = {o = 0B : M, o sat A}

The immediate consequences of this

definition are the following

Fact &.1,
{a) extyp = m{p) for p< VAR
(b) ext, A = —exty A
{e) ext, (A v B) = extHh uExtHE
(d) ext, (AA B} = ext AN axtHE
(e) ext, (A =+ B) =-$xtH.ﬁU extyB
(f) exty {Ae B} = {extm.ﬁf"l uxtHBJ

[—-'{-extH AN -extMB}I
(g} exty [R]A = pg exty, A
(h) exty <R>A = FH extyA

Hence the classical propositional
operations are interpreted as set-theo-
retical operations and the modal apera=-
tions correspond te the operations of
lower and upper approximation.

We admit the usual notions of truth
and validity of formulas. A formula A
is true in a model M {ﬁ A} Iff
exty, A = 0B. A formula A is valid in lo-
glc DAL (= A} iff A is true in every
model for DAL. A formula A is a seman-
tical consequence of a set I of formulas
(T~ A) iff for any model M formula A
is true in M whenever all formulas from
I' are true in M. A formula A is satls-
fiable iff M, o sat A for some model M
and object o. A set T of formulas is
satisfled in a model M by an cbject



o (M, o sat T) Iff H, o sat A for all
Ael, A set T Is satisflable iff M, o
sat [ for some model M and object o.

Given a model M = {DB’{QH}HG FREL?
m), meaning function m provides a fa-
mily of sets of data items which we
are interested in. Next, we consider
compound sets, which are expressed by
means of formulas obtained from propo-
sitional variables by performing clas-
8leal propositional operations. We can
also express approximations of these
sets with respect to relations admitted
In the model. As a consequence we can
discuss on a formal level definability
of data Iin terms of properties related
to these relations,

In the following we show how we
can express facts concerning sets of
data by means of formulas of DAL. As
usually, we can eéxpress inclusion and
equality of sets.

Fact &,2.
{a) A+ B AFF ext

HA = extHB

(b) | A & B IFF extyA = ext,B

definability and strong definabi-
lity of sets of data can be expressed
as follows.
Fact 4.3,
(a) ig <R>A + [R]A Lff ext A is de-
finable with respect to rela-
tion p
(b) w (B ﬂ_‘n]u +(([R]8+An M) v
([R]B + [R] A ))
formula B Iff extM[R]h is an equivalen-
ce class of relatlion pp or the empty
set.

for every

The formula in condition (a) assu-
res that the upper approximation of set
ﬂxtH A is Included in the lower appro-
ximation and hence by the definition of
definability set exty A is definable
with respect to PRpe The family of for=-
mulas in condition (b) assures that the

.apprﬂuimatiun with respect
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lower approximation of any set of data
preperly Included in the lower appreoxi-
mation of set ext, A equals the empty
set. This means that the lower approxi-
mation of exty A consists of exactly
one equivalence class of relation ORe
Hence the formulas from condition (a)
and the Tamily of formulas from condi=
tion {(b) assure the strong definability
of set exty, A.

Fact #.&%.

w[RIA + [P]A and E<PA + <R>A iff

extH A is characterised better by op
than by pH.

The above Tormulas express inclu-
sions of appreximations of set cxtH A
with respect to relaticns Pp and pg.
The lower approximation with respect to
pp ls greater than the lower approxima-
tion with respect to ogs» and the upper
to pp is
smaller than the upper approximation
with respect to PRe This means that the
approximations with respect to pp are
closer to set extn A than the approxi-

mations with respect to pH.

Fact &.5.
[R1A + [P]JA and 5<P>A + <R>A for
every formula A iff p, = pg

The econdition says that inclusion
of indiscernibility relations can be
expressed by a family of formulas which
assure that for any set of data lower
approximations with respect to ﬂp are
greater than the lower approximations
with respect to PRe and the upper appro-
ximations with respect to pp are smal-.
ler than the upper approximations with
respect to Og-

We conclude, that in the language
of logic DAL we can express varlous
kinds of information : facts concerning
sets of data items, fTacts concerning in-
discernibllity relations corresponding
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to properties of data items, and rela-
tionships between data items and their
properties, especially these concer-
ning definability.

5 AXTOMATIZATION

In this section we present a de-
ductive system for the language of DAL.
We admit the following schemes of
axioms and inference rules. Let R, §,
and P denote arbitrary relational ex-
pressions and let A, B denote formulas.

Axioms of DAL
Al. All formulas having the form
of a tautology of the eclassi-
cal propositioenal legle
a2. [R] (A=BY+ ([R]A+ [R]B)
A3, [R]A=A
Ak,  <R>A - [R]<R>A
As. [Rws]a = [R]A~ [S]A
Aé.  (([P]A= [RIA) 2 ([P]A+ [S]A))
+ ([Pla - Ry s]A)
a7. [R]a v [S]la =+ [RN 5]A
AB. (([R]A + [P]AY A~ ([S]A +
+ [P]AY)+ ([RN5]A+ [P]A)
Rules of inference

A, A+ B modus ponens
B
A negcessitation
[R]A

For a fixed relatlon R axioms
Al, +.+5 A% and the rules of inference
correszend to the axiomatization of mo-
dal logic 55. Axloms A5, A6 provide the
definition of operation ¥ and axioms
A7, AB glve the definitlon of operation
mn.

In the usual way we define the no-
tions of proof and theorem, A proof of
a formula A from a set T of formulas
is a Tinite sequence of formulas each
of which Is either an axiom or an ele-
mant of set T or else Is ocbtainable
form earlier formulas by a rule of kn-
ference. A formula A is derivable from

a set I' (I — A) iff it has a proof
form zet T. A formula A is a theorem

of DAL [ — A) iff 1t is derivable mere-
ly from axloms. A set [ of formulas is
consistent if the formula ef the form

A AT A is not derivable from T.

It is easy to see that the axioms
are valld and the rules preserve vall-
dity. Hence the following theorem holds.

Fact 5.1, {Soundness Cheorem)
{a) = A implies Ik A
(b} T - A implies TF A
(e) I' satisflable lmpliles [ consis-
tent.
In the following we list some the=
prems of logic DAL.
Fact 5.2.
{a) =~ [RR]A < [R]A
{(b) ~ [R© R]JA &« [R]A
(¢} = [(Rm™ Sy & Plaw[R &(5 &P)]A

(d) w [(R P 5) 2 PlAG[RA(SAP)TA

{e) ~ [(R® S)NPTJA +=[(RAP) W’
(5 N PY]A

(f) = (R®PIN(SIEPIA =+
[(RAS) X PIA

(g) ~ [k s]a +[RI[S]A

(h) = [R][S]A +[RNS]A

Fact 5.3, (Completeness theorem)

{a) ¥ A implies - A

(b) T k= A implies T +— A

{e) T econsistent implies I satis-
fiable.

& CONCLUSIOMS

In this paper we have given some
ideas how to analyse data using legle
tools, We followed the classical frame-
work of logic programming, namely we
defined a logic language for expresslng
data analysis problems and we developed
a deductive system for the language to
use proof procedures to obtain salu-~
tions to these problems.

Data analysis has been understood



as a process of obtalning patterns in
a set of data items. We considered two
main tasks involved in data analysis :

. to agregate data into sets ac-
cording to thelr properties

. to define propertics adequate
for characterisation of sets of
data.

We defined formal counterparts of
sets of data and properties. Mamely,
sets of data are defined by means of
formulas of the language of logic DAL
and properties are defined by means of
relational expressions of the language.
We presented the deductive system for
logic DAL. We have given a particular
interest to the notion of strong defi-
nability of sets of data which enables
us to establish propertles which ade-
guately characterize these data,

The results of the present paper
can be extended to languages with the
other operatiens en relations e.g. with
the compesition of relations; or to re-
lations which are not necessarily equi-
valence relations e.g. tolerance rela-
tions (reflexive and symmetric}. We
expect that a mechanical proof procedu-
re can be defined for logiec DAL by u-

261

Konrad, E., Orlowska, E., Pawlak, I.
Knowledge representaticn systems,.
ICSPAS Report 433, 1981,

Mirkowska, G. PAL - Propositional algo-
rithmic logie, legle of programs. Lee-
ture Motes in Computer Science, 31-101,
Springer-Verlag, 198l.

Orlowska, E. Representation of wvague
information. ICS5PAS Reports 503, 1983.

frlowska, E., Pawlak, Z. Expressive po=
wer of knowledge representation systems.
ICS5PAS Reports 432, accepted for publi-
catien in the Journal of Man Hachine
Studies, 1961.

Pawlak, Z. Information systems-theore-
tical feundations. Informatlon Systems
&, 205-218, 1981,

Pawlak, Z. Rough sets. International
Journal of Computer and Information
Sciences, 11, 341-356, 1982,

Pawlak, 7. Rough classification. ICSPAS
Reports 508, accepted for publication
in the Journal of Man-Machine Studies,
1983.



