PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1984,
edited by ICOT. © 00T, 1984

AUTOMATIC IMFLEMENTATION OF ABSTRACT DATA TYDES
SPECIFIED BY THE LOGIC PROGRAMMING LANGUAGE

Horbert Heck and Jdrgen Avenhaus

Univerzity of Kalserslautern
Computer Sgience Department
D=6750 Kaiserslautern
FR Germany

ABSTRACT

We present a specification method
for abstract data types whieh is
based on the leogic programming language
and propose a framework for dariving
correct lmplementations of abstract
data typos from their specifications.
Provided that several conditions are
met, it is possible to decompoese the
ganaration of implementations inte
three phases. The first and second
phase which are sufficient for deriv-
ing a correct implementation lend
themselves for automation. The third
phase which serves for optimizations
and syntheses can be done interacti-
vely using a well suited set of trans-
formation rules.

1 INTRODUCTION

It i5 known that (Horn clause)}
logic can be interpreted as a high
level programming language (Kowalski
19%4}. Such a high level programming
language is used to specify problems
in an abstract, i.e. implementation-
independant but formal and easy to
understand way. This specification has
finally te be implemented on a real
computing device.

Wormally the distance between the
abstract specification and the com-
puter level is very great, so one in=-
troduces more levels and performs the
implementation in steps. A typical
problem is then as follows: given an
“abstract” data type, i.e. a speci-
fication of the input/output relation
of some operationz and givem a "econ-
craete” data type on a lower level, cpe
has to implement the abstract data
type in terms of the concrete one.

In this paper wa show that leogic
programs can be unsed to specify ab-
stract data types and that the im-
plementation again can be done using
the logic programming language. This
outlines a unifying approach based on
logic which leads from a specification

of a problem te an implementation on
a computer.

The data types defined by oux Speci-
fication method constitute an algebra:
the ¢lements which represent abstract
data objects are terms, the operations
act on these terms. Both, the set of
tarms representing data ebjects and
the cperations are defined by logic
programs. 5o the semantic of an ab-
Stract data type is defined algorith-
mically. This conktrasts with the al-
gebraic specification method where the
Semantic is defined statically by
equations (Goguen et al. 1978). Our
methed equals more the concept of
(Loeckx 1981).

Hext we study the problem of how to
implement one data type by anocther,
both data types given in terms of
logic. Usually, after having specified
the implementation type cne has to
Prove its correctness against the
specification. We will show that under
reasonable conditions the censtructicn
of a correct implementation from a
specification i3 mechanizable. This
implementation however may not be very
efficient. A collection of rules for
Program transformations can be given
to derive a better implementation in
an interactive manner. For program
transformation systems sae alse
(Burstall and bDarlington 1977) and
{Baver and Wéssner 1951).

Because of lack of space this paper
dess not contain all formal proofs,
instead we give a simplified overview.
For more details see (Heek 1934) .

2 LOGIC PROGRAMS

In the following we assume that the
reader is familiar with Horm elause
logic as programming language (Kowals-
ki 1974). So we repeat only the hasis
facts.

A logle program 1ls a finite set of

Horn clauses A V¥ 131 VooV 1Bm written
as

A + Ei""'nm m 2o
where A and the B, are atomic formulas
in the sense of first ordar logic. A
logic program R works onm an input cal-
laed gocal statement

= 3
[*Elt...,ﬁn n 1

as follows. Suppose there is a clause
B+ ByireoesB in R and & j, 1=j=n,
such " that A; and A are unifiable by
a most general unifier . Then G
derives

G' = +uai,__,,uaj_i,dﬂj,....ﬂﬁm,

oh .., CR
n

j+41°°
kY cauEutatiEn with input G is a8 se-
gquance of pairs

tsﬂrﬁn}xtﬁ GIJJ---J{Gkiak]

such that G G, 0_ =@ is the empty
substitutiof, &; defives & with

mgu ¢ and Oipp = 000, . The computation
is successful if Gk is the empty
clause 0O.

I!

Logic programs are used to compute
relations (or functions). To explain
this let TEEM be the set of terms
(ovar some set of variables}) that can
be built with the fanction symbols
cccurring in the program R and let H
be the Herbrand universe of R, i.e.
the set of variable free terms. If
P iz a n-place predicate symbol of R
we define

Bo® = (ot ... 00)

tl""'tn S TERM,
there is a successful computation
{+Ptt1,++..tn},ﬂl...+.{E,UJ}

With the completeness result of
(Clark 1979} it can be shown that

(ty,oenrt) € B (p) 122 R implies

1
P{tlp.;,th} inm the sense of

first order logic.

We want to associate a relation
p_{P) over the set of ground terms H
to P that reflects what is computed
by R. To do so, we fix a set I_(F) <
{1,...,n} of input positions, Say
I.(P) = {1,...,n=1} for simplicity,
and define

DH{P} = {[tl:".;tn_l;ﬂ{x}:ll
tl""'tn-l EH, oi{x) € H,
thera is a successful computation
I+P{t-lr~~vf n_Lr)ﬂ N | R {Diul}

We say R defines P as a total
(partial) function 1f for all

211

t L € H there is exactly ({(at

preee
most}) one tn € H guch that ftx“"*tn-

th £ D_{P). In (Heck 1984) one can
£ind su%ficilnt conditions on R such
that E 0

(i) DR{FJ = RE?} n =

(1i) B defines P as a partial functian

it

{11i) no goal clause +B(t, ,...,t P x)
admits an infinite " computation.

In the rest of the paper all programs
are 8o that (i) helds. As indicated
above we Wwill use the leogic program-
ming language in an uniform approach
for specifying and reasoning about
abstract data types.

3 THE SPECIFICATICHN METHOD

Abstract data types have turned out
to be a useful and powerful concept
for the design and description of data
types while creating a software system.
A well-known method for specifying
abstract data types is the algebraie
etyle of specification (Goguesn et al.
1978} .

In this paper we present an algorith-
mic specification method based on the
logic programming language. Wheraas
algebraic specifications merely de-
scribe the desired properties of opera-
tions by equations and so define a
class of algebras, in the specifica-
tion method proposed here carriers
and operations of an algebra are de-
fined explicitly as sets and functions
by Horn clauses.

3.1 Logic specifications

A logic specification of a data type
5 consists of

a) a signature, that is & list of
operation symbols with their types
of input and ocutput

b) a term sSpecification which defines
the carrier set of s

c) a set of clauses which dafines the
operations of s declared in al).
These clauses define the operations
as functions {(See Section 2).

We explain the method by an example.

Example Specificaticon of type guéug

type queue

ralations
MEWD 1 guene)
ADDG [quene, nat, gueue)
DELETEQ(queue, queue)
FRONTO{ gueue, hat)
APPENDD (quewe , queus, quene)

212

{2 TS
IS-TERM {newg) <
Is-rﬂnuqueua{udﬂq[x,i}l

GUL2ite
* IS-TERM 5 (x) IS-TERN,) 4 (1)

clauses
HEWY (newg) <
ADDQ{x,i,8ddqg(x, 1)) +

DELETEQ (newg , newg) 4

DELETE((addq (newq, 1) ,newg) +

DELETEQ {(addg {addg (x,1) , j} saddg(x' 43}
+ DELETEQ(addg (x,.i) ,x")

FRONT (addg (newg, 1) ,1) +
FRONTD {adda (addeg (x,1) ,5) .1}
+ FROWTQ (addq (x,L),4i")

ADDPENDC (3, newd, %) <
APFENDC (=, addg (%" , i) ,addg (=", 1))
+ DNPPENDO(x,x' ,x")

The carrier of the data type QUEUL
consists of the terms Aewg and
addqt laddginewq, iyl ... ,4 }. where

= 1,...,n, ara Eluncnts of the

t;pe naf which iz assumed to have been
spacified previously and is at a “hier-
archically lower level”. The function
symbols #Hewyg and addg are called term
constructors of type QUELE. NEWQ, ADDQ,
FRONTD, DELETEQ and APPFENDD are the
oparations of quede. They are indesed
defined as functicons, e.g. for any
garm £, of type quUeue and term t2 nf
typea ﬂ&t there is at most one t
type gueéle such that {tirt t] ED&DDQ:I

We call a set of logic specifications
hierarchical if it is possible to
order its elements to

M, M, ,;...;M
1 2 n
such that

- M, is the specification of type
bbolean

= the specification M, depends only
on types specified ﬁy Nl""*Mi—l
for all i, laian
that is, operations of other types
which are used in M, are defined in
a specification Hj’ <L,

3.2 The data type defined

We now want to associate with a
hierarchical set of logliec specifica-
tions a heteregenecus algebra con-
sisting of carrier sets (one for each
type) and a collection of operations.
Az indicated im the guUele-example, the
carrier elements will be determined by
the term specifications and the opera-
tions will be derived from the Hern
clauzes of the specifications.

Definition
Let M ba a hierarchical set of logic

specifications for types § = {51;”..BHL

M defines an algebra O, which consists
of

(i} tha set 8 = D{IS-TERH!] defined
by the IS-TERM clauses for each
& E B

(11} the function P: r X...%Xr =
for all nperﬂtqu symﬁgls e
Flr,reeesk_oT } in M, whaerae P
is %iven bg St

P(tl.,..;tnl =t ¢ 1f

n+1
{ti""'tn’tn+1] € D(P},

£, € r, for all i, 1sisntl
Our specification method can be
generalized:

- Sometimes we have to deal with data
types 3 where not all terms of s
repragant data objects, fi.8. we have

to restrict the term language 5 (e.g.

= %gﬁgﬂiﬂa,yge is desirable to identi-

fy terms which are syntactically
different but represent the same
data element. The carriler set con-
taing then aguivalence classas as
elements.

But for simplicity, we shall con=
sider only logic specifications as in
the definiticn above.

hs A ¢oncluding remark of this
section we want to emphasize that our
interest in this paper is in tools
for the specification and implemen-
tation of software. Introducing data
types may alsoc be wiewed as an ald te
write safer programs in a concrete
programming language. This is common
in PASCAL and octher languages, whers
data types are used {amonyg others) to
prevent mixing objects of different
types; 2.9. a number and a list con-
sisting only of that number. In our
approach we declare for each predicats
symbol the types of its arguments.
This implies an implicit etyping of
the variables used in a clause. In
(Heck 19B4) it is shown that one can
easily test whether a logle program
iz syntactically correct in the sense
of correct use of types. A referee
peinted out that types in logic have
been dicussed earlier. For a different
approach see (Mishra 1984).

4 IMPLEMENTATIONS OF ABSTRACT
DATR TYPES

A hierarchical =et of logic data
type specifications is a formal de-
scription of an algebra which <an be
used a5 a standard in program develop-
ment. Proposed implementaticns can be
proved correct relative to its speci-
fication. We provide a framework in
which an implementation 18 again de-

fined by a logic specificatlon. Such
an implamentation can be considered
as a new specificatien which needs
further treatment towards a final
raalization.

The following situation is char-
actaristic when implementing & type p:
we want to implement p with the help
of data types gq' which are already
available and allew for an efficient
implementation of the operations of p.
That is, wa have to define & new type
q, whose elements and operations, im-
plementing the elements and operations
of p, are expressed in terms of ele-
ments and operaticons of g'. To be uni-
form, o is described by a&a logic speci-
fication and its correctness is given
by the corresponding algebra.

Definition

Lot M be & hierarchical set of spec-
ifications for types 5 = {s.4....8_1,
lat HP ba the specification of a t¥pe

gr p E S, such that ¥ U {#H } i hier-
archical and dafines the palgah:aﬂ: r
and let M be the specification of P
a type o,°g € §, such that M U {M_} is
hierarchical and defines the algeﬂra

Eq‘ g is said te be an implementation

of p, if Wb and Eq are isomorphic.

In spite of its symmetric character
thizs definitioen cerresponds to the in-
tuitive notion of an implementation as
motivated above. An implementation of
p is constructed with the help of data
types specified in M.

Example Implementation of type quUeue
in terms of type cfisdl for
circular list (Guttag et al.
i978al)

(i} The specification of the type
quéue is already glven.

{ii) The specification of type cfisi
iz giwven as follows

type ofisd

relations
CREATE |efist)
s {elisd, nat, clist]
DELETE | clisd, chist]
VALUE | afist, nat)
rIGETCL{AE, clist]
Join [elist, cbist, cbist)

terms
I5-TERM - xtcraat:c] -
IE—TERHGEL&IIinE fo,id)d

4+ IS-TERM Y ir:: .Is-*rmmu.]

213

clanses
CREATE (creata) +
INS{c,i,ins{e,1}) +
DELETE (create,create) +
DELETE (ins{c,1) ,c) +
VALUE (ins (¢,i) ,1) +
RIGHT (create ,craate) +
RIGHT (ins (create, i) ,ins (create) 1))+
RIGHT (ins (ins (o, 4) lil} rins e’ 1))

+ RIGETCins{c.il},c'l

JOIN{e,create,c) + |
JOIN (o, ing (o' i) ,ins(c",1}) {
+ JOIM(c,e' ")

[tii) Let M be the set of speclfications
far {boofean, nat, cfist} and
let p be GuUEUe. We now present
the specification for an imple-
mentation type g = dmgueud. It
rafers to M by using the term
language clist as carrier eset for
{mgueue and by describing the
imgueke-operations in texrms of
clisi-operations.

type dmquedws

ralations

| IM.NEWQ (dmqueue)
M. anog Limquene, aad, inquene)
IM.DELETED ({mqueue , {mgiuens)

| IM.FRONTQ[dmqueue, nat

| IM.APPENDQ l{mgueue, imgueune, {mgueue)

terms

I5=-TERM I qwe“_E'[t.:l

“ I5-TEEM £ -t“:}

clauses
IM.NEWQ (c) + CREATE (c}
IM. ADDG{c,i,=2)
+ RIGHT(ins{c,1} ,2)

II‘!.DELETEQ(Gl 'EEJ <+ DELETE Lcl +Cy

IM.FRONTQ (o, 1) + VALUE(c,i)
IH.APPENDQ{cl,cz,z} - JOIH{ez,cl.zﬂ
We shall now look for conditions
which imply that a type g is an im-
plementation of type p. Clearly, the

following theorem holds.

)

Theorem

Let M, H.P, uq. DLP and r::tq be as in
the definition above.

Let RP be a relation over g¥*p de-
finded by a Horn clause program where
RP is called a representation function.

g {5 an implementation of p, if the
following two correctness conditions
are satisfied:

(i) RP: g + p is defined as a bijec-
tive function

214

{ili) to aach function
P: L X%, +E 1" nad
of p corresponda the funetion

IM.P: £ix,..xz! + '

=1 -n “mtl
of q with
¢q L
ri =-:' & i,-‘.t;---;!:ﬂ'.‘l,
hri otherwisa
i [] =
such that for all ti E gi.iiiﬁn.
rHPI{IH,PEt;_,...,t;.J:I " ?:tl.....tnl
% Lhe1 = P
LS IH-P!ti----.t;il " P{.tlr----tn}
otharwisao
whera
¥ L]
{Mlti} ri = q
ti =3 p A=l .00
Lti atharwisa
Exaiple

With the help of RP defined by

EP(create, newg) <
RE(ins (e, ,5) ,0ddqg (x, 1))
+ RI {inutcz.i}.in:(cl;jll.RPEcj.:],
S—
we can show that Amgueue is an imple-
montation of gUeEde with RP baeing the
isomorphism.

What wa have done so fax is the fol-
loWwing. We hawve two data types p, q
and a fupction RP: g = p, Wwhere p. g
and RP are defined by logic programs.
We have to prove that § iz indeed an
implementation of p by means of RP,
i.e. the correctness conditions of
the last theorem hold. To do so one
has to develop tools which allow to
prEove statements on logic programs,
Program transformations, discussed in
the next section, are such tools.

Normally it is hard to prove for
two given data types p,q that one is
an implementation of the other. In
Section & we try to find automatically
an implementaticon g for p. This will
laad in most cases to a very poor im-
plementation, but subseguent program
transformations may lead to better
ones.

5 TRANSFORMATIONS

As indicated above, weé need a con=-
capt of transformations for legic
prograns. Transformation rules which
are guaranteed to preserve the seman-
tics are tools for werification methods
and development technigues.

Definition

Let PROG be the class of all logic
Drograms.

a} A relatlon T & PROGXPROG Ls called
4 transformation rule.

b} Let T be a transformation rule and
let P be a predicate symhaol.
T is callad P=-valid, if DR (P) =
DR (2} for all {ai.nzl E:T}

g T %s called walid, Lf T is P-wvalid
for all predicate symbols P.

Hote that P-valid transformation
rules presmerve the denotation of F.

Dafinition

Let T,T ,TZ,....TH be valid trans-

1
faormation rulas.

a) Rl € PROG is T-transformable inte
112 € PROG, if lRl.-Ezl' E T or

{&2,311 € T.
B) Rl £ PROG is TI'T2+..--Tn-trans—
formable, n22, into nn+l £ FROG,
if there exists R2""'Rn E PROG
such that B, is T, -transformable
ipto R fér L =71,...,n., We write
1+1
R1 Ri
T W Tl-Tz-. .-Tn
RE Eﬁl

As an example we now consider a
fundamental transformation rule which
we shall use very often in the next
chaptexrs.

Lemma "Symbolic execution™

The following rule T ig‘valid
T, = {{ni,azj IR, contain clauses

1
A + Bl""'nn and B + GI--¢+|CL

(with no variables in common)
such that a substitution ¢
exists with ¢ = mgu {B.Bil faor
some i, 13ism;

B, =R U fgA+oB,...08

ucl,...,acl.chiH““,uan}}

Mote that T, executes procedure
calls bafore %untili, it xesembles the
"unfolding rule' of (Burstall and Dar-
lington 1977).

Besides such an elementary trans-
formation rule T, we need special
rules which are Aull sulted for our
application domain. Rules for elimina-

ting recursion are such rules (see

next section). As an example we present

a rule T, for recursion rxemeval. Op-

posite t& the rule T, we refer in this

rule to types and term coenstructors.

Lemma "Recursion removal®

Let p, be a type with a correspond-
ing IS-TERM -clausa

P3
IS—TERHPEIQLtlltz} + IS—TERleltilr
IS-TERM ~ (t,)
P, 2

and let p, be a type with the term
apaclfi:a%iun

IS-TERM (a) +
Py
IE—TERHEI{f{t1,+..,tn}}
- IS—TEI’!]I'«T'EA1 { l'.i} rEe g IS-TERan{tn]
where qj =py for ane j, 13jan.

Then the fellowing transformation

rule TZ is G-valid:

T, = {(R;/R)IR; =R U {Glgla.,x).x) + ,
G{g[f{xi,,..,xn},x].x‘]

- Bl..+..Em.Gfg{zfﬂ}uH'1} i
the twe clauses denote G az a fune-
tion G: p. * Ez;

the literals B, ;...:;B do noet con-
tain tha pradiénta syﬁhnl Gy

for all substitutions o: ¥ +~ H
{(with V = {%,,....,%x_ ,%}, H tha Har-
brand univerie of R}

there 1= a successfill computation

‘*HBJ‘!IIIJuBmfﬁlll’l‘l{nJEJl !u:h

the "size" of the term 9c(z) iz less
than the szize of c:f{xl....,xn}};

R, = R U {eiglx,¥) ,v)+} }

The proof is by induction en the
size of the first g-argument. MHote
that in the recursive version of G
the first g-argument is successively
reduced. Since the result is known in
advanca, long computatiens can be
avoided. This is done in Rz.

6 AUTOMATIC IMPLEMENTATIONS

In this section we shall gstudy the
problem of deriving correct implemen-
tations of abstract data types from
specifications. Rather than to write
an lmplementation by hand, being gui-
ded by the specification, and then
te prove it satisfies the specifica-
tions, we want to generate corract
implementations by transformations
thus obviating the need for the veri-
fication step. The following diagram
illustrates our concept:

215

bpap
relations Pi,...,Pn

tarms IE-TERMF

clapzes PJ""*Pn
Um
Epe 9

relatiens 1n+Pl,...;IH.Pn

terms IS-TEHMq

iﬁ_,fvj

empty

clauses

The data type p which has te be im=
plemented is completely specified
while only the signature and the term
gspecification of the implementation
type is given. Additionally. a repre-
gentation functien RP is available
which reflects the connection between
the abstract objects of p and the
"concrete objects" described by the
IE—TERHq clauses. With the help of RP

we shall try to derive clauses for the
implementing operatlens IM.P, which
define IH.Pi as 8 correct implementa-=
tion of P,, 41 = 1,...,n.

The ided to transform a program to
ancther program by data structure map-
pings is already developed in (Bur-
stall and Darlington 1977) and
{Bansson and T&rnlund 1980). While
these authors only treat examples we
are looking for general technigues.

We s=hall define a certaln "class of
data types and representaticons"” which
lends itself to a constructive process
of implementation. The data type which
we want to implement and the used rep-
resentation function have to meet some
reguirements. For the sake of simpli-
city we asgume that the term structura
of p is built by one constant a and
one function symbol f only. If there
are more function symbols the £follow-
ing constructien has to be applied to
all of tham.

Definition
Let M be the specification of a

data tyga E-

p is suited for an inductive implemen-

tation, if

- the term specification of M_ con-
gists of the twe olauses
IE—‘PEPSNP (s} *

216

IS-I‘ERHPEfL.l. . .th)
- ‘e)
+ IS Tﬂnupl{til, ,IEdTBRHPnI n}
that 1a, a and f are the term con-
structors of p.

- the relations-part of ¥ cantains
besides other symbols
the tweo operation symboels Al(p) and
Frpl,.+,,pn,pl

- the clauvses-part of HP aontains be-
sides other clauses the twe clauses

Ala) +
F{xl,+..,KH.I{HI....,xnll +

A and F are called constructer
functions, which have to be distin-
guished from the term constructors
a and f. WMote that all terms of p
can be constructed by application
af A and F.

For example, unbounded linear and
binary types can bhe defined in such a
way that they are suited for an in-
ductive implementation (e.g. lists,
stacks,; gueues, traaes).

Defipnition

Lat Hu be the specification of type
P N
H& is called a partial specification

of a type q relative to p, if the
following holds:

(i) to each operation symbol
Pirlf---.znl of Hp corresponds

an operation symbol
IM.F{x’ ,.,r;} of Hé, where

."
ri =4 y i=1;...;n
wry otherwise

Hé contains no other opgxation
symbols.
(ii) Hé contains a term specification

defining g.
(iii}) The clauses-part of Hé 1s enmpty.

Definition

Let M_ be the data type specifica=
tion oIpP suited for an inductive im-
plementation with term constructors
a and f. Let Né be a partial specifi-

cation of g relative to p.

A relation RF over g%p is called
an inductive representation functien,
if it is defined by the clauses

EF{c,a) +
prdlffxlfrrlpxn]}

+ Gi,".,G-m,{RP{EI

J'“:.”pj =p

which define RP: g + p as a bijective
function. ’

Remarks
is used as an

TT—TEFThj'xj]}Pj = p

abbreviation for BR{d. ,%, J},...,
I,

RF (d where the j1~th Conpo-

P X]
T Iy
nent of £(x,,...,%x) iz af type p
for each i = 1,...7k. The literals
Gire i =1,...,m represent calls

of operations, which are at the
disposal of p. The elements ¢,d,d
are terms containing only variabllé
and term constructors of type g.

-2} RP is defined by induction on the

structure of E-

3} RP satisfies the correctness con-
dition (1) eof an implementation.

Example

Consider the example of Section 4
with p = gueue, g = {mMguese. Lek M’
be the imguete-specification withof@t
the clauses-part. RE: imgueus ~ gueus
a8 defined in Section 4 is an indac-
tive representatlon function:

RF (create ,newg) +
RPlinatcj.j}.addqfx.iﬁﬁ

+ RIGHT (ins leysd) yins (e, 1) 1R (. x)

Starting from the abstract charac-
terization of inductive implementa-
tions we are ready te divide the pro-
cess of implementation into three
phages:

1} implementation of the censtructor
functions of p

2} implementation of the other opera-
tions of p

3) optimizations and syntheses.

After stating the general thecrems
we shall demonstrate the phases by the
GUEUE-ARguine example.

Theorem

Let p be a type suited for an in-
ductive implementation with construec-
tor functioms A and P, let K" be a
partial specification for g “relative
to p and let RP: g+*p be an inductive
rapresentation function.

Then clauwses for IM.A and IM.F which
define IM.A and IM.F as a correct im-
Plementation of A and F can be derived,

Proof. To get a clause for IM.F we
carry cut the follewing trans-
formation staps:

IIH+F[x e es gk PB) * {RP'{) .]} - ¥
B 71 liI=] ,r(k * B 7 F
_xl,...,xn.z }RPAz.2")

symb.ax. of F

TH.Flx ,oa0x ,2) + {rﬂ*c::k-:unl'J}PDC -p !
BP (2, £(X},eeesx!))

symb.ex. of RP

L

IH.Ffﬂip..uxn.E] bl {E“{er;:]'}Pk = p
Spreen s (BR@DY, L,

because RP is bi-
jective we can
identify x and

by
l e {x,«a lp, = p}
ﬂ[IH.F{Hli-.-:Enii]} + g3

{rR(4 %)) }Pk. .o

A

11---:'-76“ ¥

wa can eliminate
the RP-literals,
because the coo-
puted values :i
are not needad

JIH.FIUEEI}...T;Glxnlrﬁiill l

+ dGl'”"mm r

HMote that the first clause reprosents
the condition (ii), which a correct
implementation IM.F of F has to satis-
fy, and IM.F is characterized as a
function. The transformation proeserves
tﬁe semantics of IM.F.

Exampla
In our current example we hava

a) r IM.NEWQ (x) + RP(x,x") ,NEWQ(x")

'lf
I-IH.NEHQ{crEnt-] *
b I, ADDQ (X, ¥ .2}
+ RPlx,x") ADDQ{x" ,y,2') RP (2,2}
Bl
I*
IM.ADDD (x, v dns (x",¥")
RIGHT(ing (x,¥).ins(x",¥'))

In the next phase the remaining
functions are implemantad auvtomatical=
ly. First, it is necessary to elimi-
nate the occurrences of p-terms in the
clauses defining these operations.

217

befinitien

Laet p be a types with term construc-
tors a,f.

A clavse © is called p-free, 1f no
term constructors a,f occur im C.

Lamma
_—

Let p bé a type suited for an in-
ductive implementation with conastruc-
tor functions A and FP. Then the clau-
sas for the operations P of p, P & A,
F & F, can be formulated in a p-free
way which does not change the seman-
tiecs of P.

Skatch of proof

Replace each ccourrence of a or f
in a clavge C by a new variable z and
add a call of A or F to the body of &,

@.g. replace B+ By,...,B, .

P{ftxll+--rxhj}r31+1rcuapﬂm
h’r B + an -++rﬂ'£_1;
JE 2]

Pi:],FExl.-.. =

Brprremm 1By

in order to remove composed terms we
must fiterate the above step.

Example
Considet the TFRONTQ-clauses in our

example
FRONTD (addsg (newqg, 1) 1) +

FRONTD (addg (addg (%' 4) .33, L'}
+ FRONTQ (addg (x',4),1")

—

FRONTR (x,1) <+ hDDQEKI:i.KI,HBHQ{xl}
FRONT(Q (x,4') « lﬂDQitlfjixi.ﬂDﬂQ[x'.l.xllr
FRONTR (x, ,1")

We now present the "substitutien
rule™ which states the following fact:

A correct implamentation IM.P for P
can be derived by replacing calls of
constructor functlons A and F by calls
of IM.A and IM.F.

Theorem "Substitution rule®

Let p,g,RP be ap abova and let IM.A,
IM.F be the implementations of A and
F generated by the transformations of
the first phase. Let P denote a func-
tion of p different f£rem A and [which
ie defined by p-free clauses.

Then a correct ilmplementation IM.P
of P is given by the following clauses:

if En_ - Bl,u.,Bm is a clause for D,
then choose Bé - Bi;...rnx'l as a clause
for IM.P, where

218

{'IH.M:] ' By = Aiz)
IIH.P{xl,....sn,zl ¥ ai-rtti...,.xn.z]
B;. -‘#IM.P"{?}L..“,}F]:} ’ Bi=P' “'1"“*5':”
' is a fonckion
] of p
_Bi ¥ Bi calls a func-
tion from another
ype

We omit the proof which xelies on
the bijection of RP.

Example
Applying the substitution rule to
the gueue-frea FROHNTQ-clauses we get

M. FRONTQ (x,1)
+ IH.nDDQ{xI.ijx},IH.HBHQ{xIF

M. FRONTO (x,1")
« IM.ADDQ(x,,3,%) IM.ADDQ(x' (1,%,), |

IJLFR.OHTQI‘.J!] AN

The clauses for IM.DELETEQ and
IM.APFPENDE can be derived similarly.

As the result of the first and
sgcond phase we have generated auto-
matiecally corzect characterizations
of the implementing operaticns. Tha
darived functions act uopon the ¢-terms,
2ll calls of RF have been removed.

But we are not content with these
implementations simulating eonly the
bahaviour of the p-functions on the
g-level (“module RET).

We want to transform the clauses for
the oparations IM.P to make optimal
use of the cperations of types g" the
type g depends on. For instance, in
our ecurrent example we want to parform
the following transformation:

114, FRONTQ (%,) + IM.ADDQ(x, ,1,x},
. NEWQ (¢,)

IM.FRONTQ(x,1i')+ IM.ADDQ(x, . j.x).
IH.ADDQ[:,L,xil;
m.m{xl,rl

L

*

IM.FRONTQ (X ,¥) + VALUE(x,¥)

The above-menticned transformation
cannot ba carried out automatically.,
since it is not known in advance
whieh transformation rules have teo
be applied. Tharefore, the third phase
can be considered as the "creative”
phase of the process of an inductive
implementation, in which the user has
to choose approprlate rules.

our investigatiomns have shown that

a charactexistie collection of trans-
formation rules can be found for this
phase. The rules can be classified as
= optimization rules

- synthesis rules.

The rule of symbolic execution is a
typical optimigation rule. Calls which
Wwill take place Bt run time Are oXe-
cuted in advance. Also a rule which
eliminates “"useless™ calls in &4 proce-—
dure body can be regarded as an opti-
mization rule. A useless call computes
a value which doas not contribute to
the semantics. Finally, rules for eli-
minating recursion are highly desir-
able.

We do not explicitly present s¥n-
thaesis rules here but we can charac-
toerizo them as fellowss the clauses
which wa derive by applying optimiza-
tion rules often have similar syn-
tacical structure like clauses al=-
ready avallable. Then Lt is easy to
express the implementing functiona in
terms of these function: (see the next
examole) .

Example
We demonstrate the third phase of

an inductive implementation by mani-
pulating the IM.FRONTQ-clauses:

r;A.?BQHTQt:.i} + BELADDQ(x, ,4,x),
Tt I (x,)

IM.FRONTQ(x,1') + IM.ADDQ(x,,3,%),
IE;EEPQ{Z'i*xI"
IM.FRONTQ (x, ,£")

symbolic execution

IM.FRONTQ (ins (o,]) «1)
+ RIGHT (ins{create,i) ins{c, 1))
M. FRONTQ (ins (' 1%} ,4")
“ RIGHT(ins(z,i),ins{e,1,}),
RIGHT {in={ins t:,izﬁ «3) sins e’ .30,

IM.FRONTD (ins {c.izhi']

symbolic execution

| 1. FRONTQ (ins (create, 1) 1) +
I FRONIQ Lins (e’ 4,0 41"}

+ RIGHT (ins{c,j).c").
RIGET[inE[z,i],ins[e,izl},

IH.FRDNTQ[inILE,iz},i']

racursion elinination

(ese rule Té of Bection 5}

IM.FRONTG{ins (c, i) i} + '|

gynthesis

IM.PRONTQ (x,v) + VALDE(x%,y)]

With similar transformaticons it is
possible to derive the clauses

TH.DELETEQ (x,y) + DELETE {x,y)
IM.AFPENDQ(X,¥,2) + JOIN{y,%,2}

8o wa have found the implementation
of type gqueéue in terms of type clist
as in Sectien 4 by program transforma=-
tion. By construction this impleoen-
tation is correct.

It is worth mentioning that we have
examined other examples which fit
into the framework of an inductive
implementation:

- implementation of a stack in terms
af lists

- implementation of a asymboltable in
terms of a stack of vectors
{Guttag et al. 1978b})

- implementation of a stack of booleans
in terms of natural numbers

- implementation of a labelled tree
ifn bterms of binary trees (Burstall
and parlingten 1977).

REFERENCES

Bauer, F.L. and Wssner, H. Algorith-
mische Sprache und Programmentwick-
lung. Springer-vVerlag, Barlin, 19381.

Burstall, ®R.M. and Darlington, J. A
Transformation System for Developing
Recursive Programs. J. ACM 24,1,

pp. #4-67, 1977.

Clark, K.L. Predicate Loglc as a
copputational Formalism. Res. Report,
ITmparial College, Londen, 1979.

Goguen, J.Ah., Thatcher, J.W. Wagner,
E.G. and Wright; J:B. An Initial
Algebra Approach to the Specification,
correctness and Implementation of
Abstract Data Types. In: Current
Trends in Programming Methodology 4.
(R.T. ¥eh, Ed.), Frentice Hall, pp.
80-14%9, 1978.

Guttag, J.¥., Horowitz, E. and Musser,
D.R. The Design of Data Type Specifi-
cations. In: Currant Trends in Pro-
gramming Methodoclegy 4, (R.T. Yeh, Ed.},
Prentice Hall, pp. 6O-79, 1978a).

Guttag, J.¥., Horowitz, E. and Musser,
D.R. Ahstract Data Types and Software
Validation. Comm. of the ACHM 21,12,
pp. lo48-1064, 1978b).

219

Hansgon, A. and Tarnlund, 5. Program
Transformation by a function that maps
simple lists onto d-lists. Logic Pro-
gramming Worksheop 1%80, pp. 225-229,
1ago.

Heck, N. Abstrakte Datentypen mit
antomatischen Implementierungen.
Ph.D. Thesis, Univerasity of Kaisers-
lautern, 1984,

Kowalski, R. Predicate Logic as Pro=
gramming Language. Proc. IFIPR T4,
North Helland, BRmsterdam, pp. 569-574,
1274,

Loeckx, J. hAlgeorithmic specifications
of abstract data types. Froc. ICALP
81, LNCS 115, pp. 129-147, 19B1.

Mishra, P. Towards a Theory of Types
in PROLOG. IEEE Symposium on Leogic

-~ Programming, pp. 289-298, 1984.

