PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FiIFTH GENERATION COMPUTER SYSTEMS 1984,
edited by ICOT. @ ICOT, 1984

149

SOME PRACTICAL PROPERTIES OF LOGIC PROGRAMMING INTERPRETERS

D. R. Brough! and Adrian Walker®

IDepartment of Computing, Imperial College, London, England.

21BM Research Laboratory, San Jose, California, USA.

ABSTRACT

A practical problem for Prolog programmers is that,
while there may be a finite number of answers to 2
question put to a program, a standard interpreter
may in some cases produce an infinite sequence of
repeated answers, or may loop indefinitely without
printing an answer. While experienced programmers
can often find ways to avoid this behavier, It would
be better to correct the interpreter rather tham Lo
change individual programs.

This paper introduces a clags of simple programs,
and shows that there is an interpreter that termi-
nates with the correct answer for each program in
the class. However, the interprater is inefficient. It
is then shown that two modified top-down inter-
preters, relying oo goal termination and on rule ter-
mination criteria respectively, are each better than a
standard Prolog interpreter, in the sense that they
halt and print the correct answer for a larger class
of simple programs, but that neither is betler than
the other. However, any lerminating, strictly Lop
down, left-to-right interpreter misses some answers
on & program that is outside the scope of a standard
Prolog interpreter. We conclude that interpreters
with a bottom up component appear promising.

1 INTRODUCTION

Logic programming (Kowalski 197%) can be viewed
as the writing of executable specifications in logie.
A specification, or logic program, can be executled
by an interpreter, as in (Roberts 1982, Clark and
MeCabe 1984, Ennals 1983), or by a2 combined in-
terpreter and compiler, as in (Pereira, Pereira and
Warren 1978). The semantics of logic as a program-
ming language puarantee, In principle, that an an-
swer is derivable from a logic program il and
only if it is logically implied by the program (van
Emden and Kowalski 1976). Howeaver, for reasons
of space-time efficiency, the standard Prolog inter-
preters search for answers using a strategy (top
down, left-to-right, depth first) which, for certain
programs, enters an infinite loop.

For a decidable problem, an experienced program-
mer can avoid this behaviour by changing the
source program. However, to do so, it is necegsary
to be aware of the way the interpreter works., Thus
one is no longer writing an executable specification.
Also, if the source program is changed, then it be-
comes more complicated to generate explanations
of answers (Walker 1983a,b) in terms of the original
specilication. So it would be better to improve the
interpreter (Kowalski 1982) rather than to change
individual programs.

M first approgch to an improved interpreter is to
modify the basic top doewn depth first strategy by
terminating a branch in a proof tree, based on some
property of the tree so far. Two criteria that have
been studied are goal termination (Brough 1978)
and rule termination (Walker 1983a). In goal ter-
mination a branch i3 stopped al a repeated goal,
while in rule termination, a branch is stopped if It
could only be extended by using a rule instance
which covers a previously used rule instance.

This paper compares three top down depth first
interpreters, denoted by Iy, Iz and Iy, T, corre-
gponds to a standard Prolog interpreter, I is goal
terminating, and Iy is rule terminating. Their be-
haviour is compared over a family of Prolog pro-
grams which we ecall Simple Knowledge Bases
{SKBs). An SKB contains no {function symbols,
has only definite clauses (no negation in a prem-
ise), and has only ground assertions. A guestion
put to an SKB is understood as a request to com-
pute the set of all possible answers, which is always
a finite set of terms. Owur cheice of SKBs corre-
sponds to many real Prolog programs, keeps our
proofs simple, and is also justified by the fact that
one of our results points to a shortcoming of any
strictly top down depth first interpreter. Az we
shall show, there is & terminating (but Inefficient)
algorithm that correctly answers any guestion put
Lo an SKB. Henee it is not a priori unreasonable io
lock for an efficient interpreter which is terminat-
ing and correct for the SKBs.

150

For presenl purposes, one interpreter is better than
another if, whenever the second halts and prints out
a correct answer Lo a question put to a SKB, then so
does the [irst, and there is at least one SKB for
which the [irst interpreter gets the right answer and
the second does not. (The right answer to a ques-
tion may be the empty sct.) We shall show that the
goal terminating {I5) and rule terminating (Ig) in-
terpreters are each betler than standard Prolog in-
terpreter (1), but that neither is better than the
other. We shall also show that there is an SKB,
which is outside the scope of & standard Prolog in-
terpreter, for which any terminating strictly top
down left-to-right depth first interpreter will fail to
find some answers. This resuit indicates that inter-
preters with a bottom up component (Walker 1981)
may be worth further study.

The nexi section of this paper contains definitions.
Sectlon 3 gives some examples, Section 4 establishes
our results, and Section 5 consists of conclusions.
Sections 3 and 5 outline the main ideas in the paper,
while Sections 2 and 4 give the technical details,

2 DEFINITIONS

As 8 Tramework for our results, we need definitions
of a Simple Knowledge Base, of a question, of the
correct answer Lo a question, and of three kinds of
top down interpreter. This section gives formal
definitions, which are illustrated with examples in
Sectlon 3, A Simple Knowledge Base (SKB) is a fin-
ite set of rules and facts. A ruwle iz a2 definite clavse,
i.e. it iz of the form

A<-B &.&B, ., m>0

where A, By ,..., B, are positive literals, for exam-
ple P{u, ¥), S(c}, R{a, x}. a, b, c.. denote con-
stants and u, ¥, W... are variables. In a rule in an
SKB, each variable in A occurs in at least one of the
By's. A fac is a positive ground literal, for example
P(a, k), 5{c}, Ria, d). P, 5, and R are predicate sym-
bolr. A guestion Q is a positive literal.

The Herbrand base of an SKB K is defined as

H(K) = § P(t, ..., t,) | P is a predicate symbol
of K, 2nd 1), ..., t, are constants in K|

A model of K is a2 subset M(K) of H(K), soch that
each rule and each fact of K Is true in M(K), in the
sense of (van BEmden and Kowalski 1976). The an-
swer L0 3 question Q put to an SKB K is the set de-
noted by K and Q, namely

DK, Q) =)
fo[t"n maey th I uhr].. - ?ﬂ] e n M(EK)}

where nM(K) stands for the intersection of all of
the models of K. Note that, by {van Emdecn and
Kowalski 19768), DK, Q) consists of exactly the
instances of Q that are logically implied by K. An
interpreter 1 is 2 procedure which, given an SKB K
and a guestion O either

(i) halts and outputs a (possibly emply) set A,
its answer , or
(ii) does not halt.

In the first case, we write I{K, Q) = A. In the sec-
ond, we say that I(K, Q) diverges. {Some real inter-
preters will output answers without halting. We
choose, for simplicity of discussion, 1o collect all
answers and only output them if the underlying
computation halts.)

An interpreter 1 is sound if, for all K and Q, I(K, Q)
= A implics A £ D(K, Q); it is correer if, for all K
and Q, I{K, Q) = D(K, Q). An interpreter [, covers
an interpreter I, , 1, 2 L, ifT; is sound and, for all
K and Q, I,(K, Q) = A; implies [;(K, Q) = A,
where A, is a superset of A, . I, is better than 1,, 1,
> 1, if I, covers I,, and there exist K and Q such
that I,(K, Q) = A, , and either I,{K, () diverges or
L(K, Q) = A, where A, is a proper subset of Ay.

The mosi general unifier s of the two literals Q and
0' is the most general substitution s sech that
s{{))=s(0") (Robinson 1979); we write this as
mgu(Q, Q")=s. If t and s are substitutions, we
write ts{Q) for t{=(Q)).

The interpreters of interest are defined below. Be-
fore giving the formal definition, we sel out some
notation, and indicate some of the reasons for
choosing the definition.

We ghall define the result I{K, Q), of running an
interpreter 1 on an SKB K with guestion Q, as ef-
ther a finite set of instances of Q, or as "diverges”,
in the casze that the underlying computation loops.

The underlying computation will be done by a fune-
tion I, that takes K and Q as input. 1f T halts, it
returns a finite set of pairs of the form <B, T>,
where B iz an instance of @, and T is a representa-
tion of a proofl of B from K. Then, I selects just the
first elements B of the pairs <B, T> o return as
answers. Since there may be arbitrarily many proofs
of a given B, J may not halt, in which case I diverg-
es too.

The fenction I is defined recursively. If it returns a
pair <B, B>, then B is a fact in the SKB K over
which T is computing. If it returns a pair <B, T>,
where T is different from B, then T has made at
least one recursion, and has used at least one rule
from K. If the right hand side of a rule has morc
than one literal, then these are evaluated left to

right, with substitutions arising from evaluation of
the firat literal applied to the second literal before it
iz evaluated, and so on,

Besides the input arguments K and Q, J has two
working arguments containing, repectively, a list of
ancestor goals, and a list of ancestor rules. [initially
calls T as J(K, Q, nil, nil), that is, with empty lists
in the working arguments. If J then uses a rule Q <-
R, it calls itself as J(K, R, Q.ail, (Q<-R).nil), and
go on. Here the period in Q.nil is a list constructor.
The goal and rule lists thus act as stacks; an item is
pushed onto each one when T s called, and popped
fram each one when J retuerns. So we call them the
goal stack, and the rule stack. They are used within
T by a predicate called *Stop’. "Stop’ can “be defined
to do nothing, or to cause goal termination, or to
cause rule termination. The variations of "Stop’ lead
to different behaviors for the interpreter, which we
ghall characterize in Sections 3 and 4.

We are now in a position to define the interpreters
of interest. As the definition is somewhat terse, the
reader may wish to just scan it now, then return to
it after looking at the examples in Section 3.

We say that I is a preorder interpreter (i.e. lop down
left-to-right depth first interpreter), if it is of the
form:

iE | ":Bl T} g IEKI Q-r lliI, ﬂil)},
if (K, Q, nil, nil) halts

I(K, Q) m
diverges, otherwise
where J{K, Q, G, R) is defined below.
K, Q G.R) =
{<s(Q), s(Q)> | Q' ¢ K, mgu(Q, Q") = s} v

f< o ys(Q), ty.ys(Q <- Py &.&P) >
{q' L R1 &-n& RT‘I} & K.
mgu{Q, Q") = s,
not Stop(s(Q” <- R, &..& R,), G, R), and
forj=1,..,n
<t IIS{R]]. Pj =
1K, t SRy,
s(Q
am' <- R, &.& R,).R)}}

We assume variableg zre repamed to aveid coinci-

dental bindings. If <B, T> is in I(K, Q, nil, nil)
then T is & Jree with result B,

T is a proof tree i it satisfies the four conditiona:

{a) T is a tree,

151

(b) each leaf of T i a fact in K,
)ifQ<-P; &. &Py isa subtres of T,
then, lor j = L..n, either
P.=R,
— (R; <- Ry &.. & Ry),
where
Q<-R; & &K and
Ri<-R & &R .
are lnstaLcm uf rules in ﬂimm
{d) each node of T is ground.

In real Prolog interpreters, facts and rules are se-
lected in lexica! order from a program. In J above,
we leave the selection order open, as our results will
not depend on any particular ordering of clauses in
K.

The expressions for [and T define a family of
preorder interpreters, from which individual inter-
prelers can be chosen by defining the Stop predicate.

The particular kinds of interpreters for which we
shall establish results are

I in which Stop is always false.
I; goal terminating ;

Stop is true if s(Q") is syntactically
identical to an item in the stack of goals G

Ip rule terminating ;

Stop Is true if there is a substitution t
such that ts(Q" <- Ry &..& R) is
syntactically identical to an item in the
stack of rule instances R.

I; has been studied by (Brough 1578) , and Iy by
(Walker 1983a).

The next section gives examples to illustrate the
abowe definitions.

31 EXAMPLES

Thig section gives some example SKBs, and discuss-
es the definitions given above,

Example |

= {A(x, 2) <- P(x, y) & Aly, 2),
Alx, z) <- P(x, 2, P(a,b), P(b,a)}.

K, deseribes the transitive closure A of a relation P
whnse graph consists of a loop. The first rule for A
is right recursive. Clearly, the answer to the ques-
tion Afu, v) is

152

D(K, , Ay, V) =
fAla, B), Ala, a), Alb, a), Alb, B}

The tree
Ala, a) <- Pla, b) & (Alb, a) <- P(b, a))

Is a proof tree. Although there are simple proof
trees like this for each item in DK, , Afu, v)), it is
the case that I50K, . Alu, v)) diverges. Intuitively
this is because, for each element of the answer, &5
Afa, a), there are infinitely many proof trees, and
the I, interpreter will attempt to explore them zll,

However, the 15 interpreter gets the right answer. It
does this by maintaining, in the third argument of T,
a stack of (copies of) the goals (i.e. node labels)
above a given goal in a tree. If & goal is repeated, as
is Ada, v) in the partial tree

Adu, v} <- P(b, a) & (Afa, v) <- P(a, b) &
{Alb, v) <- P(b, a) & A(a, v)))

with the stack A(b, v).A(a, v).A(u, v).nil, then the
tree is discarded and never developed into a proefl
tree. Henee one can check, by cases, that

I5(K Alu, v)) = D(K,, Afu, v))

i.e. the correct answer [s computed. It is straightfor-
ward to check that an Iy interpreter also finds the
correct answer. [

Example 1 indicates that, for K, and the question
Afu, v), the Iy interpreter gets the right answer,
whereas the L interpreter does not. Clearly, not all
of the apparatus in the definition of J iz needed to
get this effect, Tree construction is in J for exposi-
tory reasons, while the rule stack is in the lasl argu-
ment of T just to describe rule termination. In the
next example, rule termination appears preferable to
goal termination.

Example 2

K, = {Ax, z) <- Alx,) & Aly, z),
Alx, z) <- P(x,z), P{a, b), P{b, a)}

This SKB is similar to K;, except that the first rule
is both left and right recursive. It is easy to check
that the answer to the question Afu, v) is the same
as for K. The left recursion causes 15(K,, A, v))
to diverge. The I interpreter will also diverge,
because there are arbitrarily many trees of the form

Aln, v) <= (Afu, y,) <- (Ala, y,)
< CeAdm, y) &) & Ay, v)) & Ay, v))

in which the geals Afu, ¥)i=1, 2., never make
the stopping predicate (Stop) true.

However, the Iy Interpreter keeps a rule stack.
When the tree iz

Alu, v) <- Alu, y)) & Ay, v)
the rule stack is

(Afw, v) <- Afu, y)) & A(yy , ¥)).nil
When the rule instance

Alu, ¥y) <- Afu, y,) & Aly,, ;)

is selected in I, Stop becomes true since the substi-
tution 8 = {<y; , ¥v>, <y, , ¥,>} maps this rule
inte the rule on the stack. One can check, by cases
that I. (K, Ala, v]) is equal to D(K, , A(u, v)), Le.
that the correct answer iz computed. [J

5o, I; finds a correct answer for Ky, whereas I
does not. Iy finds a correct answer for K,, whereas
I; does not.

Example 1
K; ={Aly, z,x) <- Alx, v, 2), A(a, b, c)}

The single rule in this SKB defines the rotations
Alb, e, a) and Ale, a, b) of the triple abe in the fact
Afa, b, c). The answer to the question Afu, v, w) is

D(K31 A{up l"'"l- “")} L .
{Als, b,), A(b, ¢, a), Ale, a, b)}

It is easy fo check that IplK4, Alu, v, w)) diverges,
that I5(K4, A(u,v,w)) is equal to DKy, Alu, v, w)),
but that [,(K,, Af{u, v, w)) is 2 proper subset of
D(K4, A(u, v, w)). So a standard interpreter finds
no angwer, a goal terminating interpreter finds the
correct answer, while a rule terminating Interpreter
linds part of the correcl answer. [

This section has described the behaviour of three
interpreters on three examples. A preorder inter-
preter Iy (e.g. a standard Prolog interpreter) does
not terminate on any of the examples. The goal ter-
minating interpreter I finds the correct answer for
Examples 1 and 3, but does not terminate on Exam-
ple 2. The rule terminating interpreter Iy, termi-
nates on all three examples, findz the correct answer
for Example 1 and 2, but finds only part of the cor-
rect answer on Example 3.

The next section gives some general results about
the three interpreters Iy, I and Iy .

4 RESULTS

Section 2 defined a simple knowledge base (SKB), a
guestion, the correct answer to a question put to an
SKB, and the interpreters Iy , [and Ip. Section 2
also defined the notion that an Interpreter I, may
be better than an interpreter I, , written I; > I, ,
over the simple knowledge bases. The definitions
were illustrated with examples in Section 3.

This section first shows that there exists an inter-
preter which, for any question Q put to an SKEB K,
halts and produces the correct answer. The. inter-
preter described in the proof s clearly too ineffi-
cient to be of practical interest, but serves to show
that a terminating and correct algorithm exists for
answering questions pul to SKHRs.

Next, it is shown that the interpreters Iy , I, and
I are sound, ie. each ilem in an answer is logically
implied by the knowledge base. It is then shown
that I >Ig, and I > Iy, but that neither Ig > Iy
naor [y = 15 The last result in this section charac-
terizes a limitation of any preorder interpreter.

The first result shows that correct termination is
possible over the SKBs.

Thearsem 4.1 There exists an interpreter I, that takes
as input any SKB K and question Q, and halts with
output DK, Q).

Preof Since K iz an SKB, it consists of a finite set of
rules and facts, built from a finite set of predicate
symbols and a finite set of constants. The required
interpreter 1 operates in the following steps, each of
which Is clearly effectively computable and termi-
nating, (albeit inefficient):

{i) construct the Herbrand base

H(K) = { P{t}, ..., t;) | Pis a predicate symbol
of K, tj is a constant, j = 1,....n 1

(ii) construct M = { § | § Is a subset of H{K},
8 iz a model of K }

{ifl) construct n M(K) from M.
(iv) D(K, Q) = { Q(ty, ... 1) |
Qity, -.nty) & 0 MK 0

Thus, terminating and correct interpreters for SKBs
are possible in principle. Next, we establish sound-
ness of the three interpreters Ty, 15 and I,

Theorem 4.2 Each of the interpreters Ly, I, Ty s
gound.

153

Proof Let [be an interpreter (as defined in section
23, and suppose I(K, Q) = A. Suppose B Iz a mem-
ber of A. Then, by our definition of an interpreter,
there is a T such that <B, T= ¢ J(K, Q, nil, nil).
By Lemma 4.2.1 below, T is a proofl tree with result
B. From T, it is easy to construet a derivation of B,
(see Lemmsa 4.2.2 below), in the sense of (van Em-
den and Eowalski 1976); hence, by their result that
B is derlvable iff it iz in n M({K), it follows that B
isin DK, Q). O

Far the following Lemma, we refer to the definition
of an interpreter 1 in terms of a set-valued function
1.

Lemma 4.2.1 If <B, T> e I{(K, Q, nil, nil), then T is
a proof tree,

Proof Let <B, T> ¢ JK, Q, pil, nil). Then

{A) By the definition of an interpreter, T is a tree.
So T satisfies part {(a) of the delinition of a proof
Lree.

{B) By definition of I, P is a leal of T only if
P=s{(Q), for some s and @, and there is a fact Q" in
K such that Pe=g(Q)=s(Q"). By definition of K, Q°
is ground, so P is ground also. Hence, each leal of T
is a fact in ¥, so T satisfies part (b) of the defini-
tion of a proof tree.

{C) Suppose § is a subtree of T. Then, by the defini-
tion of 1, § is of the form

U (1S W 3 J—— (1)
Also by definition of J, there Is a rule

Q< By ELE Ry e (2)
in K, such that, for j=1...n,

{ti“'t'IS{RJ)" Pi} £
I(K, 4o SR, oy) coeeen(3)

If the match ln the call to J in (3) is with a fact,
then P, Is an instance of R; (see the definition of I).
If the call to J in (3) is recursive, then there is a
straightforward induction to show that P! is an in-
stance of {Rj <- ..)

So, from (1) and (2), and the just putlined proof
that each P, is eithes an instance of an R, or is an
instance of an {Rj <-..1, T satisfies part (¢} of the
definition of a proof tree.

(1)) Sinee each fact in K is ground, and since, in
cach rule A <- By & .. & B, in K, each variable in
A ocours in some By, it follows easily from {B) and
(C) that each node of T is ground. O

154

Lemma 4.2.2 below will verify the statement "From
T, it is easy to construct a derivation of B" in the
proof of Theorem 4.2,

Lemma 4.2.2 Let T be a proof tree, constructed by I
uszing a knowledge base K, with result B. Then there
is a derivation of B from K.

Proof We exhibit below the top level of a Prolog
program which, given a proof tree T with result B,
computes the relation derivation(T, Deriv), where
Deriv is a derivation of B. Tt is straightforward to
check that, given a proof tree T, constructed by T
from an SKB K, the result Deriv is indeed 2 valid
derivation of B from K.

op{'=>", 11, 5).
derivation(T, T => "<empty>") <- leaf{T).
derivation(T, G => RemDeriv) <-
absorbLeft(T, RemT) & currGoals(T, G) &
derlvation{RemT, RemDeriv),
currGGoals{T<-*, T).
currGGoals(T&Ts, G&Gs) <-
currGoals(T, G} & currGoals(Ts, Gs).
currGoals(T, T) <- leaf({T).
absorbLelt{Goal <- Ts, Ts).
absorbLeft(T & Ts, Ts) <- leal{T).

absorbLeft(T & Ts, SubTs & Ts) <-
absorbLeft(T, SubTs).

leaf(T) <- (T/=(*&*) Y & (T /= (*<-*)).

{Mote: this version of the derivation program was
written by A. van Gelder). a

Theorem 4.2 assures us that our interpreters only
print items that are loglcally implied by an SKB. It
is then of interest to compare the jtams prinied by
different interpreters. It can be shown that if I
halts and produces an answer, then I halts and
produces the same answer.

Theorem 4.3 If To(K, Q) = A then I(K, Q) = A,

Proaf We refer to the definition of an interpreter I,
in terms of a function J, in section 2. Since

Ip(K, Q) = A

K, Q, nil, nil} halts. Suppose, during a computa-
tion by I, that there is a call of the form

(K, G, P...P..., ...)

Then, from the definition of I, there is a computa-
tion of the form

](.i:\--r p]:- Ladl] ---}
XK, Gy, 5,(P,)..., ...)

IK, Pyy o5y (Py).ces)
I(K, Gy, 5(Py)...5,(P))..., ..))

where 5,(P,) = sy(Py) = P.

Since the definition of J requires all possible rules
to be tried at each call of J, there is, in particular,
such a computation with Gy = G,. It is clear that
this computation extends o a computlation with
arbitrarily many calls to I, contradicting the fact
that I(K, Q, nil, nil) halts. So it is the case that
there is no call of the form K, G2, B.P..., .0
while I is computing.

The only difference between I and I, is that Stop
1s always false in I, , but is true in I if a call of the
form J(K, G2, P...P..,, ...) is about 1o cccur. Since
we have established that there are no such calls, the
computations by Iy and I vield the same results,
O

Theorem 4.3 assures us that I5 covers L. Ig 2 I
Recall that I; finds a correct answer for the SER
K, of Example 1 whereas Iy does not. So I is bet-
ter than Ip.Ig>1,.

Corallary 4.4 The goal terminating interpreter (Ig) is
better than the interpreter without a stopping crite-
rion (Ig).

One can establish a similar result for the rule termi-
nating interpreter I as lollows.

Theorem 4.5 If 15(K, Q) =A , then I (K, Q) = A.

Proof For literals, or rules, P; and P, write P, < Py
if there is 8 substitution f sueh that f(P)) = P,.
Since I(K, Q) = A, J(K, Q, nil, nil) halts. Consid-

er a computation I,(K, Q), and suppose that, during
the sub-computation by I, there is a eall

I{K, G. ey E:(Gz{‘ﬁz}.usi[Gl_'ﬁ:‘Blju}
such that

53{61{—311 < BI(G]{_BIJ SR |

Then, by the definition of I, there is a computation
of the form

MK, Gyy oo)
J(K, vy oy $3(Gy<-By).0)

K, Ggy vy .5,(Gy<-B,)..)
J(K- vep vmp HE:GE‘:'BE}"'SI{GI{'HIJ'")

That is, the instance §(G) of G matches some
rule R,, and the instance 5,(G,) of G, matches
some Tule Ry, MNote that, by the hypothesis (1)
above, 52([52} 2 5(G,). Henece the computation
above may, in particular, select = R;. with
sa{Ry) = 5/(R,). So it is clear that there is a compu-
tation of the albmfe form with arbitrarily many steps
in which R, is matched to goal instances of the
form 5++1{'Gi+1j £ 3,(G;). contradicting the fact
that J(K, Q, nil, nil) halts. So, during the computa-
tion by I, there is no call

(K, G, ... 5(G,<-B,)...5,(G,<-B,)..)
such that
51{62{'3:] E slfﬁl{'niji

The only difference between 1 and I, is that Stop
is always false in I , but is true in I if a eall of the
form

IfK. G. gy l-:(_Gz_{'Bz] R l{ G-l {‘H 1] --]
such that
35(G,<-By) € 5,(G,<-B,)

{s about Lo cceur. Since we have established that
there are no such calls, the computations by I and
Iy yield the same results. O

Theorem 4.5 assurcs us that Iy also covers Iy . Le
Iy = I . Recall that Ig finds a correct answer for
the SEB K, of Example 2, whereas I does not. So
IH_ is batter than Iy , Iy > I,

Corollary 4.6 The rule terminating interpreter Ip Is
better than the interpreter Iy without a stopping
criterion.

However, it is not the case that I > Iy or that Iy
> Ig- g is correct on Example 3, while I is pot.
1p, is correct on Example 2, but I is not. Given this
situation, we might wish to look for better preorder
interpreters for SIKBs. The next result shows a lim-
itation of any preorder interpreter, namely, that if
such an interpreter terminates on all SKBs, then
there iz an SKB for which it linds less than the
whole correct answer,

155

Theorem 4.7 If 11z a preorder interpreter such that
I{K, Q) terminates for for all SKBs K and questions
Q, then there is an SKB K" and a question Q' soch
that (K", Q') = A’ and A" is a proper subset of
DK, Q7).

Proof OQur proof will make use of a family F of
SKBs delined as follows. Let F = {Kyu(n) [n 2 2}
where

Kyln) = {Alx, z) <- Alx, ¥) & P(y, =),
Alx, y) <- P(x,)} v [Plaja;,) |1 < j < nf.

In K;(n}, the rules express the transitive closure of
the relation P. The graph of P is a simple straight
line with n-1 arcs. The {irst role is left recursive.

Since I(K,(n), Alu, v)) terminates for any n, it is
clear that the Stop predicate must terminate the
trec

Alu, v) <- (Alu, y) <- (Alw, y,)
<o (A, y) &) & Ply,, 1*.75} & Py, v1).

at some node A(w, ¥). But then
(K 0m+3), Adu, v)) = A

and, aithough it is the case that
Aag, ay 4] ¢ DIK(m+3), Au, v))

we have Alay, ag .4} £ A". Thus the theorem holds
with K" = K,(m+3) and Q" = A(u, v). O

This section has shown that a correct, terminating
interpreter for the SKBs exists in principle. Each of
the interpreters Ig, 1n, and Iy is sound. The goal
terminating and rule terminating interpreters are
each better than the interpreter without a Stop cri-
terion. However, oeither is better than the other,
and any strictly preorder interpreier that terminates
must mizs parl of an answer on an SKB.

5 CONCLUSIONS

One application of logic programming is to retrieve
all of the answers to a question from a knowledge
base consisting of facts (ground assertions) and
rules (definite clauses). The correct answer to a
question is the set of instances of the guestion that
are¢ contained in the intersection of the models of
the knowledge base.

For reasons of efficiency, most logic interpreters
answer 2 guéstion by a top down search process,
starting from the question. Standard Prolog inter-
preters search for answers top down, left-to-right,
and depth [irst, i.e. in preorder. While the search

156

space so defined yiclds weakly complete behaviour
in theery (each correct answer iz in the spacc), a
preorder interpreter can enter an unbounded recur-
sion before completing the search. The practical
consequence of this behaviour is that no final an-
swer is returned at all. A top down breadth [irst
interpreter can also suffer from termination prob-
lems when searching for all answers to a question.

This paper has defined a class of Simple Koowledge
Bases. We have supplied 3 notation for characteriz-
ing top down interpreters, and we have shown that
there is a terminating (but inefficient) aigorithm
that finds the correct answer to a question pul to a
Simple Knowledge Base. Two modified preorder
interpreters, using goal termination and rule termi-
nation, have been studied lor Simple Knowledge

Bases. The results are that each is better than the

standard Prolog interpreter. However, goal termina-
tion permits some of the unbounded recursions of
Prolog. Rule termination has no unbounded recur-
sions, but can miss some answers on programs that
are outside the scope of a standard Prolog interpret-
er. In fact, neither goal termination nor role termi-
nation is uniformly better than the other at finding
all of the answers to a question put lo 2 Simple
K nowledge Dase.

These results naturally raise the question of wheth-
er there is an efficient interpreter that is better than
either the preorder goal terminating or precrder rule
terminating interpreters. This paper has shown that
any preorder interpreter which terminates, and
which does so just by examining its partial proof
tree, misses some answers. So, while there may be
better preorder interpreters, there is a fundamental
limit to the strict preorder approach.

Top down preorder interpretation was originally
chosen Tor computational efficiency, but, as we have
shown, it is of limited wse when all of the answers
to a guestion are needed. Hence it appears interest-
ing to look further at the backchain-iteration me-
thod of {(Walker 1981) that combines top down and
bottom up execution of a logic program. In imple-
mentations of backchain-iteration, there can be less
computational overhead for termination checking
than is needed for the preorder interpreters we have
described here. All of the examples in this paper
are correctly executed by backchain-iteration.

6 ACKNOWLEDGEMENTS

It is 8 pleasure to acknowledge conversations with
Keith Clark, Ron Fagin, Bob Kowalski, John Lloyd,
Alan van Gelder, and David H. D. Warren abaut
thiz work, and to thank the FGCS84 confercnce
referees for their comments.

T REFERENCES

Brouwgh, D. Loop Trapping in Logic. Unpublished
note, Imperial College, London 1978

Clark, K., and McCabe, F. Programming in Logic.
Prentice-Hall International, 1984,

Ennuls, B. Beginning micro-Prolog. Ellis Horwood,
1983.

Kowalski, B. Logic for Problem Selving, North Hel-
land, 1979, ’

Kowalski, R. Logie Programming. Report, Depart-
ment of Computing, Imperial College, London,
1982.

Percira, L. M., Pereira, F. C. M. and Warren, . H.
D. User's Guide to DEC System-10 Prolog. Ocea-
sional Paper No. 15, Department of Artificizl Intel-
ligence, University of Edinburgh, 1978,

Robinson, J. A. Logler Form and Furction. North
Holland, 1979,

Roherts, G. Waterloos Prolog User’s Manuoal, De-
partment of Computer Science, University of
Waterloo, 1982,

van Emden, M.H. and Kowalski, B. The Semantics
of Predicate Logic as a programming language.
Jour. Assoe, Comp. Mach,, 23, 4, 1976, 733-742,

Walker, A. Syllog: A Knowledge Based Data Man-
agement System. Report Noo 034, Computer 3¢l-
ence Department, New York University, 1981,

Walker, A. Prolog/Ex1: An Inference Engine which
Explains both Yes and Mo Answers. Proc 8th Int.
Joint Conf. Artificial Intellipence, 1983a.

Walker, A. Syllog: an Approach to Prolog for Non-
Programmers. Report RY 3950, IBM Rescarch Lab-
oratory, 3an Jose, California, 1983b. To appear in:
Logic Programming and its Applications, M. van
Caneghem and D. H. D. Warren (Eds.}, Ablex,
1984,

