PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
0N FIFTH GENERATION COMPUTER SYSTEMS 1984,
edited by ICOT. © ICOT, 1984

195

TRANSFORMATIONAL LOGIC PROGRAM SYNTHESIS

Taisuke SATO

Electrotechnical Laboratory,
1-1-4, Umezono, Sakura-mura,
Miihari-gun, Ibaraki, 305
JAPAN

ABSTRACT: A new approach to logic program
synthesis from the first order specilfications
iz presented. COur synthesis process starts
wWwith a specification for p(X) of the form
piX}{-rformulalX), where formula(X) is a first
order formula and p(X) is an atomie formula.
We assume that the predicate aymbol "p" does
not coour in formula{X). We alsa assume that
every predicate in foroulal(X} is already
defined by some logie program 5 (a set of
definite clauses) and given an interpretation
by the least model m{5) of 5. Then, the
interpretation of formula(X) by m{5) denctes a
relation. OQur cbjective is to demonstrate a
method for synthesizing a logie program for
"p" that computes the same relation as dencted
by florsulalXx}. The m@method relies on a
negation technigue which takes "the
complemnent” ef a given program. This
technique enables us to synthesize not only a
program for the negative specification but
also ene for the universally guantifed
specification without induction. Synthesis of
an MN-gqueens pragram iz given as an
illustrative example.

1. INTRODUCTICN

Although a lot of effort has been deveoted
to the problem of program synthesis, it
remains & chalienging problem. One of the

reasons is the semantic gap batween
specification languages and programming
languages. In this respect, it is

advantageous to deal with the problem within
the logic programming paradigm because logic
programs are not only executable but also
highly declarative.

In this paper we propose a new approach
to legic program synthesiz from the first
order specifications. Our synthesis process
starts with a specification of the form
plX){=}formula(X), where formula(X) is a first
order formula and pl{X) is an atomic forsula.
We assume that the predicate symbol "p" does
not oceur in formula({X). We also assume that
every predicate in formula(X} d4is already

Hizsao TAMAKI
Ibaraki University, 4-12,
Nakanarusawa, Hitati-si,

Ibaraki, 316 JAPAN

defined by sSome logic program S (a set of
definite clauses) and given an interpretation
by the least model wm{S) of 5. Then, the
interpretation of formula(X) by m(S) denctes a
raelation. Our objective is to demonstrate a
method for asynthesizing a logic program for
"p" that computes the same relation as denoted
by formulal(X). The methoed relies on a
"negation technique" [Sate 84] that eliminates
negationz and univer=sal quantifiers from
formula(X).

The nagation technigue derives a program
5" that computes the relation ~glX) from a
program S for gqf{X) when &8 satisfies certain
conditions. In order to satisfy these
conditions which will be described later, an
egquivalence preserving program transformation
[Tamaki 843 4is often performed before the
application of the negation technique.

Since negation technique plays an major
role in our approach, we firat deseribe it in
section 3 and its application in sectiom U.
Then we present a sample synthesis, i.e. the
synthesis of an N-gueens program in section 5.

2. BACKGROUND

We assume that programs and formulas in
this paper are written in a many sorted first
order language L. We fix the language L and
uze U to denote the Herbrand universe, i.e.
the set of all ground (variable free) terms in
L. By convention, terms beginning with upper
case letters are variables and those beginning
with lower case letters are constants,
function symbols or predicate symbols.

A definite clause 15 a Tormula of the
form p0 €<= pl & ... & pm (md=0) whers pi
{0={i={m) iz an atem (atomic feormula). A
logie program S 15 a finite =set of definite
clauses. The meaning of a program S is
defined as the s=set of all ground atoms
provable from 5. We define:

succese(3) =
[p | p i 2 ground atom in L and 5 |- p }.

195

Success(5) is galled the success set of S.
We use failure(S) to dencte the finite-failure
set of 5 as defined by Apt and van Emden [Apt
et al. 84]. Foughly speaking, it is the set
of a2ll ground atoms p such that SLD-refutaticn
of €-p fails in a finite number of sieps. The
get, failure(S), 43 a subset of all of the
ground atoms unprovable from 3. We define an
interpretation a(S) over U as follows:

fer any ground atom p in L
m(5) |=p iff (if-and-only=if)

p is in succesa(S).

m{S) thus defined becomes the least model
over U of 5. That is, for any model I over U
of &, if m{8) |= p then I |= p helds for every
ground atom p. Since success{5) and m{S) are
essentially the Same, we use them
interchangeably. In 1light of our nprogras
semanties, two programs S1 and 52 are
equivalent iff mi{Sl) = m{52).

3., MNEGATION TECHNIQUE

The negation technique 43 a kind of
program tranaformation. It is a procedure to
derive a program 5' from a given program S
such that:

(1) Predicate names in 5 and those in 5' have
one-to-one correspeondence. If we present the
correspondence as, p in 8 {---» p" in 5', »p
and p' have the =ame arity k{>0),

(2) For any ground atom pltl,...,tk} and
pl [tl:‘ "'lthl

net(s [- pltl,...tk)) if ' |= p"{tl,...,tk)

If 3' satisfies (1) and (2}, it is called a
dual program of 5. Moreover, when "if" in (2)
can be replaced "iff", we call 5' a eomplement

program of 5.

Successful computations by S° mimick
failed computaticns by 5. In this sense 5’
can be regarded as the procedural negation of
3. We would like to show the negeation
technique by an example for saving sapee.
Details are described in [Sate BY)]. Given the
program:

5= { mem(H,[H|L]), mem(¥, H|L])<{-mem{X,L} }
eee(3=1)

where [a]b] stands for the term consf{a,b). The
second argument of mem is a list and memia,b)
iz intended te mean that a is a member of list
b. As stated before, 5 defines the binary
relation 'mem' owver U through m{S) so that the
'~mem' relation is also defined. Since no
clawse in 5§ has internal wvarisbles {an
internal variable is one occurring only in the
body of a clawse such as ¥ in a[X}<- WBI(X,¥)},
we are able te obtain a program for "~mem' by
applying the negation technique to S in the
following way. First we apply steps 1-6 to
sach predicate in 5.

[STEP 1] Construct an IFF-definition [Apt et
al. B2] of the selected predicate. We obtain,

memlA,B)<->
{exist H,L}{{A,B¥=<H,[H|L]*) or
{exist X,H,L){<A,B»=¢X,[H|L]*Emem(X,L}}
e 03=2)

where "=" means the syntactic identity in U
and a,b=dc,d> is 8 sherthand for

{a=b)&(o=d). We sometimes consider
{al,...,am>» as a vector of terms for
convenience.

[STEP 2] HNegate both sides of the
IFF-definition. <a,bd=/={c,d» is & shorthand
for ~({a=b)&ie=d)}.

~mem(A, Bh{=>
(all H,L} (£{A,Br=/=¢H,[H|L]>») &
{atl X,H,L){<A,By=/=¢X,[H|L]} or ~mem(¥,L)})
e 3=3)

[STEF 3 1 Transform every econjunct on the
right side ef the result of [STEF 2] which
has the form,

(all ¥1,...,Mn)(<AL,... . Akd=/=<t1,...,tk> or
~pl Or ... Or -~pm)

(m>Q) to,

(81l X1,...,Xn)<Al, ... Akd=/=CtY, ..., th)
or (exigt Xl,...,Xn)
(a1, ..., Akd=qt]l, ..., tk> & ~pl{X))

or {exist X1,...,X¥n}
(CAL, .. o AkP=<E], ...tk & ~pm(X)}).

In this case we obtain,

~qemlAB){->
{all H,L){<A,Br=/=¢H,[H|L]?}&
{{all X,H,L}{<A,Bo=/=<K,[HIL)3) or
{exist X,H,L)
C€A,By=<X, [H|L]>) 2mem(X, L)} }
e 3=

[STEF 4] Transform the right hand side te a
disjunetive form.

~men{f,Bl{=>
[{all H,L}{<A,By=/=<H,[H|L]>)&
(211 ¥, H,L)(<A,BY=/=¢X,[H|LI¥)} or
{lall H,L}{<A,By=/=¢H,[H|L]>)2
{exist X,H,L)}
(<A, By=¢X, [H|L]>) &~mem{X, L)) }
P

[STEF 5%] At this step we consider, for
example, {all H,L)(<A,B» =/= <H,[H|L]>) as
defining a new unary predicate with a wector
argument <A,B». In addition, we assume that
there iz a logie program which computes that
predicate, This is possible and sound because
for any ground term a and b, (all
H,L){{a,br=/=CH, [H|L1>) holds iff the two term
vectors <a,b» and <H,[H|L]> are ununifiable
and ununifiability is a recusive relation over
U. { Practically speaking, this is computed by

"negation as failure rule" [Clark 78] such as
nat(<a,bd=CH,[H|LI>}). For convenience, we
intreduce a parameterized predicate ununi(
<AL, ... Ak> 5 <t1,....tk3) {k>0) where
¢Al,..., Ak iz an argument and a vesior Term
tl,..,tk> is a parameter. We stipulate that
for any ground term ai{l=Ci=<k),
ununi{€al,...,ak», <tl,...,tkd} holds 4iff
€al,...,aks and <tl,...,tk> are ununifiable.
We eliminate universal guantifiers using this
predicate. Note that the result has the form
of an IFF-definition. We get,

~mem(A, BY¢-> (ununi(<A,Br,<H,[H|L]>}
& ununi(<A,BY, <X, [H|L1>} or
{(exist ¥,H,L}{<A,Br=<X,[H|L1>
& ununi{<A,By,<H' [H"|L"]13)
& ~mem({¥,L}).

+o e (3-6)

[ETEF &] Transform the IFF-definition given
as the output of [STEP 5] to a clause set
g2', Then s=implify goals containing “ununi®
predicates using the property of "ununi®. For
example, ununi (A, B3, {H,[H|L1») L
unund (<4, B, <X, [H|L1*} equals wnunilB,[H|L1}
wheih in turn equals B=[] since the variable B
pust have a list as its value.

[STEF 7] After preceasing all predicates in
Swith [STEF 1 1 to [STEP &], collect the
resulting clauss sets and let S5' be the union
of them. Then regard the negated predicate
symbol as a new predicate name. 5" is the
output of the negation technigque applied to 5.
Below we consider "-mem"™ as a new predicate
name .

8 = { -mem({f,[]),
~mem{f, [H|L]}
¢— unani{A,H) & ~mem{A,L) }
ana 13=T1

Next we give an outline of a proof that
' is not only 2 dual but also a complementary
program of 5, Let '~mem' bBe the least
relation defined by (3=T). It satisfies the
IFF-definition of '~mem' (3-6) and this alse
gsatiafies (3=5) and (3-8} in turn. HNow wWe
note that for any ground term a,

{al1l X)(a=/=t{}¥) or ~pla,X}}
¢=» (all X)(a=/=t(X}) or
{exizt H){a=t{X} & ~pla,¥)}

holds over U begause din U, X is determined
uniguely by ast{X) when a is pgiven. It
follows from this fact and (3-4) that the
relation '~mem' defined by success(5')
gatisfies (3=3). (If some clause in 5 has an
internal wariable, this argument is not
walid). Therefors, the relation

F = { mem{a,b) | ~memi{a,b) is not in
success(5'). a,b are ground terms.|

gatisfies (3=-2), which implies twa facts.

[Fact 11 R is a super set of success(3).

197

This is because succesa(S) is the least
relation that satisfies (3=2). If -~memia,b)
ig in success(5'}, mem{a,b) is not in B by the
definition. Therefore, it follows from [Fact
1] that 4if -~memf{a,b) is in success(5'],
mem{a,b) is not in suecess(5). Thus, §' is
proved to be a dual program of 3.

{Fart 2] R has nc intersection with failure(S)
Lapt 82].

To show that the dual program 5' is also
the complemeéntary program of 5, we introduce
the following definition. We say that a
program S is dichotomous iff for every k-ary
pradicate p (k»0) occurring in 3 and ground
ters al,...ak, plal,...,ak) belongs either to
success(S) er to failure(S5). In other words
if an SLD-tree {apt 82] with root
f-plal,...,ak} is always finite for every
ground atom plal,...,ak), then 1) is
dichotomous.

5, 4.,e. the mem program (3-1), is
dichotomous. Thus it follows from [Fact 1]
and [Fact 2] that R ceincides with success(3).
Tn cther words, -memiz,b} is in sSuccess(5")
iff memia,b) is in swceess(S5). Thus we have
proved that S' i3 a complesentary program of
5. Generalizatiom of the arguments up to this
peint leads to the following theorem.

[THEOREM 1 1]

If every clavse in a preogram 5 has no
internal variables, then the procedure [STEP
1Y to[STEP 7 1 gives a dual program of 8.
In addition, if § is dichotomous, it is also a
complementary program of 5.

We say that a clause pO(X} <- pliX,¥)
E...% pm(¥,¥) in a program S with an internal
wariable Y has a function part pl iff pl{X,Y¥]}
defines 2 partial function from X to ¥ { that
ia, whenever 5 |- plia,b) and S |- plia,b']
then b = b' holds for any ground term a,b,b')
and there is a predicate ndem(¥) called a
nen-demain predicate for pl such that 5 |-

ndem{a} iff mot{ § |- {exist ¥) plla,¥}).
Even when there are clavses with internal
variables in =, We can obtain a

dual fcomplementary program fer S5 by the
procedure similar te that deseribed above if
the clauses have a functien part [Sato 84].

4§, DOUBLE NECATION TECHNIQUE

The double negation technique is used to
derive a program from 2 universally quantified
gpecification. We again illustrate the idea
with an example. Let the specification bet

arl{L,N}¢->{all X}{mem{X,L}-> 1={H=<N)
wra(=1)

where mem{¥,L} iz defined by (3-1). arl{L,N)
is intended to mean that ewvery element in list
L ie between 1 and N. A logic program for
arl{L,N) is derived as follows. First take
the logical negation of both sides of the

198
specification.

~arl(L,N}<->(exist X)(mem{¥,L}& ~(1=¢¥=¢N))
<. (8=2)

Then we consider "~arl" as a new predicate
symbol and (4-2}) as a mpecification for
~arl{L,N}. (4-2) is apparently satisfied by a
logic program:

| ~arl({L,N}<- mem{X,L}& ~{l=<X=<N)
clauses for "mem", "=¢% | e (l=3)
If we can apply the negation technique to
(4-3), we will obtain a correct program for
the specification {4-2). However, the
existence of the internal vardable ¥ in (4-3)
is an cbstacle to the application (see theorem
1}, We wvse the legie program transformation
system [Tamaki B84] to eliminate internal
variables. This system has twe basic
transformations. Ome is "unfolding of a goal"
that means one step symbolic execution of a
goal. The other, "felding of geals", replaces
a4 procedure body (goals) by a procedure call
{2 clavee head). The system preserves program
equivalence. That is, if a program 51 is
transformed to a program 52 by the system then
m{31) = m{32) holds. Transformation of (4-3)
by the system containing one unfolding and one
folding operation yields an equivalent program
that ineludes,

[~arl([H|L],N)&- ~{I=¢H=<N],
~arl([H|L],N){= ~ari{L,N)
clauses for "»" |}, vo o (84}
This program is guarantesd to- be
equivalent to {4-3) with respect toa "-arl".
Moreover it has no internal variables so that
We can apply negaticn technique. We get,

{ arX([],M),
arl{[H|L],N}{-{1=<{H=<N}Liarl{L,N}
¢lauges for "={" 1}, en o [B=5)

Suppese that a specification plX1l,...,%n)

€= formula(¥l,...,Hn) is given in oconjunction
with a program 350 which defines the primitive
predicates used in formula(Xl,...,Xn). And
Suppose that we have successfully synthesized
a program 51 for p{¥l,...,X¥n}. We say that 51
1s partially ecorrect with respest o the
specificatien if for any ground term ai
(1=¢i=<n}, m(51) [= plal,...,an} implies m{SD}
|= forenlafal,...,an). When the equivalence,
m(5ly |= plal,...,an) irf mi{50) I=
fermulafal,...,an} helds, we say that 31 is
tetally correct with respect to the
specification or 51 realizes the spocification
pl¥l,...,¥n} ¢-» formula{Xl,..,%n).

We show that (4-5) iz totally correct
with respest te (U-1). First (4-5) is a
complementary program of (U4-8) becavse (h-4)
is dichotomeus. Second (4-&) is equivalent to
{4-3) with respect to "-arl” and (4-3) is
totally correct with pespect to (8-2),
Therefore, the complement of the Tapl!
relaticn computed by {4-5) satisfies (4=2),

In other words the relation computed by {&-5)
gatisfies (4-1) Q.E.D.// In addition, since
(4-%) ie ebtained regardless of the contents
ef the 2-ary predicate {1={(H=<N), {4-5)
remainsg totally correct even when (l=¢(H=<{N)] is
réplaced by scme other predicate. This faet
will be used in section 5.

As this example shows, the problem of
synthesizing a program for a universally
quantified specificatien like plX)i-»{all
Y}formula(X,¥} can be solved in three steps,
The first step is the logical negation of a
given specification and its realization by a
program S1. The second is the transformation
of 51 to an equivalent program 52 to which
negation technique is appligable. The third
is the application of the negation technique
to S2. This methed is c¢alled the double
negation technique. If the transformation
from S1 to 52 is successful, the result of the
double negation technique Is partially correct
with respect to the given specification. In
addition, if 52 is= dichotomous, the pesult

becomes tobally correct.

5. GSYNTHESLS OF AN N-QUEENS PROGRAM

demonstrate a
synthesis of an N-gueens program which
searches for a “mutually nen-attacking
arrangement of N gqueens™ on an M by N chess
board. We assume that the primitive relations
defined by the following self-explanatory
program are available.

In this section we

[Giver 1

{ leni{[],0}, len({[H|L],N+1)}¢-len(L,N},
mem{H,[H|L1}, mem(X,[H|L]}<{-mem{X,L},
ap(l],X, %), apllH|x],¥,[H|Z])¢-apiX,¥,2),
add(0,X¥,%), add(¥+1,¥,241)<{-add{X,¥,Z},
cheek (N, A,B) {-add (A, M+1,B) &~ (N=M+1),
cheak (N, A,B) (-add (B, M+l A) G~ (NuM+1) |

Here X+1 stands for sa(¥) and "=" 43 a
successor function. Using these predicates we
Specify the N-queens problem in a top-down
manner a5 follows.

[Specifications]

queen{L,N) {-rar(L,N)&safa(L) .. [5=1)
ariL,N)d->
len(L,N)&{all X} {mem{X,L)->within{X, M)}
«sa (5=2)
within(X,N}¢{-2
(exist ¥,Z) (add{l,¥,X)8add(Z,%,N))
e (5-30
safe(L){=>
(211 A,B,N}{dif{A,B,L,N)-Scheck(N,A,B})
ean (5=H)
dif(A,B,L,N) <=3
(exist X,¥,Z,W)
lap(X,[A|¥],2)kap(2,[B|W],LI&
len({A]Y].M) e {5-83

queen{L,N) means that llst L is an answer
to the N-queens problem and it is defined by
ar{lL,N) and safe{L). ar{L,N) means that Ilist
L has length N and ecach integer in L satisfies
within(¥,N). within(X.,N) means that 1=<X=¢N.
safe{L) means that any pair of queens in 1list
L are putually non-attacking. It i defined
using dif(a,B,L,N) which means that the
distance between A and B in 1ist L is N.
Every argument iz supposed to have an
appropriate sort.

Our synthesis process proceeds in a bottm
up mamner, i.e. in the order (5-3), (5-2),
(5-5), (5=8) and finally (5-1). We first
atart with (5-3).

within(X,N)<{->
(exist ¥,Z)(add(l,Y,X)badd(Z,X,N)}) ...({5-3)

Program synthesiz of this type which has the
form p(X) <=3 {exist ¥) qlX,Y} is
atraightTorward. A program { p(¥) <- qiX,¥),
elauses for "g | realizea the specification
so that (5-3) is realized by:

{ witin(¥,N)<-add(1,¥,X)iadd(Z,¥,N),
clauses for "add™ }.

This is optimized by an equivalencs preserving
transformation system [Tamaki B4]. After one
unfolding and one folding operation, We
obtain:

[within{N,N)<-add(1,¥,M],
within(X,N+1)¢- within(X,N),

clauses for “add" } .= [5-3")

Mext we move to the synthesis of (5=2).

ar(L,N){=>
len(L,N)&{2ll X) (mem{X,L}->within(X,n))
v o (5-2)

Thie requires the synthesis of arliL,N)} <-=)
(a1l X){mem{X,L) =» within(X,N)) which Hhas
been dona already in seetion 4 using the
double negation technique, The result is
(4-5) where we identify (1=¢X=<N)} with
within(X,N}. Therefore, & program,

{ ar{lL,N}{=len{L,M)&arl{L,N},
clauses for "len" } U (U=5) U (5=3")

constitutes a totally cerrect program with
respect to the epecification (5-2). An
efficient program, however, is more desirable.
Soe we start the equivalence preserving
transforoation process by setting,

ard (L, N, Kid->
(exist M)len(L,M)iadd{M,X,N)zarl{L,N).

It is ebvious that ar2(L,N,0) <=
len(Ll, M) & arl{L,MN) holds. After 3 unfolding
operations and 1 folding operation, we reach a
totally cerrect program with respect to the
specification (5-2).

199

{ ar{L,N}<-ar2{L,N,0),
ar2(C1,N, N3,
ar2([H|L] N X <= within(H,N)&aT2(L,N,X+1)
within(N,N)<-add{1,¥ N},
within(X,N+1)<¢- within{X,N),
clauses for “add® | vea(5-2")
After having realized {5-2) as a program,
We move to the synthesis of (5-4). First we
realize the speecification (5-5) by the
programs:

{ dif{A,B,L,N)<-
ap(X,[A|¥]1,Z)2ap(Z,[B|W],L)&1en({[A| V], N},
¢lauges for "ap” and "len" |}

Second we transform this program te an
equivalent one that has no intermal variables.
This requires 7 unfolding operations, 3
folding operations and 1 introduction of a new
prodieate dif1{B,L,N} whose definition ia

dif1{B,L,N){-3
{exist ¥, Whap(¥,.[B|W],L)E1len¥,N).

{ dif(A,B,[H|LI,NI¢-dif(A,B,L N}
dif (A,B,{A|L],N+1){-dif1{B,L,N),
difl1(B,[B|L],0},
difl{B,[H{L1M+1)<-dif1{B,L,N} }
e {5=5"1

We next apply the double negation technique to
[5-8). PFirst we consider the specification,

~safe(l){->)
{exist A,B.N) (dif(A,B,L N)icheck(N,A,B))
aas (5=U")

and realizea it by a program +that has no
internzl variables. This requires 2 unfolding
cperations, 3 folding operations and 1
introduction of a new predicate -~safell{A,L,X)
whose definition is ~szafel(A,L,X} <= (exist
B, N,M) dif:(B,L,N) & add{M,X,M) &
~check(M,A,B) (salfel(a,L,X) <-> (211 B,N,M)
{dif1{B,L,N} & add(N,X,M} =-> check{M,A,B)).
Here we consider ~safe, -~safel, safel as new
predicate symbols. The resulting program is

{ ~safe([H|L]}{—~safe(L),
~safe{[H|L]) {—~safel(H,L,1),
~safel(A,[B|L],X){-~check(X,A,B),
~safellA,[H|L]}{-~aafel (A, L,H+s1) |,
cud (507}

MNote that this program has no internal
variables. In addition, it is dichotomous. By
applying the negation technique to this
program, we finally obtain,

{ sarell]),
safe([H|LI}<-safel{H,L,1)safe(L),
safe)(A,[],N),
safel(A,[B]LI,N}<-

check(N,A,B)Laarel{A,L,N+1),
clauvaes for “"check" } caa (G=BTTY)

which is totally correct with respect to the

initial specification (5-8). Thus we have

200

realized the specifications (5-2), ({(5-4) hy
{5-2'), (5-4"'"} respectively. Now, the
top-most specification {5-1) is realized by

{ queen(L,M)<{-ar{L,N}&safe(L)]
U (5=-2') U {5-U4""") ,,..{5=2")

Although (5-1'} is totally correct with
respect to (5-1), it dis too brute a
generate-and-test program. We attempt an
improvement by transformaticn. The
transformaticon begins with a new predicate

queenliL,N,X){-rar2(L,N,X)&safe{L).

After 3 unfolding operaticns, 3 folding
cperations and 1 introduction of a new
predicate gqueenz{H,N,L,¥) <-»* within{H,N} &
safel{H,L,¥), we reach the following program

[Synthesized Program]

[queen{L,N}{-queenl(L,M,0},
queanl{[],N,N},
queenl{[Q|L],N,X)<- .
queenl(L,M,X+1)&queenZ(Q,N,L, 1)
queeng{Q,N,[],X)<~ within{Q,N},
quean2{Q,N,[B|L], X}<-
queenz{q,N,L, X+1)&check (X, 0,8},
within{N,N)<-add(1,Y,N),
within{},N+1)<{- within{X,N},
clauses for "add", "check™ ... } ...{5=1''})

When gqueen(L,N} iz ealled with specified
N, the program chooses gqueens {an integer 4,
1=£{Q={N} and place them on the chess bord one
by one. Wheneéver a queen is placed, it checks
whether or not it is mutually nen-attacking to
the existing queens on the board.

To derive this program, 17 unfolding
cperations, 12 Tolding operations, i
introductions of new predicates and 2
applications of the negation technique were
required. We do not evaluate whether or not
the derived program is worthy of thosa costa.
However, we emphasize that it is guaranteed to
be not only partially correct but also totally
correct with respect to (5-1). Feor dering the
gynthesis precess, every intermediate program
to which the negation technigque was applied
was dichotomous, and the transformation system
preserves program eguivalence.

6. DISCUSSION

We have i1illustrated a transformational
approach te logic program synthsis based on
the negation technique. It is summarized as
follows. Suppose that a(X), b(X), o(X,¥) are
predicates defined by some logic program S
through its least model. Then, a
specification for a predicate p(X) in the left
side is realized by a program in the right
side,

pldi<—ralX) & BIX)
wmmmmmmmac) | piX){-alX)&b{X) } U S

plXi{=ral¥) or bi{X)
=== { plXi<-a{X), p(H){-bi{X) J U S

plad<-Slexist Y)elX,Y)
DLl > oplXid-o{d,¥) J US

------------ » By negation technigue

p(X)<=3{all ¥)e(X,¥Y)
————— » By double negation techmigque

Wnen a specification piX){-formula(X) is
given, a partially or tetally correct program
with respect to the specificaton ocan be
synthesized by recursive application of this
table to the subformulas of formula({¥) with
the help af the equivalence preserving
transformation as seen in section 5. Our
method has the following interesting features.

First our system does net suffer from
nondeterminacies caused by the deduction in a
formal system as ocompared with the deductive
approach to logic program synthesis [Clark et
al, 77)], [Eriksson et al. 52], [Hansson et al.
79], [Hegzer 81]. Instead, we have to caope
with nondeterminacies in the transformation
prodess in the double negation technique or
those in optimization. But the skeletal
process 1s deterministiec and hasa no need for a
gearch process such as "gueszs step’ in [(Bibed
80].

Second the system synthesizes not only a
funtetion but alse a [nondeterministic)
program for a relation and it does not require
any existence proof of the object to be
synthesized unlike [Manna 811, ([Sato 79].
Induction plays only a secondary role in our
approach though it may be uzed to establish,
for sxample, (X+Y}+2 = X+(¥Y+Z).

Third it has Simple and clear semantic
kasis which elucidates the meaning eof the
synthesis Process. Far example, every
predicate introduced during the synthesis has
a first order specification. Such
specification ean be helpful in the
optimizatieon Et&g!.

On the other hand since our method iz 2
one-to-one mapping from a subformula in the
given specification to a program, we may lose
opportunities to shorten the path to the final
program by 'macro processing' of the
gpecification. Moreover the output program
tends to have a flavor of generate-and-test =so
that the subseguent optimization becomes wvery
important as is exemplified in section 3.

We Thope that the synthesis method
presented here will contribute one step toward
a (semi-)automatic programming environment
which logie programming aspires to achieve.

ACKMOWLEDGEMENT: The authers are grateful to
Monica Strauss for detailed corrections.
Thanks are due also to the members of Machine
Inference Section of Electrotechnical
Laboratory and the working groups of the Fifth
Generation {omputer Frojeect.

REFERENCES:

Apt,K.R. and van Emden,M.H.,"Contributicns to
the Theory of Logic Programming”, JACHM 29-3,
1982.

Bibel,W.,"Syntax-Directed, Semantlcs-Supporited
Frogram Synthesis", Artificial Intelligence
14, Morth-Holland, 1980.

tlark,K.L. and Tarnlund,5-A.,"A First Order
Theory of Data and Programs”, Proe, ef IFIP
77, North-Holland, 1977.

Clark,K.L.,"Negation as Failure", in Logic and
patabase, Plenum Press, Wew York, 1978.

Erikssen,A. and Johansen,A.L.,"Computer Based
Synthesis of Leogic Programs", Proc. of 5th
Interpaticnal Symposium on Programming, Lec.
Mote in Comp. Sei. 137, Springer, 1982.

Hansson, A. and Tarnlund,5-A.;"A Natural
Programming Caloulus®, Pree. of 6&th I1JCAIL,
1979.

Hogger,C.J.,"Derivation of Logie FPrograms',
JACHM Vol. 28 No. 2, 1981.

Manna,W. and Waldinger,R.,"Deductive Synthesis
of the Unification Algorithm”, STAN-CS-81-855,
Dep. of Cemp. Sei, Stanford Univ., 1981.

M.Sato.,"Towarda A Mathematical Theory of
Program Synthesis", Proc. of 5th IJCAL, 1373.

T. Satc,"Megation Technique", %o appear in
ICOT technical report TR-038, 198H.

H. Tamaki and T. Sato, "Unfold/Fold
Transformation of Logie Programs”, 2nd logic
programuing conference, Uppsala, Sweden, 1984,

201

