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ABSTRACT

The computational complexity of
unification in firat-order loglc under
parallel computation scheme is discussed. A
parallel unification algorithm is presented
on a combinational logic oirouit model and
its complexity is analyzed. In order to
discuss the lower bound of parallel time
complexity of unification, we show that
unification is the one of ©he hardeat
problems in the class of problems resclved
by polynomial =ize clrocuita, Hamely, it
sgems to  be difficult te design  very
efficient parallel algorithm for
unification.

1. INTRODUCTION

The problem of uvpification in first-
order logic is one of elementary cperations
in the area of theorem proving and logic
programming languages such as PROLOG, The
unification problem is defined as follows:
Oiven two terms conalsting of function
symbels and veriables, find, if it exilsts, a
simpie substitution which makez two terms
egual.

Unification was first iptroduced by
RMobinaon (Robinson  1965) as  the bazic
operation of resclution and Iimplemented in
several resolution systema (Milson 19T1)
(Cang and Lee 1973) and loglc programming
language PROLOG (Kowalski 1979). Two linear
unifiention algorithms were proposed, in
sequential computation, Aindependently in
(Patarson and Wegman 197E8) and (Martelli and
Montanard  1982). For more efficient
implementation of unification, one may try
to design & parallel unificaticn algorithm
{Yamaguchi 108%) (Vitter and Simons 1984).

1) Thiz research is based on the result of
activities of working groups for the Fifth
Generation Computer System Project of Japan.
This work was supported 4inm part by Hattord
Engineering Resarch Foundation Grant and in
part by Grant in Add for Sclentific Research
of Japan No.S97502T4.

However, no efficient parallel algoriths has
been known and implemented.

In thia paper; we are concerned with
the complexity of unification in parallel
computation, We firat show a parallel
algoriths for unification in time O(le
n'log n'), where n is the length of given
tarms and n" iz the number of variables in
the terms. Next we discuss the lower bound
on the time complexity of unificaton in
parallel computation. As the result, we show
that it seems very hard to design a much
more efficient wunification algorithe using
parallel computation than sequential one.
Namely, it is difficult to design a parallel
unification algorithm in time Q( n), even
if we ocan use infinite pumbara of
processora. In othér words, 1t seems that
unification contains easentially sequential
computation which might not accelerate by
parallel computation szcheme 1in  the worat
case {Yasuura 1983},

For the model of parallel ccaputation,
Wi usé combinational legle eoircuits
conatructed of fan=-in restricted loglc
a@lements. This model seems to be one of the
moat stable models of parallel computation
from computational complexity view podnt.
Moreover, oombinational logle circuits are
the mest natural model of implementatlon of
parallel algorithma by hardware, The
computetion time is measured by the depth of
elrouits (Savage 1976).

The parallel unification algorithm is
presented in section §, and its computation
time iz analyzed. In the section 5, we
discuas about the lower bound of the
parallel computation time of unification and
ahow the unification problem is log-depth
complete for a class of problems that can be
solved by polynomial aize eirouits (Borodin
1977} {Yasuura 1982). Namely, ;E we aan
design colrouits with depth O(log™n) for
unification, all problesms in this alasa
be computed by circuita with depth O( )
for any poaitive integer ¥, where n is the
size of problems. Therefore, we can say that
unification is €he hardest problem in this
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elass which ineludes all problems having
polynomial algorithms in aequential
computation. It 418 alsc shown that
unification is log-space complete for PTIME
(Jones and Laaser 1976}, by the similar
discussion on the above parallel
computation.

2. UNIFICATION

Let &; (1=1,2,...) be a set of i-adic

function symbols and lu be a set of constant

symbols, i-é‘ﬂ, 4; iz denoted by A. Let X be
- 1 &

a set of variables. We assume that allx=g,

Term= on & and X are defined
recuraively as follows:
{1) &ny a in Ry and any x in X are terms.
(2) Ir t1, tz, agagz ti are terms and £ is &

megber of ai, then f{t1,t2,*.‘,ti} is
also a term.

{3) A1l terms are generated by applying the
above rules (1) and (2},

Let T be the set of termsz om A and X.
A substitution s=:X=>T is represented by =a
finite set of ordered pairs of terms and
variables
{{ti, x, )| Every t; is a term, every x, is a

variable and no two pairs have the same
variable as the second element.].

Applying & substitution 8 to 2 term t, we
represent the resulting term by & . t i=s
called an instance of t, . =

A substitution s is ealled a unifier

fop t1 and tE' if and only if t1a=t23. We

al=o say that tT and t2 are unifiable when

there iz a unifier for them,

A unifier s 13 sald to be the most
general unifier (MOU), if and only if for
every unifier 3" of the set there iz a
substitution s" such that a'=a¥s¥, where *
means the composaition of substitutions.

A term t ean be represented by an
acyelio directed graph G=(V,E), called a
term graph, a3 the following mannepr:

(1) Each vertex v in V has a label p in A'X.
No two vertices have a same label in X,
and the outdegree of them are 0.
vertex having a label in {130) has i
cutgoing edges each of which 15 labeled
by a diu;inct pogitive integer j in {1,
2, asay i},

{2} A vertex with label p in & Oy rapresentsa
term p {p iz a conatant or & variable),

(3) A vertex v with label £ in A (i31)
represents term f{t,, t., ..., t.7 where
., iz & term rnpr;aanﬁad by t.h& vertex
paintad by the j=th outgoing edge of v.

We sometimes ocall vertices with labsls in X

variable vertices, and ones with labels in A
function vertices.

A term graph G=(V,E) iz encoded in
Om leg n+ nlegn) bits, where n i= the
number of wvertices in V and m is the mumber
of edges in E,

Now we will define the unification
problem formally.

[Definition 1] The unification problem {UP)
is defined aa follows: For a given term
graph G and two vertices v, and v, in G,
find, if it exists, the most general®unifier
8 for terms t, and t_ which are represented
by v and v, rLspeetiEtlr.

[Definition 2] The unifiability decision
problem (UDP} is defined as follows: For a
given teérm graph G and two vertices w. and
¥, in G; decide whether or not t1 and t2 are
wflifiable,

3. COMPUTATION MODEL AND HYPERGRAFHS
3.1 Parallel Computation Model

In this paper, we adopt combinational
logie ocircuits &z a model of parallel
computation, A basis is a finfte sst of
logic functions, A combinaticnal logie
eirouit € over a basia B is a labeled
acyelie directed graph, Vertices with
indegree 0 are input vertices each of which
is labeled with an element in [rj, Eop nuay
%, 0, 1}. Output vertices each of which is
18beled  with an output variable have
indegres 1. Other vertices are computation
ones each of which 1s labeled with a logic
funetion in B. Indegree of & vertex labeled
with an i-variable functien £ is just i. The
computation of C is defined as ordinal
manner (Savage 1976).

Levels of computaticen wertices in a
circuit C are defined in the fellewing way:
the level of each dinput vertex is 0; the
level of a computation vertex v is one
greater than the maximum of the levels of
the vertices to whieh v is adjacent.

The size of a combinational eirewit C,
denoted  size(C), is the number of
aomputetion vertiees in ¢, The depth of G,
denoted depth{C), 1= the paximum level of
the computation wverticea in G, We assume
that the delay of acmputation only depends
on the delay in each computation wvertex
(gate) and that they have same value, So
depth(C)} 4is linearly proportionzl to the
delay of computetion on C,

The conbinational {or eircuit)
complexity of a funotion f relative to a
basis B, dencted BEEI), is the smallest size
of a cdrouit over™ B that computes f, The



delay complexity of f relative to B, dencted
IJH{I'}I, is the smallest depth of a elrouit

over B that computea f.

3.2 Directed Hypergraphs and Reachability
Problam

In algorithms for UF and UDP in the
naxt section, we will tranaform OF and UDP
te the following reachabllity problem on
directed hypergrapha. Here we define the
directed hypergraph and the reachability
problem on 1it.

[Definition 3] A directed hypergraph B is
dencted (V,E), where V is a set of vertices
and E is a set of directed hyperedges. A2
hyperedge ¢ i3 an oprdersd pair of a st of
vertices 1:". in ¥ and a vertex Va in ?—UE,

denoted {Y‘.ve}. The number of elementa in
‘il'. is ocalled the rank of hyperedge e. The

rank of the directed hypergraph H is defined
by the maximum rank of all hyperedges in E.

A directed hypergraph with rank 1 iz just a
directed graph. In this paper, we aometimes
distinguish hyperedges with rank 1, called
aimply edges, from hyperedges with rank more
than cone.

An  incidence matrix of = directed
bypergraph H=(7,E) 13 an n¥m mateix I:a”},

where n=|V|] and ==|E|. Each entry .au

rapresents a relation between the vertex v 1
and the hyperedge o =(V_ ,v_ ). If wv,=v
b ej nJ i E,j

then 2;4%2, if vy 4s included in ‘.rm“1 then
lijnT, and othearwise Iijlﬂ. We can encode
'[lij} into bimary with O{on) bita,

Now, we will define the reachability
problem on  directed hypergraphs, Tha
reachebility problem 1is a generalization of
the reachability problem on directed graphs
which has been examined in detail 4in the
theory of computational complexity {Boredin
19773 .

[Definition 4] In a directed hypergraph
H=(V,E), ¥ in V is said to be reachable fro=
a subzet S of V if and only 1if v is the
member of 8 or there exlsts a hyperedge (V ,
v) sueh that all vertices in V_ is reachabTe
from S. o

[Definition 5] The reachabdlity problem of
directed hypergraphs (DHGAP) ia defined as
follows: For a given incidence matrix of =
directed hypergraph H=(V,E), a subset of
vartices 5 and 2 vertex v in V¥, determine
whether v 1s reachable from 5.
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4, A PARALLEL UWIFICATION ALGORITHM
4.1 A Unification Algorithe
Firat we show an algorithm for UDP.

[Algorithm 1] UNIFY
Input A& binary coding of a term graph

G=(V,E) on Iuﬁ. and vertices v and Vs
in ¥ which represent terms &, and t,,
respaotively.

Cutput If 'I':.I and I;E are unifizble, the

output is "YES', Otherwise it ia "HO'.
Mathod
Stap 1. Qenerate a directed hypergraph
H=(V' ,E') from G == follows:
(1) For every pair of verticea v
and ‘IJ in ¥, there is a verta

"'J.J in V' where viJ“ji‘
(2) Ir Vi and 1|f‘;1 bave the sameé label

in A and the b-th outgoing edges
of them point to ‘Fﬂ and v,

respectively, an edge (v,., v_)
1s in E'. 3% Ter
(3) If the label of 'H'q iz a variable

in X, a hyperedge {Eviq,vjq,t,
L
'1,1] is in E' for every vy and
Vye
Step 2. Compute the reachability problem of
B from {‘H,IE} to every vertex in V' in
parallel.
Step 3. If there exists a vertex Y.i.j in ¥t
guch that it is reachable from Vi2
and v, and v‘! have different labels

in A, output 'NO' and atep.

Step 4. For all Vu's which are reachable
from Viz and v, or -rj has a label in
X, add sdges into § by the following
Way. We call it resulting graph G'.
(1) If the label of v, (vy) 48 in X

and the label of '-'J {?1] is in &,

then add edge {vi,vd] ”',1"’1”
into G.

(2) If both v, and vy have distinot
labels in X, add edge h’i"J:'
into @, where vy is asaumed to be
aooigned the smaller integer than
"J in the coding.

Step 5. Examine whether the graph G' is
agyelie in parallel, If G' is acyelle
output 'YES', otherwiss MO,

Note that the computation of each step in
UONIFY can be performed in parallel. We will
discuas the computation time of these steps
in the following subseotion.
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[Theorem 1] Algorithm OUNIFY computes UDP

correctly.

{Proof) For a given G and (v, , t, and

t, are unifiable if and on1d ir hrtiu&s in

G are partitioned by an equivalence relation

zatisfying the Pellowing conditions

{Paterson and Wegman 1978):

{1) if two function vertices are equivalent
then their ocorresponding sons are
equivalent in pairs;

{2) each eqguivalence class does not contain
the vertices with distinct aymbols in 43

{3) a reduced graph by the equivalent
relation i=s acyelic.

We define an equivalence relation from the

hypergraph H in Step 1 and Stap 2, Namely,

ir V3 4nH 1is reachable from v,,, v, is

equivalent to \F in G. Algorithm UNIFY

stops at Step 3, if and anly if the pelation
doea not satisfy the condition (1) and (2).
The conditicn (3) is checked by the acyelic
test 1in Step 5. Q.E.D.

[Example 1] Fig.1 shows an execution of
UNIFY for term

aﬂ.gx-l !‘(:E;xa};leh}
f(g{h{a,xS},xa},xT,hta,xu},x#}.

{(a) 12 a term graph representing these two
termsa, In (b), a part of the hypergraph H
reachable from vertex (1,11) ia illustrated.
The hyperedge ({(2,10),(3,2)}, (3,10)) means
that in the term graph G wvertax 3 and 10
ashould also be unifiable becsuse vertex 2
{representing variable x. ) must bes unifiable
with both 3 and 10. In H, each black node
represents vertex where at least one element
of the label ocorresponds to & wvariable
vertex in G. {e)} is the resulting graph G'.
Dotted lines express edges added in Step Y.

It is easy to obtain the most general
unifier from graph G' which is conatructed
in algorithm  UNIFY. Thus we have an
algorithm for UP by trivial modification of
UNIFY.

[Algorithm 2] UNIFY-2
Input A binary ocoding of a term graph
G=(V,E} on X A, and vertices v, and v
in ¥ which represent terams I. Tm t E
reapectively, 2
Qutput The most gereral unifier for £, and
t The mgu is rapreznntad by a term
.giaphami a set of paira { vi, x; 1]
Where v, 1a a vertex in the graph and
X, 1s a"varlable in X,
Mathod
Step 1. By algorithm UNIFY, generste the
reselting graph G' in Step 4 of
UNIFY. If t, and t, is not unifiable,
output "HOT,
Step 2. For all funotion vertex v, if v has
& varizble vertex v' as the j-th son,
replace the j-th edge (v, ')} by (v,

(2) & Term Graph ¢

{1,11)

{2,100 (3.2 (6.12) ¥ (4,13)
] L

r
1|II.""'r H dge
ypere
L |

L

N,
(s, silr (9,12) (5,12 |
]
————— ¥

(7.7} {8,13)  “9(4,8)

(b) Reachable Part of Hypergraph H

(e) The Resulting Graph G!

Fig.1 Execution of UNIFY

¥y where " is selected as followa:

(1) If a =on of ¥' i3 a function
vertex u, let v" be u.

(2) If all sona of v' are variable
vertices, let " be the son
reachable from all other sons,.

(3} If v' has no aon, let v™ be v'.

Step 3. For every vertex v with a variable
label x, if there 13 an outgoing edge
from v, make a palr (v', x) as
follows:

(1) If all outgoing edges from v are



pointing only wvariable vertices,
make pairs (v', =x)'a whers v’
is the son of v reachable from
all other sons.
(2) If there are function vertices
pointed by cutgoding edges, select
a funetion wertex v' in them and
generate a pair (v', x).
Step 4. Delete =211 eadges from  vardiable
verticea.
Step 5, Delete all wverticass that are not
reachable from wertices in the pairs
cbtained in Step 3.

[Example 2] From the graph G' in Fig.i1 {e),
we obtain the most general unifier
{{E{h{ﬂ,h},h{ﬂ,b}}.xt}i {h{ﬂ.h);xeij
Eh{a,b].xg}, thlxu}r th'le]}t

4.2 Depth Complexity of Algorithe UNIFY

In this subsection, we analyze the
depth of a combinational logic elrcuit which
computes UDF according to algorithm UHIFY,

Let n be the mmber of wvertices in a
given term graph G, n' be the number of
variable vertices, and m be the number of

edges in O.

[Lemmaa 1] The reachability problem of a
hypergraph H 4in Step 2 can be computed by a

combinational eircuit with depth ﬂ{logzn +
n'log n'}).

(Proof) Firat, we compute the reachability
problem of each node, only considering edges
in H. This computation performed by =a

cireuit with depth O(lcg®n) (Borodin 1978).
We connect every palr of vertices v and v'
by a directad edge (v,v'} when v' is
reachable from v only along edges, After
this oparation, we conaider with
reachabllity along hyperedges. From a subaet
8 of vertices, we can obtaln another subset
5" such that for each vertex v in 3' there
exists a hyperedge l:{vi,vj},'.r} where vy and

vJ ara in 3. It i3 olear that it requires

only a constant depth cironit for this one
step traverse of hyperedges. Since a

hyperedge {hiq’vdqi’?ij} means v, ?j and

v in § are contained in  the same
equivalence class and ?q must be a variable
vertex, at moat rlogznﬂ hyperaedges are

consecutive in the computation of Step 2.
Thus we construct each egquivalence glasa by
at most I'lng.en'l steps of traveraing

hyperedges, There are at most n' egquivalence
classes contalning variable vertices,
becavse no variable vertex 1s contained in
more than one eguivalence class. Then we can
compute the reachability problem on H by n'
timea alternating execution of flagzn"l
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stepe hyperedge traversing and one step edge
traveraing. 8s we can oonstruct a
combinatiopal logie circuit with depth

u{ingzn + n'log n').
Q.E.D.

[Lemma 2] We can consatruct a comblnaticnal

legle eireult with depth O(log’n) which
decides whether a graph G' in Step 5 is
aoyalie,

(Proof) Using O0{logen) depth cireuit for
reachability problee of directed grapha
(Borodin 19TB); we can easily construct a

cireult with depth O(logen) for acyelic
test. Qs E.Ds

[Theorem 2] Algorithm UNIFY 4is implemented
by a combinational logie eircwit with depth
0(log™n + n"log n').

{Proof) Gemeration of the incldence matrix
of H from G in Step 1 only requires a
eirouit with depth O(leg log n), because
each hyperedge or edge can be generated from
the local informatien in G. Step 3 and Step
B can alaso realized by O({log leg n) depth
cirouits, since these operations can be done
in vertex wise and edge wise respectively.
Thus the most time consuming steps are Step
2 and Step 5. From Lemmz 1 and Lemma 2, we
directly obtain the followlng theorem.

QiEini

Sinoe Step 2-5 in ONIFT-2 requires a circulbt
with depth 0O{log n'), we have the following
corollary.

[Corollary] Algorithm ONIFY-2 is implemented
by a _combinational legie eircuit with depth
u{lagzn + n'log n').

The above upper bound 1s obtained by the
worst oase apalysis. In practical logie
programs, We rarely encounter such werst
cazes, We oan assume that n' 15 much less
than n and that the sharing structure of
variables ia not so complicated. Thus the
computation time of UNIFY-2 can be reduced

u(lcgen} in practieal applications,

As a speclal casa of unification, we
conaider "pattern matohing®, Pattern
matehing is unification problem for two
terma where one of them is wvariable free.
since it is sufficient to treat a graph, not
a hypergraph, in Step 2 of UNIFY, the

computation time is reduced to ﬂ{lngzn.}l aven
for the worst case.

5. CONSIDERATIONS ON THE LOWER BOUND

In this section, we are concerned with
the lower bound of the depth of circults
computing UDF and UP. It ia shown that UDP
is the hardeat problem inm problems that can
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be solved by polynomial size cirouits in the
sense of depth complexity. Namely, it sesms
very diffioult to design a very efficient
parallel slgoritha for ULDF.

Before discussing the lower bound of
the depth complexity of UDP, we introduce
sevaral concepts and notatlons. Firat, we
define complexity classes of decision
problems. Let P be a problem on alphabet
{o,1}, P, denctes a subproblem of P with
length n, iﬁc.,

B =PY0,11".

Thua Pn can be consldered as an p-variable

logic function. We define complexity elasses
related with =ize and depth of logle
oircuita,

PSIZE={P| For each P, there exista a

polynomial pin) auch that
C(P )<p(n)}

LOG*DEPTR={P| For each P, D(P_)=0(log“n)}
Sinoe the mize of a eirveflit for ©DP
constructed din the previcus sectlon
ascording to algorithm UHWIFY is bounded by a
polynomial of the input length, UDF is in
PSIZE.

[Definition 6] (Boredin 1977) A problem P is

said to be log-depth ocomplete for PSIZE if

and only Aif P asatizsfies the following two

properties:

(1) P i= in PSIZE.

{2) For amy Q imn PSIZE, there are a
polynomial p{n) and an infinite sequence
of functions {fn] f“: {0,1}“ -r
{D,”p{n) ¥ {1;2; «.. Sp(n)} such that
rﬂ transforms Qn to one of P1, PE" wes

p(n)* and D(f )=0(log n)}, Namely,

for & string w in {D..ﬂn. ir rn(w}=hr"‘,

z), then w is in Q iff substr(w', 1, =)

iz  in P, where  substriw, i,
'”’li“iﬂ"'a;] for w=g,a,...d; and
051¢3¢n.

It is directly concluded that if a
problem F is log-depth complete for PSIZE

and P i3 4in LmkDEPTH for a positive lnteger

k then PSIZE is ineluded in LmkDEFTH.
However, we have known no evidence to
suggest that there iz aome k asueh that PSIZE

is in LOGDEPTH, In other words, P is the
hardest problem in PSIZE concerpned with the
delay complexity.

Here we claim that UDP is one of such
problems,

[Theorem 3] UDP is log-depth complete for
PSIZE.

Bafore proving Theorem 3, Weé prepare
two lemmas.

A hypergraph H with prank 2 ia said to
be synchromous 1f and only if (1) vertices
are partitioned dinto d levels; (2) for all
edges (u,v) and all hyperedges ({u,w},v} if
v is in level i then v and w should be in
level i-1; (3) each vertex in odd levels has
only outgelng edges with rank 1 and each
vertex in even levels iz a source of at most
one hyperedge with rank 23 (4) indegree of
each vertex in even levels is just one; and
(5) indegree of each vertex in odd levels
exoept the first one is positive, TWe call
vertices in odd levels "AND-nodes™, and ones
in aven levels "OR-nodes@,

[Lesma 3] For any combinational logic
eircuit C over a basia {2-AND, 2=-NAND} with
a single ouwtput vertex and for any input
veotor Ex1 X4 - .:n} af C, we oan

construet a synchronous hypergraph H wilth
rank 2, a subset S of vertices in H and a
vertex ?1 such that vy is reachable from &

if and only if C outputs 1 for the input
veator. Morecver the mumber of vertices and
hyperedge (including edgea) in H is
O(size(C}") and all vertices in 5 are in
lewvel 1.

(Froof) (1) It 48 easy to convert € to a
aynohronous olroult C' computing the asame
funetion of C€; 4in which all outgoing edges
from wvertices in level 1 is pointing
vertices in level i+1. 2'I'l:ute size of C' is
clearly bounded by size{C)® {(2ee Fig.2 (b)).
Of cause the cutput of C' i3 equivalent to
c!
{2) We vonstruct a hypergraph H' as follows.
For each vertex u in ¢', place two vertices

Yy and u, in H'. If uils =z computation

vertex with label AND &and there are edges
fut,u) and (u",n) in C', make hyperedges
(gt au " teugdy (fug*yu,"}ugl,
lfui'.un"l,unl. and ““1"“1”’“1} in H'. If
label of uw i1s HAND, make hyperedges
({uy*suy "1, ), ({ug*,u,"}u.d,
1'.'{1117.11““}.::1}, and Huil’“1“}‘uﬂ} in Ht'
{See Fig.2 (c)). Suppose that v 4is the

ocutput node of C and iz adjacent to wu.
Generate & eadge (ui,\r11 in H'., Let w be an

input vertex with label x,, When xiﬂ let w

1
be in 8, and when xiun let Wy be in 8. It is

clear that Y5 is reachable from S if and
only Af CY outputs 1 for a given input,

{3} It 4is easy to transform H' to satisfy
the conditions of aynehronous hypergraph.
Hamely, for each hyperedge ﬂ‘=({1'1, va]f u)

in H', e is replaced by two vertices u', uv,
edges (v, w'}, (v,, u") and a hyperedge
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{g) &k Cireuit C

2 D_"

xﬂﬁl\.._ ™,
u
I . 0
xlu'-\r-f':’ -{\\ .da
Yoo =< \ 77 o
N LY "

zl = -_-.1-'53;’#
51

{e) A Hypergraph H'

{d)} & Synchronous Hypergraph H

Fig.2 Transformation from a Clrouit
to a Synchronous Hypergraph

{{u*, u"}, u) (Ses Fig.2 (d}). Thus we
obtain =  syochronous hypergraph H with

ﬂ{aiz&{ﬂ}a} vertices and hyperedges. Q.E.D.
[Lemma §] Por a synchronous hypergraph H, &

subset S of vertices in level 1, and an AND-
node vy, We can find a term graph G such

that UDF on G is false if and only if vy is
reachable from 3 on H.
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{Proof') Firat we put a labsl for each vertex

in H as follows:

{1) For each hyperedge ({u,vl,w) in H, if
u#v, assign a distinet variables in X.

(2) For every MND-nede v in H except ¥,

asaign a distipet function or constant
symbol £ in A, where outdegree of v is

i, Let the label of v be (f,f). Put the
label {a,b) for Yy where g and b are
distinet funotion or constant symbol in
A.

{3) For every AND-mode v with label (r,r)
and a hyperedge ({u,w},v)} assigned to x,
put the label (f,f)} for u if usw, or put
the label (f,x)} for u and {(x,f) for w if
ugv,

Make a new vertex ""ﬂ with label (f,f) where

f is different frem all other funetion

eymbols used above operations. Connect Yo

with all wvertices im 5 by directed edges

from "D' We call resulting hypergraph H'. It

is trivial that vt is reachable from 5 on H

if and only if AL is reachable from ¥y on

H', Considering H' as the hypergraph in Step
1 of algorithm URIFY, we oan uniguely
sonstruct a term graph G such that UDF for G

and the reachability from "':) to L are

equivalent, The copstruction procedure of G

from H' is as follows:

{1) @Generate verticea corresponding each
variable in H'.

{2) For every AND-node v in H" with label
(f,f), generate vertices v' and v" in G
with label f.

(3) Suppose thers is an edge (v,u) in H'. If
the label of uw is (g,g) then make edges
{(vr,u') and (v",u") in G. If the label
of u 4is (g,x) then generate edges
(w',u') and (v¥,w) where w 15 the vertex
with label x, Similarly, if the label 1=
{x,g), then generate (v',w) and {¥™,u"),

From the construction of H' and G, it dis

plear that ODE for (G,v l,vﬂ'} fails if and

only if v, is reachable from Vp on E'.

1 Q.E.D.

[Example 3] 1In Fig.3, an example of the
sonatruetion from a synchronous hypergraph
to a term graph G iz dillustrated. For a
given hypergraph H, we first put labels. Qn
each hyperedge distinet verlable is
assigned. The label of v is (4,B) but other

AND-nodes have labels (f,f). Labeling of
each OB-pode is decided by the rule (3) in
above proof. Adding a naw vertex o edges

according to S, we get a hypergraph H' in
(a). Hext we construct a term graph G in
(bl In this example, the reachability
problem iz reduced to UDP for
F{K{J.EIU{HJID{!|EJ}},LIP,1},H{S.I}}]

and
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(b) A Term Graph G

Fig.3 Tranaformation from the Reachability
Problem on  Synchronous Hypergraph to
the Unification Probles

F{E(r,t),L{J,E(G(x},;2);58)).

Note that the number of vertices and edges
in G are limearly proporticnal to the number
of wvertices and hyperedges in H,
respectively,

Now, we return te the proof of Theorem
3.

(Proof of Theorem 3) For any problem P in
PSIZE and every positive. integer n, there
are & polynomial pln) and a circuit ¢, such

that c" computes a subproblem Pn of P and
:r.iz.u(!:nj is not greater than p(n). From {:n,

we can construct a simple hypergrapn H by
Lemma 3. From Lemma 4, for a given input
vector for Gn, we obtaln term graph G such

that UDF for G is false 4if and only if Cn

outputs 1 for the input vector. Acoording to
the construction of ¥ and G in the above
discussicn, it iz easy to make a cirouit
tranaforming Pn to a UDPF with constant

depth. Indeed it is enough the ocircuit only
generates edges of G in the first level from
the input to Pos Aa shown in the proof of

Lemma 3 and 4§, these adding edges in 6
clearly correspends to the input for Pn‘

Thus the depth of the eclrecuit is & constant
independent of n. Moreover, it has been
already ahown in the above consideration
that the length of UDP alsc bounded by =a
pelynomial of n, Thus we conclude that UDP
iz log-dapth complete for FSIZE.

0.E.D.

By the pimilar disoussion of this
gection, wWe can also show "that unifieation
is log-space complete for PTIME (Jones and
Laaser 1976). Kamely, if we have an
algorithm on a Turing machine for
unification which wuaes 0(log n) cells on
tapes, we conclude that all problems that
have polynomial time algorithms should be
computable by an O(leg n) tape bounded
deterministic Turing machine.

[Theorem 4] (Yasuura 1983) UDP is log-space
complete for PTIME.

§. CONCLUSION

We proposed &8 parallel algorithm for
unification., Unification is closely related
with the cireuit vzlue problem ({Ladner 1975)
and the preachability problem on hypergraphs
which plays dimportant rele in the
computational complexity  theory (Yasuura
1983-B). We showed that unification is one
of dimportant problems for attacking the
effieient parallel computation scheme.

Although it seems hard to design
efficient algorithms for these two problems,
we may be able to implement a hardware which
can compute UDP or UF effectively, because
many practiecal terms for unifiecaticon
ioherently include paralielisms that may
compute efficlently. It 18 dimportant to
examine the proparties of terms which appear
in practical situation for designing a good
parallel unification algordthm.
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