PROCEEDINGS OF THE INTERNATIONAL CONFERENCE

ON FIFTH GENERATION COMPUTER SYSTEMS 1084,
edited by ICOT. @ ICOT, 1984

DEFIMITE CLAUSE TRANSLATION GRAMMARS AND THE
LOGICAL SFECIFICATION OF DATA TYPES
AS UNAMEIGUOUS CONTEXT FREE GRAMMARS

Harvey Abramson

Department af Computer Science
University of British Columbia
Vanecouver, B.C. Canada

ABSTRACT

Data types may be considered as unambiguous context free
grammars. The elements of such a data type are the
derivation trees of sealences generated by the grammars,
Furthermore, the generators and recognizers of pon-
terminals specified by such grammars provide the compasi-
tisn and decomposition operators which can be used to
define functions or predicates over such data fypes. We
present a modification of our Definite Clawse Translation
Grammars [Abramson 1984) which is used to logieally
specify data types as unambiguous context free grammars,
For example, here s a grammatical specification of binary
trees:

leaf :lree =slring.
branch :tree n=" (", leftiiree, ™ ® , right itree | " |7,

The decompesitien "operators®, left, righl, and (implicitly }
slring , are semantic atiributes gemerated by the compiler
which translates these grammar rules to Prolog clavses:
these operators, together with the parser for free s, and the
predicates leaf and branek, cam be used to construct
more complex predicates over the data type free. We
ehow how such grammars can be used to impose a typing
system on logic programs; and indicate how such grammars
can be wsed to implement Kaviar, a fuactional program-
ming language based on data iypes as context frec gram-
mars.

1, Introductlon

Several researchers have recently and quite indepen-
dently converged on the idea that data types can be con-
sidered to be wnambiguous context free grammars: each
non-terminal of 3 grammar represents a type whose con-
slruction is specifled by the right hand side of one or more
productions; furthermore, the non-terminals in the right
hand side of a production act as selectors for decomposing
elements of the type, essentially, derivation trecs. The
constructor and selestors can them be used to define funce
tions or relations over the type and between types specified
in this manner.

1.1 Critlclam of Initia! algebra approach.

Kanda and Abrahamson have approached this ides as
a result of a critical apprajsal of data types considered as
initial algebras (Kanda and Abrahamson 1983). To take a
very simple example, the initial algebra [ngy for the
natursl cumbers may be specifiad by:

E = {l:—nal, 2 :n0f —nat }
E=1{}

where 0 is 3 constant and # is the unary successor opera-
tion. Thiz gives the set of natural numbers:

(0,2 (0, (s (O]),...}

and the swccessor function suee as the interpretation of
nal and & respectively, Since there is nothing in Z-but 0
and s, however, I;r gy does wot yield any other functions
such as, for example, the predecessor operation pred.,

In order to obtain an interpretation which includes
the predecessor fanction pred one must start with a larger
signature:

E'= {tc—snal , # cnal —nat , pnat —nat }

The initial algebra Iiz.gy generated from this is unsatis-
factory im that there are too many terms for the same
natural number: a{0), & (p (# {O}}}, o (s {= (0))} all represent
1. A nom-empty set of eguational axioms £ ' must be
introdueed o enforce equality of terms denoting the seme
number (see (Kanda and Abrabamson 1083), (Goguen et al.
1978]), and an wndefined element to totalize the pred
function.

Kanda and Abrahamson suggest, however, that one
could define the natural numbers by the follewing unambi-
Luois contexl free grammar:

serg inad o= "7,
suce mal u="¢ " nat, ")",

Here nal is the sole mon-terminal of the grammar, A nof
may be O or it may be of the form # (n) where # s a nat .
The names of the productions act as predicates: zero is
true only when applied to 0; succ is true only when it is
applied to a nat of the form 2(n). On the right hand side
of the suee production, nal acts as a selector. Thus we
could define the predecessor fonction using some euch
clausal nofation as:

predn) = zera (n) — undef ined.
pred(n}= suce (n) — nat (n).

where undefined is thrown in to totalize the data typé of
natural numbers. Using function composition, definition
by cases, and general recursive definitions, all functions
over the type nal can be easily defined without having to
respecify jnitial algebras and augment them with larger
and larger sets of squational axioms,

We might also mention here an interesting comment
of (Kapda and Abrahamson 1683) which relates polymor-
phism and language inclusion: if Ly is a subset of Ly, and
/ is a function from Ly to Ly, then f is polymarphic in
the sense that it is also a function from Lato Lo

1.2 A grammsticzl problem of Maluszrynekl and
Milsson.

Maluszynski and Milsson resched the conclugion that
types might be treated as contexk free grammars by cor-
sidering the problem of assigning types to programs of an
ohject language, for example, the lambda calculus as given
by the following context free grammar (sze (Maluszynski
and Nilsson 1981,1982a,b]):

prog o= exp

BXp = SEXD

exp == appl

sexp i= const

gexp 1= ideml

sexp i= abstr

sexp == (7, exp, °J

appl i:= appl, sexp

appl == sexp, &eXp

abstri:= "lambda”, ident, "." sexp

The problem of assigning types to such programs i the
determination or assignment of a unigue "type deseriptor”
to each éxpression of the language. The program is well-
formed if the type assigned to the fumetion part of an
application is a *function type™ which comforms to the
type nssigned to the argument expression. (Polymorphizm
is involved in the assignment of types to some of these
lambda expressions.)

In expressing the type assignment rules in the clausal
form of legic, Maluszynski and Nilssen note that the string
representations of the lambda caleulus programs as
spucified by the grammar above could not be used directly;
rather, some representation of these strings as terms had to
be introduced, and this, they lelt, detracted from the clar-
ity of the clausal description, There was also the problem
that the syntax of logie programs did not permit the intro-
duction of any typing of tcrms other than an arity con-
strafat. If, for example, a term such as ident (N) were
introduced to represent the ideni of the grammar above,
ident ([1,2,3]) might be syntactically correct as far as the
logie program for assigning types was concerned, but from
the point of view of the computation of types would cause
fallure of the computation. Such an error could have besn
ruled out by a static check of the logie program if some

type mechanism could have been used to impose a well-
formedness condition for the data to which it was applied
[see {(Maluszynski and Nilsson 1982]).

In order to accomplish this, Maluszynski and MNilsson
are led to the potion of using an unambigucus eontext free
grammar {which they call a melagrammar) to specily the
data domains of a given program. Is such a grammar,
each nom-terminal is associated with the derivation trees
whose poots are labelled by the non-terminal. The non-
terminals therefore “are soris of a many-sorted algebra of
derivation trees, whose operations are the production rules
of the grammar®. In some of the references mentioned,
they comsider the problem of unifying terms specified by
sgch grammars.

679

Each of the researchers mentioned above also
emphasizes the importance of typing as an aid to the pro-
Auction of correct and relishle software. This is a familiar
argument and need pot be repeated here.

1.3 Definite Clause Trenslatlon Grammars - Back-
ground,

Meither of the sources of the notion of uzing gram-
mats to describe types presents a logical spezification (ie.,
implementation) of the idea. We show below thal a
modifeation of our Definite Clause Translation Grammars
can he used 25 3 grammatical typing mechanism. As back-
ground bo our suggestions, we summarize the original
Definite Clause ‘Trapsiation Grammar (DCTG) motation
and implementation method. The reader is referred to
{Abramson 1984) for a full deseription of DCTGs.

Definite Clause Tronslation Grammars [DCTGs) are
modelled on the attribute grammars of {Knuth 190E),
which, in addition to specilying syntax by context [res
rules, also specified semantics by attaching "attributes” or
properties and rules for evsluating these properties to
modes of @ derivation tree. Similarly, a DCTG rule
specifies both synlax and semanlics. When a string is
parsed by the syntactic component of a DCTG, a deriva-
tion tree is avtomatically formed te record the parse;
semantic attribute rules, copied from the semantic com-
ponent of a DCTG, are atiached to podes of this tree.
When the tree is traversed the semantic rules are evaluated
in order to specify the attributes of a node. The semantic
rules are in the form of Homn clauses, and evaluation is
accomplished by an interpreter written in Prolog: the
semantic rules may be thought of as a local data base con-
taining information as Lo how global meaning for the entire
derivation tree is to be constituted from local meanings
attached to nodes of the derivation tree.

The general form of 2 DOTG rule s
LeftPart 1= RightParl <:> Semanlics.

The portion of the DCTG rule to the left of the <> sym-
bol specifies syntax; the portion to the right specifies
semantics. For example, here are two rules used in
defining neun_phrase in a DCTO for a small subset of
English [sec [Abramson 1984)}:

noun_phrase re=
determiner” "D, nown” "M, rel_clause” "R
<
(agree|Mum) ::- N™ "agree(MNum),
D" agrea(Mum),
R agree{Num]),
{logic{X,PLP) :- D “logic{},P2,PLP),
N Jogie(X,F3),
R logic{X,P3.P2]}.
noun_phrase o= name” "IN
<l
agres(singular),
{logic{X, PP} - N logie{ X)),

1n a2 DOTG rule, logical variables may be attached by the
gymbal ™" to non-terminal symbols in the RightFart of
the syntactic portion. During parsing, sach a logical vari-
able B8 instantiated to the derivation subtree for the non-
terminal to which it is attached. The Semantics consist of
zero or more Horn clauses specifying various attributes of
the non-terminal fm the LeftPard. Above, the rules for
noun_phrase have two attributes, agree and legic. In the

630

second rule, agree (singular) is a unit clavse attribute. In
the semantic specifications attached to such a rale, traver-
sal of a subtree to evaluate a semantic attribule is specified
by writing, for example, N **fogie (X P3). This indicates
that the logic abiribute of the noun in the rule above is to
be evalaated.

A pode in a derivation tree corresponding to use of
the fiest production for noun_phrese sbove has the follow-
ing representation:

node(noon_phrase,
DN,
(agree(Mum) - N* *agree{Num],
D" " agres{MNum),
R " agres(Num)),
(logic{X,P1,P) :- D “Jogie(X,PZ,P1P),
N “lagic{3,P3),
R “logic[X,P3,F2)).

The second argument iz a list of all the sublrees of
nown_phrage, including terminal symbols, if any; the third
argument is accessed by the semantic interpreter during
tree traversal,

The basic notion of our typing DOTGs may now be
outlined. Given a production defining a non-terminal X,
the non-terminals in the right hand side of the production
may be treated as semantie aftribules of X. These attri-
butes may be used either to decompose an ebject of type X
into its constituents or to compose an object of type X
from an appropriste set of components., These semantic
attributes, in combination with automatically generated
type checking predicates, can be used to define relations
wer a type or between types. The automatically gen-
erated type checking predicates may be used either to ver
ify that an object is of a certain type, or to generate an
object of a certain type.

Section 2 introduces a modification of Definite Clange
Teapslation Grammars for typing by presenting several
simple examples in which we specify types as gramemars
and subsequently define one or more predicates over or
between types. This provides a run-time typing mechanism
for Prolog programs. Section 3 explains the implementation
os an extemsion of owr Defirite Clavse Trapslation Gram-
mars. Section 4 draws some temtative comclusionz and
indieates future rescarch paths which inelude the logical
speciication of Kaowiar, a fanclional programming
language based on types as context free grammars, and the
implementation of a grammatically typed version of Pro-
log.

2. Typing Definite Clause Translation Grammars:
Examples

In this =ection we shall introduce typing Definite
Clause Tranglation Grammars by presenting several exam-
ples, each of them simple, but illustrating various aspects
of the notation and different facets of logic programming
with types. These typing DOTGs are not identical to the
original DCTCs, but there are some similarities of nota-
tion, and mest importantly, of implementation in Prolog
{see Section 3).

2.1 The Natural Numbers,

The nabural numbers are specified by the following gram-
mar:

terecmataral o= "G,
succinatural = "§(", natural, ")",

Terminal symbels which are strings or lists of characters
are enclosed within quotation marks. (Terminals may also
be indicated as & list of nallary function symbols, eg, frym-
bal [) The first rule specifies that "0” is a nofural (natural
is the only non-torminal of this grammar). It aleo specifies
that the name of this production is zere and that thers
exists & predicabe zero: zero (X} is satisfied only if X is a
derivation tree whose leaves, read in order from left to
right, are in the language gencrated by this production,
The second rule specifies that the other form of 3 natural
is "s(" followed by a natural followed by °)°, for example,
(0] or &{s(0)). The name of this production specifies a
predicate suce: suce (X) i satisfied if X is a derivation
tree whose leaves read in order from left to right are in the
language generated by this grammar.

The relation pred specifies that N is the predecessor
af X:

pred (3 M) -
suec{X)"* [natural N},

suce (X) specifies that X iz of type nofural and is gen-
erated by the production named suee, e, X is a deriva-
tion Eree for some semtence gencrated by the grammar for
natural, and the [rst step in the derivation of the sentence
uzes the production swee. Reading the leaves of X would
therefore give us something of the form 2 (N) where Vs
a naturel. The notation introduced consists of an infix
operator """ from our Definite Clavse Translation Cram-
mars which may be read as “with subtrees such that™, fol-
lowed by o list of unary function symbols applied to logical
variables. The wnary lunction symbols are in the sst of
non-terminals which appear in the right hand side of the
applicable prodaction, here the production named suce.
Each such umary function symbel (here only matural)
gelects the relevant sub-degivation tres of the derivation
tree named in the predicate to the left of the """ apera-
tor, and instanbistes its argument to it. Thus, if the leaves
of X' read in order are "s{*, "0 and)", then the natural
number N is a subtree of X, consisting of the leal "0",
Since pred is a relation, we are alse specilying that X is
the successor of the natural number . We can tead
suce (X)°° featural (N)] as: for any natursl number X net
equal to zere, it N is the predecessor of X, then the suc-
cessar of N is X, In functional notation, we might write
that X = suce (pred{X]). [We are also being slightly
loose here: we should mention “the leaves of ¥ read in
order from lefi to right”, ete. Since the grammars we are
ueing are unambiguous we can identify derivation trees
with the strings labeling their leaves read in the right
erder.)

The type nalura! contains all derivation trees gen-
erated by the grammar given above. We can specify this
by the clauses:

type[X,natural) :- zerofX).

type(X,natural) = suee(X).
This is read "X & of type nafural if it satisfies zers or
suce ™. We might consider X to be ocur vemsion of
Maluszynski and Milsson's "grammatical variable of type

nofural ™, ie, X ranges over derivation trees of sentences in
the language generated by the geammar (see (Maluszynski
and Milsson 1981,1982b)). The predicates zere, suec and
igpe are genetated antomatically as the grammar s com-
piled into Proleg clauses (see Section 3).

Information about each production for & type is also
recorded in unit clauses of atiribules :

attributes(suee, natural [natural{X)).
attributes{zero,natural,|]).

The first argument i the name of a production, the second
a bype, and the third a list of the applicable selectors. This
iz intended for usc by am eventual static type checker (sec
Section 4).

We specify the addition of two natural mumbers by
the Peano axioms transtated into oor notation:

sum{X,Y X -
Ly pe(X, natural),
zero(Y.

sum(X,Y,5) -
typel X, natural),
suec(Y] “|natural(F)|,
suec(S]" [natural{G)],
sum(X,PQ)

It X and ¥ are instantiated in the second clawse of sum,
that is, if X and ¥ are derivation trees for natural
numbers, then zuee |8)" fraturel (@)] specifies that 5 s a
derivation tree from production swee with sub-derivation
tree @, a natural; @ is instantiated as a result of the
recursive eall of eum. The predicate sum in fact specifies a
relation hetween three naturals, The reader may wverify
that if ==z (s [2(0])) then sum may be used to fnd all
natural numbers X and ¥ which add up to §. In this
case note that type [X, notural) and
guce (¥} fratural (P) act as generators of X and ¥
rather than as type verifiers.

We might note that the two lines of the first clause
for sum and the Grst thres lines of the second clause are
suggestive of the type declarations, with initialization, of
gome Von Mewmann languages; the last line of the second
clause is suggestive of the body of a block or procedure.

2.2 Lista,
Here is a grammar which defines simple lists:

nonemplyilist = string, ", list.
empty:list = ||

A list is either emply or it consists of a siring followed by
a comma followed by s fisl. siring s 3 primitive type
and consists either of a scquence of numerical characters or
of a letter followed by zere or more letters or digits. (The
ariginal characters of the sequence are converted to a nul-
lary fonction symbol.) Thus, 123 and i 2 are strings. (The
data Lype siring is "hand-made™ and is defined by a few
DOGC rules, See Section 3.) The following are, therefore,
aceeptable lists: 1,23, and abe def 12, We shall not list
here the clavses of fype and atiribufes defined for this
Eramimar.

We define the relation sppend between three argu-
mients of ype el

G681

append(E.X,X] :-
empty(E),
ty pe(X, list).

append (X, Y, Z) -
nonempty(X} * [string{A),Hst (200},
ty P":'.TJE“J-
nonempty() " [string(A) ist{22)],
append X3, Y,2Z).

The types which have been specified prevent this version of
append from the poor behaviour of the wsual Prolog
append : with that version of append, for example, one
may append a list [a,bc] to a term such as 4, which is not
itsall a list. This version of append, of course, may be
used pondeterministically to generate all lists X and ¥
which when appended yield, for example, abe def 12,

We specily a predicate fengik between the types sl
amd nglural as follows:

length{L, Zero) -
zero|Eea),
empty(L].

length(L,M] -
type(M, natural),
nonempéy(L] " *[lstL1}],
length(L1,M1]),
one(One),
sum(N1,Cne,N).

The predicate one specifies the successor of ™07

one(One) -
terof Zero),
suce{One)” " [natural{Zera)].
The spocifications of the types of N1 and One could be
made explicit by adding

type (N L natural), type [One matural) to the definition of
the second clawse of Jength , butl could also be inferred from
the type requirements of one and sum by a static type
checker (see Section 4).

2.3 Trees.
The following grammar specifies the Lype Iree:

leaf:tree: =string.
branch:tree:ss "(7, left:tree, =,", right:tres, ™",

In the previous grammars we were able to use the names of
the mon-terminals in the right hand side of a produection as
the selectors [decomposers) of the type defined by that pro-
dijetion, making "puns”, so to speak, with the names of
ihe mon-terminals in the right hand side: context clarifies
whether we are talking of a "selector” or a "type”. We
cannct do this here since there are two occurrences of the
iype free in the right hand side of the branck production.
These occurrences of lree are, however, labeled feff and
righl, and these labels are the selectors of trees which are
branches in the deepreverse predicate below which rev-
erses a free at all lovels, (We need not Iabel both uses of
iree im the right hand side: lzbeling coe would remove the
ambiguity of which sublres was meant). The clauses for
lype are not shown.

682

attributes{branch, tree, [right{R), left(L}]).
attributes{leaf, tree, [string(S)]).

deeproverse[X,X) :- leaf{X).
deepreverse(),Y) -
braneh{X)" " [left{Left) right(Right]],
branch(Y)" '[lEi't[HRi;H-_],:i;hl[RLl:l'tj] .
deepreverse(Left, RLeft),
deepreverse(Right, RRight).

2.4 Infix and prefix notation.

Cur final example is one which was outlined in
(Maluszynski and Nilsson 1952b). We specify infiz and
prefiz expressions and a predicate fir which allows one
to convert between them. The predicate fiz may be used,
of course, in either direction and may be thought of as
specilying a source-te-source translation of a simple kind,
translating belween expressions such as a*(b+4c) and
*a,+b.2. As in the previous examples, the defipition of
fiz is recursive and split into cases depending on the
grammatical structure of its arguments. The vse of "cut”
has not been necessary in any of these examples: the type
specifications aet as & sort of guard to the "body™ of the
clausal definitions. The predicates fype and oftributes
generated for this grammar are not shown.

plinfix ;== expression.

pliexpression n=m term, "4", expression.
pdexpression i= berm.

pliterm o= primary, "*", term.
pocterm = primary.

pli:primary = string.

pTprimary = (", expression, ")".

™

rliprefix = "+", prel:prefix, °,", pre2:prefix.
rliprefix e "0, preliprefix, ",", pro2iprefix.
ri:prefix 1= siring.
fix(In,Fre) :-

pl{In)*“fexpressioa(E]],

type(Pre prefix),

fix(E,Pre).

fix(In,Pre) :-
p2(In)" “[term(T)} expression(E}],
1{Pre) “[prel(FT),pre2(PE)],
ix(T,PT),
¥k FE).

fix(In,Fre) :-
p3(In)" “[term(T)],
type(Pre, prefix),
fix[T,Pre).

fix{In,Pre) -
pé(In) “|primaq-{P],t¢rm[T},
r2{Prc)” " [prel{PP),pre2{PT
fix[P,PP),
fix{T,PT).

fix(In,Pre) :-
P3(In)" “[primary(P],
type(Pre, prefix),
fix(P,Pre).

fixx{In,Pre) :-

po(ln)" *[string(S)],
r3{Pre] " [siring(S}.

lx[Iu.P:rc] -
PT(In)" "[expression(E}),
type(Pre,prefix),
Hx[E.Prcj.

3. Implementatlon detalls,

Typing DOTGs differ syntactically from the original
DCTGs in that each preduction must be named (for exam-
ple, feaf and braneh are the names of the productions
defining the type free), and non-terminals in the Ripht-
Parl may optionally be named [for example, lgft and right
name the different subtrees of 3 bromch). Typing DOTGs
dilfer semantically from DOTOs in that the noo-terminals
{or mames of non-terminals) in the RightPart are used io
construct atiributes which may be used for selection and
composition. The adaptation of the representation of
DCTG parse tree nodes and semantic rules (ses Section 2)
to typing DCTGs is quite simple and stralghtforward. A
node in & derivation tree which represents use of the pro-
duction nzmed braneh in the grammar of Section 2.3
would look, for example, like:

node{branch:tres,

LN L R L
{left{L.), right{R), true}).

In the DOTG node representation the first argament names
only the nem-terminal which is at the root of a derivation
subtree; in a typing DOTG we also incorporate the name
of the production used in forming that node. The second
argument is = list of all subtrees of the node. Furthermore,
the subtrees indicated above by I and # are node struce
tures themselves which insare by wniflcation that L and R
are of type free:

L = node{N'":tree, L', 5')
R = node(M"tree, B, T')

The semantic attributes of the branch:free node are
formed from the names of non-terminals in the right hand
side, or il the non-terminals in the right band side are
labeled, from the labels; such attributes are unary function
symbols which give necess to the relevant sublrees of the
wode, Considered as Horn clauses for the semantic inter-
preter, they are unif clanses, We may attach other seman-
tic attributes to typing DCTG rules if we wish. {If & non-
terminal = is decorated with a logical variable X as in the
original DCTG rules, £ °° X, then X is instantiated to the
derivation subtree for 2, and the selector for = is compiled
as 7(X). Semantic attribute rules which go into the local
data base for such a rule may thea traverse X to cvaluate
attributes, ez, X ““logic (4 B). Semantic rules are
specilled as in the original DCTG rule format following a
<> symbol. Mone of the examples illustrated this possi-
bility, however. A later paper will inelude such examples,
See also Section 4.) The generated attributes are appended
to any such specified attributes to form the third argument
of 2 node. The atom irae is used as an empty marker in a
node for DCTG productions in which no semantic rales
kave been explicitly specified.

The method used to compile typing DCTS rules into
Frolog clauses & a varisnt of the one used to compile
DCTG rules into Prolog clauses, and need not be detailed
bere-(see (Abramson 1924)). The dilferences are that;

|1} semantic typing attributes are formed and added to
the list of other specified semantic attributes;

[2] = predicate is formed from the name of each produe-
tion and asserted; and,

[3] clauses for type and atiribufes are psserted for each
typing DOTG rule,

In a brief appendix we list the predicates f.ip and
i_rp (tramslate left part, right part) uged in compiling typ-
ing DOTG into Prolog clauses: these differ from the
corresponding predicates in [Abramson 1084); all other
predicates used in the compilation are identical to those in
the cited relerence,

Here is the way the grammar for natoral numbers
appears as Prolog clauses;

natural{nede{zero:natural,|[0]] true), 50,51) -
¢(50,0,51).
patural{node(suec:natural,
ik,‘{'},nudqﬂNnme:mtura],Nadea.,SnmmticaM']']],
[natmﬂtmde[Name:uat.uraLNudn.Snnmti:a]}_.hucj},
$0,54) -
€(50,5,51),
¢[51,7'.52),
lal'.n.ral[nnde[Name:na!-ml,Nades,SéMaﬁﬁﬁ],Sﬂ,Sﬁ],
o(S3,),54).
The first argement to notursl is instantisted to the deriva-
tion tree, the second and third arc the “input” and "out-
put™ lists used jn parsing. The following list of goals shows
hew the Prolog parser nalural of arity 3 may be used:
:~ patural{N1, s(s{0))". [},
natueal(N2,"s{s(s{O)1}")
sum(N1,N2,N3),
writety pe(N3]
writetype is 3 polymorphic predicate which traverses the
derivation tree N 3, printing its leaves from left to right to
obtain:

s{s(s{={s(0))-

The interpreter which traverses derivation trees and
evaluates semantic abtributes of typing DCTG rules fol-
lows:

nodef_,_ Sem)” " Args - Sem” " Args.
X" “SpecifyList :-

X =.. [TypeY],

X

specify (Y, SpecifyList).

[(Args:-Traverse) Rules)" " Args -~
|, Traverss.

{Args, Rules)” " Args = 1.

{_Fules)" " Args -
Rules”* Args.

{Args::-Traverse]” " Args :- |, Traverse.
Args” " Args.
speeily[3,[]) =1

specily(X,[Tree| Trees]) -
X" “Tree,

specily (X, Trees}.

683

The second clawze of ™77 is the cne which is used to
evaluate, for example,
ranch (X)" lef t{Left) right {Right)] in Section 2.3
above. The argument to the left of "7 is verified to be &
unary function symbol and is called. If the call is success-
ful, for example, it branch (X'} gueceads, then specify
arcesses the relevant subtrees of the branch instantiating
Lefi and Right; o, ir
brameh {I}“}Teﬂ[!.sﬂ],n’ghl{ﬁ‘igﬂ)/ is being used to
generate a branch , thea gpecif y instantiates the sulbilfees
of X to Left and Right. The remaining clanses of *°°"
complete the specification of the semantic interpreter, and
are applicable also to pure DOTG rules.

As a final point, we mention that the primitive type
elring ¥ defined by several Definite Clause Grammar rules
which act 28 a lexical scanner for identifiers and numb-Ers.
Extra arguments attached to non-terminals of these DOG
rules are used to produce nodes of the kind deseribed
above fer the “hand-made™ type siring with the following
semantic attributes: if a elring is o sequence of numerical
characters, we may access the nuomerical atom formed [rom
the characters by:

sl-rin;g{S]"[value{Vll

if & string begins with a letter which is followed by zero or
mere Betters or digits, we may access the atom formed
from thaose characters by:

string(3)" " [id{1)]
Listings of the implementation of typing Definite
Clause Tramslation Grammars and all the examples are
available from the author.

4. Summary and fuoture research.

Typing DOTGs provide a very simple method of
imposing an optional type discipline on logie programs. In
efect, they allow one to program directly with that most
useful of all data structures, the tree. Context free gram-
mars, stitably analysed, provide all the necessary selectors
and copstructors for manipulating derivation trees of the
EFammars.

Teaditionally, grammars have been viewed as devices
for analysing and generating terminal strings of a language.
Hete, the focus is on the derivation trees, possibly only
partially instantiated, which the grammar can analyse and
synthesise: the derivation trees of terminal strings are a
special case. Typing DCTGs can, of course, be used in the
traditional manner to parse an input string: witness in Sec-
tion 3 the example of how the parser
notural | Tree Input Quipul) is used. Once the string has
been parsed, however, the interest generally lies in manipu-
lation of Tree.

The compilation of DCTG rules to Prolog clauses, in
fact, forces a reskriction on the use of iyping DCTGs as
parsers : Prolog’s top down left to right strategy rules out
lelt recursive productions. Practieally, this i nof too
important. Just as all practical languages can be parsed by
recursive deseent using grammars without left recorsion, so
it is asssumed that all renscnable data structures can be
specified by typing DOTGs without left recursive produc-
Gons. The restrietion could be removed by using Earley's
general context free parsing algorithm (see {Abo and Ul
man 1973)}; this would permit one to speeily all data strue-
tures in their most "natural” form even il it meant osing
left recursive rules.

684

The restriction, we repeat, applies to DOTGs used as
Prolog parsers. If one uses Mhe generators and composers
of a grammar to form derivation trees without parsing,
then even loft recursive rules may be used:

leaf:tree 1= string.
branchitres = left:tree, right:tree.

These rules specifly & more abstract version of tree than
the grammar of Section 2.3, iype and aliribuics are:

type(X,tree) i~ leal{X).
type[X, tree} - branch(X).

attributes(leal, tree, [string(S]]).
attributes(branch,tree Jleft{L} right{ft}]).

This type definition differs from the previous one in the
node structure which represents bronches. Elements of
this type free ean be formed using sfring , feft, right, leaf
and branch without parsing input strings at all, and
indeed, must be so formed! There s a connection to he
explored in 2 later paper betwsen such a grammatical
specification {which is used to specify trees rather than a
parser) and the Puzzle Grammars of (Sabatisr 1984),

We note that we could extend typing DOTG: to
specify data types which arc not context free by placing
restrictions or constraints on derivation trees. For exam-
ple:

is_piprime = natural” P, { is_prime(P) }

would specily s natural number which is verified by a Pro-
log predicate is_prime to be a prime number. In writing
predicates over this type, we would have to allow Prolog
predicates to be included in the specification lists operated
om by 77"

is_p(X)" " |natural{P), {is_prime({F}}).

In order to keep the compilation of typing DCTG produc-
tions to Prolog clauses simple, the generated predicate
i p would enly require that X be a snefural; the addi-
tional constrabol must then be applied. It seems, sinee the
constraints might appear anywhere in 2 DCTG rule, and
might invelve any number of nonterminals, that this sim-
ple scheme is preferable to trying to imcorporate the cons
straints in the predicate generated from the name of the
production.

Another interesting line of investigation which we
shall follow is to permit types to be parameterized, eg,
frees not only with siring leaves, but with any other type
such as naferal, fist, ete. A later report will detail these
exiensions.)

Typing DCTGs provide a run-time type checking
mechanism based oo unilication. This can prove expensive
for large date structures, One way to remedy this would
be Lo provide a synlactic sugaring of Prolog progeams
which would permit types to be specified and statically
checked by a grammar based type checker (see {[anda and
Abrahamson 1983) for an indivation as to how such a type
checker would function; other typing schemes for logic pro-
grams and Prolog have been suggested in [Mycroft and
0'Keefe 1983), (Mishra 1984)). A well-typed Prolog pro-
gram could then wtilize a eimpler and more eficient
representation of types than the nede strocture shown
above, and potentially expeasive wnifieations could be
avoided: the program would work because it had been
shown to be well-typed.

Omne other line of research is the design of a simple
lanctional programming langeage which utilizes the notion
of types =s eontext free grammars, This language is
intended for instrectional purposes and is to be called
Kavier (the name s formed from the italicized letters in
its designers’ names: Akira Konda, Violet Syrotivk, and
Hor vey Abfamssn). A report on its design and implemen-
tation both in logic and in © is being prepared. The logic
implomentation will rely on typing DCTGs and the
transformation of ICaviar fuketions inte Prolog predicates.

Acknowledgements.

I would like to thank my colleagues on the Kovier
project, Dr. Akira Kanda and Vielet Syrotivk, for many
helpful discussions. This work was supported by the
Matiomal Science and Engioeering Research Council of
Canada. | must alse thank the UBC Laboratory for Com-
putational Vision for time on its VAX running Berkeley
Unix. The UBC Computing Centre is in oo way to be
thanked for not supplying modern and adequate Unix-
based research compating facilities to the Computer Sei-
ence Department.

Referonces.

Abramson, H., Definite Clouse Transiation Grammars,
Frocesdings 1084 International Symposivm on Logic Pro-
gramimning, Feb. 6-9, 1984, Atlantic City, New Jersey, pp.
233-241.

Abo, AV, & Ullman, J.D., The Theory of Parsing, Trans-
lation, ond Coempiling, 2 volumes, Prentics-Hall, 1973,
Colmeraner, A., Melemorphosie Grammars, in Natural
Language Communication with Computers, Lecture Notes
in Computer Seience 63, Springer, 1078,

Goguen, Thatcher, Wagner & Wright, [nifia! lgebra
epproach fo gpecification, correciness and implementation
of abatract dafs types, in R. Yeh (editor) Current Trends in
FProgramming Methodology, Prentice-Hall, 1975,

Kanda, A. & Abrohamson, K. Data igpes as term algebras,
University of British Columbia, Department of Computer
Science Technical Report 83-2, March 1983,

Kanda, A. & Abramson, H. & Syrotink, V. Kawar, a
Functionol Programming Lengunge Based on Data Types as
Contezt Free Languages, In preparation,

Knuth, D.E., Semantice of Conlexl-Free Languages,
Mathematical Systems Theory, vol. 2, no. 2, 1068, pp.
127-145.

Maluszynzki, J. & Milsson, J.F. A nelion of grammatical
unification applicable fo logie progromming lomgusges
Department of Computet Science, Technical University of
Denmark, Doc, 1T 067, August 1981,

Maluszynski, J. & Nilsson, L.F. A version of Frolog baged
on fhe nobion of lwo=level grammar. Prolog Programmiog
Envirouments Workshop, Linkoping University, March 25
27, 19823,

Maluszynski, J. & Nilsson, JF. Grammatical Unification,
Information Processing Letters, vol. 15 no. 4, OQctober,
1982h.

Mishra, P. Towards a theory of lypes in Prolsg, Proceed-
ings 1984 International Symposium oo Logic Programming,
Feb, 6-8, 1884, Atlantic City, New Jersey, pp. 255-208,

Mycroft, A, & O'Keefe, . A polymorphic type system for
Prolag, Proceedings Logic Programming Workshop '83, 26
Jume - 1 July 1983, Praia da Falesia, Algarve, Portugal,
Pereira, F.CO.N, [editor), C-Prolog User’s Manual, Univer-
sity of Edinburgh, Department of Architecture, 1932
Sabatier, P. [Puzsle Grammars, Proceedings of the

Workshop on Matural Language Understanding and Logie
Programming, Rennes, France, Sept. 18-20, 1984,

Appendix

t_lp({Mame:LP 5tL S SR, TypeSem, Semantics H) :-
add_extra_args([node{NameLP StL, Semantics),5,SR|,LP H),
[sMame ==.. [Nm.nodel:ﬂnmu:l.l’.Sﬂ.,samuﬁcﬂ].
assertaflsMName),
CalllsMName =.. [MNameX],
assert{[type{X,LF) o= CalllsName]),
reverse{ TypeSem RTypeSem),
assertafatiributes{Mame, LF R TypeSem)).

_rp(t,5¢,51,5,5,!, 5em,Sem) o= 1,
t_rp([], 34,]1]/54].5,51,5=51,Sem,Sem) :- 1.

t_rp([X],St.][NX][54),5,5R (S, X,SR),Sem,Sem)
char(X,NX)

L rp([X], St [[X]ISH.5.5R,cfS, X, SR), Sem Sem) o= 1.
t._rp[l.'.{|H|,El-.[[NX|NR“SL],S.$R,{¢{S,H,SR[].HB},Sem,,Sum} -

o

char(X,NX],
t_rp{R,5t.|NR|5t],SR1,5R RB,Sem Sem).

t_rp{[X]R), S)IXIR}|5t), 8, 5R.{e(S,X,SR1),RB), Sem, Sem) - !,
t_rp{R, St |R| 5t],SHL,5R, (B, 5em,Sem).

t_rp{{Prolog},51,5t,5,5,Pralog,Sem [{Proleg }{Sem]) =~ 1.

t_rp{(T,R),5¢,5tR,5,5R,(Tt,Re),Sem, TypeSem) - 1,
t_rp(T,5¢,5t1,5 5R1,Tt,5em,Seml),
-t_rplR,5t1,50R,5R1 SR At Seml, TypeSem).

t_rp(Mame:T St,|N|St],5.5R, Tt.Sem, [Type|Sem]) :-
add_extra_args([N,S,SR],T.Tt),
M == node(Mamel:T Nodes, Semantics),
Type =.. [Mame,N|.

t_rp(Mame: T~ M,5t,jN|5t),5,5R, Tt Sem, [Type[Sem]) -
add_extra_args(|M,5,5R], T, Ti),
M = node[Namel: T, Nodes,Semantics],
Type =.. [NameN].

t_rp(T" "N, 5t[MN|St),5,5R, Tt,Sem, [TypelSem]) -
add_ﬂha_ug:[[N.S.EHl,T,ﬂ:l.
M = node{Mamel:T,Nodes, Semantics),
Type =.. [T,N].
t_rp(T,5t,[N|5t), 5.5, Tt,5em, [Ty pelSem]) :-
add_extra_args(|M,5,5R], T, Te),
N = node{Mamel:T,Nodes, Semantics),
Type =.. [T,N]

685

