PROCEEDINGS OF THE INTERNATIONAL CONFERENCE

ON FIFTH GENERATION COMPUTER SYSTEMS 1084,
edited by ICOT. & ICOT, 1984

613

MANDALA: A LOGIC BASED KNOWLEDGE PROGRAMMING SYSTEM

Koichi Farukawa, Akikasu Takeuchi, Susumu Kunifuji, Hideki Yasukawa, Masaru Obli, Kasunori Ueda!

ICOT Research Center
Institute for New Generation Computer Technology
Tokyo, Japan

ABSTHACT

Mandals is a programming system aimed for devel-
oping knowledge information processing systems in logic
programming framework. It is mot only a knowledge
programming system but aleo a basis for & kuewledge
base management system. The nature of this duality
comes directly from two-facedness of logic program-
ming, that is, both procedural and declarative interpreta-
tion. Instead of conventional sequential execution en-
vironment, Mandala provides users with parallel execution
environment, that is, Mandala allows users to describe
multiple-processes. On this parallel execution environ-
ment, cooperative problem solving systems can be con-
structed, in which more than one problem solvers can
be active in parallal. Moreover, Mandala realizes object
oriented programming using a process mechanism in KL1,
thus achieving to manipulate dynamically changing states.
Objects in Mandala can be seen as problem solvers which
have inference engines and knowledge base. It is possible
for users to define a specific inference engine of some ob-
jects. Some experimental studies have been done to ex-
emplify ite expressive power and flexibility.

1 INTRODUCTION

Knowledge representation is a major challenge for re-
search in artificial intelligence. Human beings possess a
wide variety of knowledge that, so far, no language or
system that has been developed is capable of adequately
representing its entire range. As is the case of informa-
tiom processing research in general, there is a constructive
aspect also in artificial intelligence research: it repeats the
process of developing and testing a language or system.
In that sense, knowledge programming languages and sys-
tems have been rapidly gaining attention as tools for- de-
veloping knowledge representation systems. Examples in-
clude LOOPS (Bobrow and Stefik 1983), KEE (Kehler
and Clemenson 1983), STROBE (Smith 1984) and GLISP
(Movak 1983).

Since complex relations between objects play a basic
role in knowledge, it is mandatory that a kmowledge rep-
resantation language have the capability to express and
manipulate these relations. This basically requires list
processing, a function for which LISP has long been
used. All languages listed above use LISP as their base
language, thereby providing environments which allow

f C&C Systems Research Laboratories
NEC Corporation
Kawasaki, Japan

object-, data-, and rule-oriented programming, beside
other sophisticated techniques. Howaver, these systems
need distinet mechanisms to realize such advanced pro-
gramming functions as mentioned above and therefore
the language structures as well as system structures are
quite complex. It might be worth to name them as PL/1
in knowledge programming languages, which means that
they are not quite well refined languages/systems.

In addition to those programming functions, the fane-
tions required for knowledge representation are knowledge
base management capabilities, including consistency check-
ing, and inference using incomplete knowledge. Among
the systems aimed at realizing these functions are MR3
{Genesereth ef al. 1980) and KRYPTON (Brachman et
al, 1983). The=e are both based on the use of predicate
logic. This may be said to indicate that predicate logic is
specifically suited to such problems.

We have been designing a kmowledge programming
language/system Mandala based on logic programming.
Itz major characteristic is that it realizes both advanced
programmiog feature and knowledge base management
feature in a single framework, which is a direct reflection
of the capability of double readings of Horn clauses: pro-
cedural readings and declarative readings. That is, we
may say that Mandala is more like a knowledge program-
ming system in terms of procedural readings, while it is
mora like a knowledge base management system in terms
of declarative readings.

Furthermore, main functions in these two features
correspond to principal concepts in logic programming;
namely, object oriented programming corresponds to
stream programming in Concurrent Prolog (hereafter
we call it CP) (Shapire 1083(a)), rule oriented pro-

.gramming to clanse-wise programming in Pure Prolog

(hereafter -we call it PP} and data oriented program-
ming to data flow synchronization mechaniem in CP.
Congerning on knowledge base management feature, the
entire mechanism iteelf cerrcaponds te meta program-
ming feature in logic programming languages by regard-
ing mowladge described by a set of Horn clanses to be
object level programs. Also, the inconsistency check can
be done by using PP inmterpreter which performs Horn
clanses deduction (as a theorem prover). There are Turther
possibilities to realize inductive inference as well as non
menotonic reasoning in a logic programming framework

614

{Miyachi et al. 1984(a}), (Kitakami et al. 1984).

Another aim of Mandala is to incorporate paral-
lelism both in problem description and in execution.
The ultimate goal of the Fifth Generation Computer
Eystems Project it to develop s highly parallel com-
puter for knowledge information processing. To achieve
the goal, we need a proper tool for extracting a large
amount of parallelism from application problems related
to knowledge information processing. Since Mandala sup-
ports object oriented programming and also is writien in
KL1 (Furukawa et al, 1984) (which i3 a logie program-
ming language with stream-AND-parallelism like CP and
will run on a Paralle] Inference Machine (PIM), it should
be one of the best suited languages for that purpose.

In this paper, Chapter 2 explains the basle com-
ponents of Mandala. Chapter 3 discusses knowledge
programming aspects in Mandala, Chapter 4 describes
imowledge management issues. And the final chapter
provides a summary of this paper and future work.

2 BASIC COMPONENTS AND LINKS OF MANDALA

There are two basic cemponents of Mandala: unit
worlds and instances. Each instance is associated with
one unit world. Logically a unit world represents a set
of axioms and an instance represents a query handler for
the assocciated unit world. An instance receives theorems
from other instances and tries to prove them from a st of
axioms stored in the associated unit world. In Mandala, it
is generally pessible for a wser to define & proof procedure
for an instance associated with some uwnit world. Query
handlers can be regarded as receiving queries and trying
to answer them from the knowladge in the associated unit
world. In a knowledge representation gystem, unit worlds
represent static entities such as declarative knowledge and
they may be used as components for creating a more com-
plex world. As contrasted with unit worlds, instances rep-
resent dynamic entities such as actor-like objects, which
can hold local states and can receive, send and process
messages. In Mandala, instances can take actions in paral-
lel. Furthermore, they are used to implement knowledge
base managers in knowledge representation systems,

In the current implementation, unit worlds are com-
posed of sets of PP and/or CP clauses, and instances are
realized by CF processes, where the term process means a
chain of goal reductions initiated by a given goal {Takeuchi
and Furukawa 1683). Unit worlds and instances are il-
lustrated by cylinders and circles respectively (Fig. 1).

O

{a) Unit ¥Weorld (b} Instanoe

Fig.1 Graphic representation of basie constructs
The four basic links wsed in Mandala, jnstance of,

is_s, part.of and manager_of, are defined and their logical
meanings are described as follows:

2.1 lnstance of link

An instance_of link relates a unit world to an instance.
If an instance J fs connected to a unit werld U by an
instance_of link, J is called an instance of U, which i
indicated by an undulating line, as illustrated jn Fig. 2.
Az decribed above, 2 unit world and an instance connected
by this basic link are logically seen as a set of axioms and
a prover (query handler) for the theory formed by the set
of axioms. If an instance receives a query, it tries to solve
it based on & set of axioms stored in the associated unit
world. Based on the procedural interpretation of logic
program, this can be seen that a set of clauses which
specifies the bebavior and the property of an instance js
defined in the unit world as a program and the instance
executes the program for some input. However, the point
here is that several instances can be connected to the
same unit world and they can execute the program for
their own input queries in parallel. This gives a basis for
object oriented programming in Mandala, which is further
described in the chapter 3,

instarce_of

Fig.2 instance.of link

2.2 lsa link

An fia link, established between unit worlds, repre-
sents & conceptual hierarchical relation between them. For
example, if unit world U2 is = specialization of unit waorld
U1, U2 is.a U1, and U2 is connected to Ul by solid line, as
shown in Fig. 3. Logically a set of unit worlds connected
linearly by is_a links forms a theory. In this sense, if a unit
world is connected to the other unit worlds by isa links,
the unit world represents only a fragment of the theories.

ua U

is_d

Fig.3 is.a link

So-called property inheritance between conceptual
antities ia automated in this framework (Goldberg and
Robson 1983). Unlike other object-oriented systems,
Mandala implements property inheritance by creating a

world for message processing. That is, if an instance faila
to process a message (query) by any axioms stored in the
unit world connected to the instance by instance of link,
Mandala gets a higher-level unit world connected to the
unit world by an is_a link, combines the two into a new
world and tries to process the message there, and repeats
this process until it will succeed. I an instance fails to
process & message in all inherited unit worlds, processing
the messege is failed. Also, a basic mechanism for han-
dling multiple inheritance is provided.

2.3 part_of link

A paré_of link is used to define a composite instance
having lower level instances as its parts. As shown in
Fig. 4, this link extends between unit worlds in a whole-
to-part direction (Considering its name, the Jink ghouald
have a pari-to-whole direction, but in the figure it is
ghown as having the oppesite direction, reflecting the ac-
cess path of information). The part_of link aleo connects
corresponding instances. In this respect, it differa from an
js_a link since mo isa link exists between the imstances,
A part_of link has meta-logical meaning that some theory
refers to other theory as data objects. Mote that these
two kinds of part.of links have different roles. While a
part_of link batween unit worlds (indicated by a broken
line) represents general facts, such that the eyes are part
of the face, a partof link between instances (indicated
by a sig-sag line) represents a specialized situation, such
that a particular face has its own eyes as its parts, This
difference is reflected in implementation methods; that
is, a part.of link between unit worlds is represented by
guch an mssertion stored in the umit world correspond-
ing to the whole that says =(LocalNaze, Part¥orld)
part_of WholeWorld® where LocalName, Part¥orld and
¥holeWorld are a local identifier of a part, a name of a
part unit world and a name of a whole unit world respec-
tively. However, a part_of link between instances is estab-
lished by a communication channel between them.

Fig.4 part.of link

A partof link between unit worlds is traced when
creating & composite instance in order to find what are
its components, and instances to be used as the parts are
created at the same time. Since local names for parts
represent their roles in a composite, they are local in its
composite rather than global in the entire system.

3.4 manager.of llnk

A manager_of link connects an instance to a umit
world as does an instance of link, but instances connected
by & manager_of links play an entirely different role. One
manager_of link is attached to each unit world, (indicated

613

by a double line), as shown in Fig. 5. However one in-
stance can be connected to more than one unit worlds by
mansger_of links. An instance connected to a unit world
by a manager.of link manages the unit world. Such an in-
stance is called a manager. The functions of a manager in-
clude modifying axioms stored in a unit world (i.e., a set of
FF or CP clauses or ...) and generating or eliminating in-
stances belonging to the unit world. Note that a manager
itself is connected to some unit world by an instance_of
link and its functions are described in the unit world (Fig.
6). These functions are activated when managers receive
messages from other instances.

Qm - ém—.er

Fig.5 manager_of link

The relation between a unit world O and the unit
world M whose instance manages the unit world O is
anzlogous to the relation between object and meta theory,
since the unit world M deseribes the knowledge necessary
to manage the unit world O. Based- on this object-meta
hierarchy, assimilation/acquisition of object lkmowledge
can be performed by a manager. This logically natural
implementation of knowledge assimilation facquisition will
be deseribed in the chapter 4.

A method of amalgamating object-leve! and meta-
level processing has been proposed by Bowen & Kowalski
{Bowen and Kowalski 1981) and implemented in Frolog
by Miyachi et al. (Miyachi et al. 1984(b)). This
method employs a procedure called demo which checles the
provability of a Prolog program considered as a theorem.
demo is a predicate having four arguments, l.e., a set of
axioms, a goal, = control and a proof tree. It tries to
demonstrate that a certain goal iz derived from = given
get of axioms under a given control and gets a proof free
as a result.

We have expanded demo into a predicate named
simulate to check the provability of CP programes (Furukawa

instanca_af

Fig.6 manager instance

-1984). Simulate, which itself is written in CP, is also the

core of the Mandala proceszing system.

3 KNOWLEDGE PROGRAMMING ISSUE

In the previous chapter, we have introduced basic
components of Mandala and deseribed the logical inter-
pretation of them. On knowledge programming, the most
important feature is its expressive power. Mandala basi-
cally inherits its expressive power from its base language
KL1. Since provers {query handlers) can be active in
parallel and can send messages each other, this gives the
basic framework for distributed problem selving, where
many problem solvers cooperate to solve one big prob-

616

lem. In fact, each prower ean be seen as an actor which
solves a part of a big problem using its knowledge and ex-
changes information with other provers. The communicat-
ing distributed problem solvers ean provide powerful basis
for problem solving. Inference procedures of provers as-
gociated with different unit worlds may not be the same,
because a user can define his own inference procedures for
gome provers. An inference procedure of a prover depends
on its associated unit world. Examples of inference pro-
cedurez and unit worlds are:

Inference procedure A pet of axioms
PP interpreter PP program
CP interpreter CF program

First order predicates
Eguation systom

First order prover
Term rewriting system

As already mentioned, generally a prover is a proof
gystem for a unit world based on some inference proce-
dure. However, like procedural interpretation of Prolog,
geveral pragmatic interpretation of provers are poszible.
The most general interpretation is the view of regard-
ing provers as acters. Mandala realizes this general ac-
tor as a prover which is a CFP interpreter. The more
gpecial pragmatic interpretation is possible to other kinds
of provers. For example, Frolog interpreter can be seen
as an rule inference engine by regarding Horn clauses as
rules. It is quite important for a problem solving system to
provide several kinds of inference mechanisms. Combining
the paralle] inference mechanism. achieved by distributed
provers and the variety of uzer-defined inference systems,
Mandala prevides powerful framework for constructing a
large problem solving system.

In the following sections, the basic implementation
acheme of Mandala constructs are presented. In the first
section, the implementation of instances, the basis of the
parallel inference, will be given, and the gemeral view
to consider instances to be actors will be explained. In
the second section, as an éxample of inference systems,
the rule inference engine, which is a PP ioterpreter that
manipelates certainty factors and returns proof tree, will
be presented. In the last section, a programming. en-
vironment for manipulating instances interactively will be
presented.

3,1 Instaness

In thiz section we show the representation of umit
worlds and instances in CP. It i assumed that readers
are familiar with CP {Shapiro 1983(a)).

A unit world is represented a2 a named set of axioms.
A pame of a unit world is global identifier which can be
used to refer the unit world from other unit worlds and
alio from all instances. A syntactic form of a unit world
iz as followa:

<unit world mame>(<sziomy>),

<mmit world name> (<azionin?).

Information concerning fo_s and part of illustrated in
chapter 2 ia placed in a unit world as axioms. An instance
is an active object, which can hold local states and can
send and receive mezsages. An instance is implemented by
a perpetual process which takes local states as arguments.
In other words, an instance is realized as a chain of goal
reductions. A goal alwaya takes the form:

instance(<name>, <imput stream>, <world>)

where name is an identifier of the instance and input
gtream is a stream of messages received by the instance.
The third argument, world, conceptually represents a set
of axioms contained in the unit world which is associated
with the instance. The second and third arpuments are
always used as read only. As mentioned sbove, axioms
contained in world are CP program, PP program, First
order predicates, equation system and so on. The follow-
ing iz a CP program that solves the above geal.

instance (Name, [Message | Imput], Weorld):-
simulate (Name, Message, World, NewNorld)
ingtance (Name, Input?, NewWorld?).
instance(Naze, [1, Werld).

The first clause describes the case in which there iz at
least one message in the second argument, input stream.
In this case, an instance solves the message using the set
of axioms in the associated unit world, which specified
in the third argument, by simulate predicate. gimulate
predicate returns a new set of axioms to the fourth argu-
ment after solving the message. The second goal, recursive
call to instance, is activated when the NewWorld will be
fixed and tries to solve subsequent messages. The second
clange deseribes the case in which the input stream be-
comes empty. In this case, an instance terminates. Im
the above program, the simulate predicate can be seen
as a prover. User can deflne his own proof procedure for
an instance, Different proof procedures are realized by
different programs for the simalate predicate. Below,
the program of the similate predicate which solves CP
programs (Shapire 1984) are shown (We show simplified
simulate program in which the first and fourth argument
are omitted beeause they are irrelevant here).

simulate(true, World),.
similate((A, B), World) :-
gimalata(k, World), simulate(B, World).
eimalate(A, World) :- eystem{A) | call(A).
glmalate{d, World) :- clauses(A, C=, World) |
gimulate_resolve(A, Cg?, B, World),
. gimalate(B?, World).
simulate_resolvel{A, [C|Ce], B, World) :-
eimulate_unify(A, €, &, B),
simulate(G?, World) | true.
gimulate_resolval{A, [C|Cse], B, World):-
slsulate_resolva(A, Ce?, B, World) | true.
simulate unify(a, (A:-(GIB)), G, B).
eimulate_unify(A, (A:-B), trua, B).
slsulate-unify(A, A, true, true).

In the program, given a goal and a world, the clauses
predicate returns the axioms which can solve the given

goal, and the call predicate solves tha goal given as an ar-
gument. Another example of the program of the simulate
predicate is shown in section 3.2, Users can deflne his own
gimilate predicate as a unit world. Which definitions
of the gizulate predicate should be used for an instance
must be specified at the time of instance creation.

Each instance is associated with a unit world by
instance.of link. Such unit worlds are used as a
template for creation of instances. Information copeern-
ing instamce_of, part.of and manager_of links illustrated in
chapter 2 is placed in <world> at the time of instance crea-
tion. In general, more than one instance can be created
from a single unit world, and they share the knowledge
in the unit world. Individual instances, howewar, are not
identical with each other even if they are created from the
same unit world. This difference among instances comes
from their histories of messages received and processed.
The third argument, €warld>, of instance predicate is
uzed to keep states of individual instances reflecting the
histories. Specifically, <world> contains not only axioms
in the unit world, but alse axiems which have been added
to or deleted from the unit world in the course of message

processing.

The actual similate predicate is more complicated
than shown above, because it solves the so-called property
inheritance. Since the unit world taken a3 an argument
of gimalate predicate may only represent a fragment of
a theory, simulate predicate must solve a goal by ex-
panding an available world through is_a links when a goal
can not be soived under the current world. The follow-
ing is more specifle deseription of actions taken by sima-
late predicate: When the simulate predicate receives a
goal (a message), it firet tries to solve the goal wsing the
axioms stored in the unit world associated with the in-
stanee (the unit world which is connected to the instance
by ipstance of link). If it fails, it extracts an axiom im
the form of Mame is_a ¥. from the current world and tries
to solve the poal using the template unit world - W. If
slmulate predicate fails again, it tries to solve the goal
by further expanding the world by tracing is_a relation.
Generally, sizulate searches a tres, the rool of which is
the template unit world of the instance and comsists of
vnit worlds connected via is.a relations, depth first, from
left to right, for a combination of unit worlds which can
solve the goal.

If Goal is add{C) or delete(C) [which means addi-
tion or deletion of an axiom C, respectively), simulate
predicate updates a world and returns a new world at the
fourth argument.

Note that, since added axioms are stored in the Yorld
which is kept a: an arpument of simulate predicate,
an instance can keep logical variables, which are shared
with other instances, without loss of the property share.
Therefors channel variables to other instances can be kept
in a world so that an instznce can send messages to other
instances by instantiating these channe] variables to mes-

sages.

The creation of an instance from a unit world is per-
formed by the manager of the unit world. Generally, a

517

fanily
relaticns

lnstanee_of

sizulate predicate
whioh doss rule inferensy

Fig.T Rule inference engine

manager itself iz also created from the unit world Wanager
af & unit world which has Manager above the fz_a hierar-
chy. In the following, the part of the definition of Manager
which is relevant to the creation of a new instance is shown
(it is written in CP).

Nunager (create(Nams,Goals, InfProc) :=
Me manager-of UnitWorld k
instantiate (UnitWorld, Name DW) |
ingtance(Name, [init | Goals] ,D¥):InfProc).

This axiom is invoked when the received message
is croate(Nume, Goale,InfProc), which indicates crea-
tion of a new instance with inference procedure InfProc.
When & manager, an instance of the unit world Manager,
receives this message, the manager creates a new world by
the instantiate predicate and invokes a new goal which
represents the new instance. InfProc attached to the goal
specifies the inference procedure (the program of seimulate
predicate) used by this instance goal. At the time of in-
stance activation, a message 1nit is given for the purpose
of initialization. If the instance iz a composite instance
and has parts, the init message is used for automatic
creation of the parts,

3.2 Rule inference

As is already shown by the recent researches (Clark
and McCabe 1982) (Shapiro 1883(b)), by regarding clauses
and top-down proof procedure as inferenmce rules and in-
ference procedure respectively, logic pregramming can
be also seen as rule-oriented programming. In this
senge, Mandala also provides rule-criented programming
without introducing additional computational mechanism,
However, in practice, we need mechanism to handle a cer-
tainty factor and to extract a proof tree. In thiz section,
we show the CP program of rale inference engine, which is
more elaborated program of simulate predicate presented
in the previous section (simmlate program that solves PP

program).

In Fig.7, an instance which performs as a rule in-
ference engine is shown. In the figure, the unit world stores
individual family relations as data and inference rules,
which are represented as Prolog clauses. The instance of
this unit world has rule-inference gizulate predicate, the
program of which is shown below, and perform as a rule
inference engine.

G618

The examples of the contents of the umit world is
shown below,

fclause (father (domdom, damdam) , true, 50 .
feclavse (mother (domdom, tomtom) , true, 30) .
felauss (father (damdam, dimdim) , trus, B89) .
fclause (mother (damdam, tamtam) , true, 40) .
felause (father (dekeden, damdam) , tTue,20) .
felause (mother (dekedan, tokotan) , true,TO) .
brother (X,Y) :- father(X,F),father (Y, F), X\=Y.
brothar (X,Y) :- mother (X M), mothar (Y, M), X\=Y.
parent(X,¥Y) :- father(X.Y).

parent(X.¥Y) :- mother(X.Y).

ancestor (X,Y) := parent(X{,Y).

ancestor(X,¥) :- parent(X,Z),ancestor(Z,Y).

where felauma(F,Q,N) represents a Prolog clause P :-
R with certainty facter N (certainty factor is a number
between O and 100). All other clauses such as brother,
parent and ancestor predicates are regarded as having
certainty factor 100.

When simulate predicate receives a goal (3 mes-
saga), it solves the goal by inveking the CP program
prove(Goal, [],Tr,Tr,Chen). The answer, which iz a
list of all solutions, is returned to the ffth arpument as =
stream. During the sclution process, simulate predicate
creates many child processes, each of which corresponds to
a proceas searching alternative solutions. These processes
invoke goals of the form, clauses(Goal, List, World), in or-
der to get rules and data that can be unified with the goal
Goal they need to solve.

In the following, the CP definition of the rule in-
ference simolate predicate is shown (again irrelevant ar-
guments are omitted).

eimlate (Goal ,World) :-
prova(Goal, [1,Tree, Tree,Proofs,Yorld) ,
ghow_strean(Proofe?) .

prove(A, [1, ((A<=)/100) <<[100],
Trea, [Tree], World) :-
syetem(A) & call(A) | trua.
preve (A, [(C, TC<<X) |D], ((A<=)/100) <<[100],
Trea,Chan,World) :-
syetem(A) & call(A) |
prove(C,D, TC<<X, Troe, Chan,World) .
prove((A,B,C) D, (TA k& TBY<<[X|Y¥],
Treo,Chan,World) :=
prove(A, [((B,C),TB<<Y) D],
TA<<[X],Tree,Chan, World) .
prove ((A,B) D, (TA & TE)<<[X,Y],
Trea,Chan,World) :-
prove(A, [(B, TB<<[Y]) |D], TA<<[X],
Irae,Chan,World) .
prova{A,C,8Trea, Tree,Chan,Norld) :-
clavses (A, Clavses , World) |
try.each{Clauses,A,C,Efres, Trea,Chan, World) .

try-each([l, ...-.-,[0.World).

try-each([(A0:-B)<<FIR].A,C,5T,T.Chan,World) :-
CopF(A+C+5T+T,AL+CL+ET1+T1) &
AD=A1 k BTI=((AD <= TH}/CF<<[CF1) |
prove(B, [{cf(F,CF1,CF), Tef<<Xet) IC1],

TB<<CF1,71,Chanl,¥orld),

try-each{R, A ,C,E8T,T, Chan2, Forldd ,
marge(Chani¥,Chan2?,Chan) .

try-each{[.|Clauses] ,A,C,8,T,Chan, Norld) ;-
otherwise |
try-each(Clauses,A,C,8,T,Chan, Forld).

The program is based on the two papers (Clark and
MeCabe 1982) and (Shapiro 1983(b)). The main com-
ponents of the program are two CP programs, prove and
try-each. prove iz a §-ary predicate.

prove{Goal, Btack, SubTres . Trese, Channel, World)

The predicate prove solves the given goal Goal in
World and returns all the solutions to the fifth argument
Channel in the form of stream of proof trees. Stack is
used as a comtrol stack. SubTree and Tree are used to
keep a partially obtained proof tree. A general form of a
proof tree i3 as follows.

Proof Tree == (P <= 8T1 & 672 & ...
ar
(true<=)/100

& BIn) /CF

whers 871, 812,, BI2 are all proof trees and CF
is a certainty factor of the inference deriving P. Below an
example of a proof tree is shown when the given goal is
ancestor (domdom, X).

(ancestor (domdom, dimdim) <=
(paront(dondon, damdam) <=
(father (domdom, damdam) <= {true<=) /100)
F50)
/50 K
(ancestor (dandam, dimdim) <=
(parent (damdam, dimdim) <=
(father (damdam, dimdim)<=(true<=)/100)
80}
fa0)
f80})
f40

This proof tree can be read:

The goal ancestor (domdom, dimdim} is derived with
the certainty factor 40 from two subgoals, parent(
dondom, damdam) and ancestor (damdam,dimdim), using
the second elaute of the ancestor program. Each of
two subgoals are derived with the certainty factor 50
and 80 respectively, and 5o on,

1.3 Programming Environment

Considering Mandala as a knowledge programming
gysfem, it is desirable to develop a powerful program-
ming environment to facilitate interactive program dewval-
opment and debugging. Besides the functicns to manipu-
late unit worlds, the programming environment should

Fig.8 The programming environment

provide users functions to manipulate instances such as
monitering the history of the behavior of each instance,
updating the local state of each instance and chang-
ing the communication channel network among instances
dynamically. It is also important for users to use such
functions interactively. In the following, the experimen-
tal implementation of the programming environment is
described.

The basic configuration of the programming environ-
ment is based on the multiple window manager (Shapire
and Taksuchi 1953), which manages the outputs of concur-
rent processes by using the multiple windows associated
with each of them. The functions deseribed below are
added to it for the purpose of managing instances :

(s) creating an instance and the window associated with
it

{b) modifying the local state of an instance

{¢) changing the communication network of instances

{d) distributing meszsages to instances

The multiple window manager plays a role of the aser
interface in programming environment, and keeps pairs
of the names and the input channels of all the instances
ereated by it. The multiple window manager accepts the
messages to perform all the functions listed abeve in ad-
dition to distributing the messages to instances. All the
ipputs and outputs of an instance are displayed onto the
screen of the window associated with it, and recorded in
the window as the history of it It iz able to momitor the
history of the behavior of an instance by monitoring the
window associated with it. It is also able to keep tracks of
the history of the behavior of an instance by using session
manager mode of the multiple window manager.

In Marndala, the multiple window manager is defined
by the axioms stored in the unit world Wm like other
knowledge, and the configuration of the programming er-
vironment. realized by the W= is shown in Fig. 8.

The unit world ¥z holds the CP program wm as shown

619

below. The first argument of the predicate wm is the input
message stream to the ¥m, and the sscond argument is a
list of pairs of the name of an instance and the output
channel to the window associated with the instance. The
messages to the instance are alse sent to the instance
through this channel.

¥m(wm([(Clase, croate (Mame, (X0,Y0,¥,H))) | Input],
List0fChan):-
send {Clags, create (Name , InCh, DutCh) ,
Ligt0fChan, HewListDfChan) |
window(({ [show({Name) | In] , InCh, DutChT) ,
{(¥o, Y0, W, B}, Y0, (C.C,C,C)), Name]) ,
wa{Input?, [(Name, In) |[Newlist0fChan])).
¥ol{wm{ [{(Name,edit) | Input] . ListOfChan) : -
find._process (Nams,List0fChan,
[ehow (Hame) ,edit|In] List0fChanl) |
wm(Inputi?, [(Mems, In) |L1st0LChani])) .
Yoiwal[{¥ame, get-chan{Chan)) | Input] ,List0fChan) : -
find_process (Name,List0fChan,
In,ListOfChani) |
wa(Input?, [{(Kame,Chani) |List0ZChanil),
merge (Chani? Chan?, In}).
¥z(wn([(Nams Meg) | Input] ,Ligt0fChan) : -
gend (Hame Msg,List0fChan, Newllst0IChaz) |
wz{Input? NewListOfChan)) .

On recelving a (Clasg, create (Name, (X0, Y0, ¥, H)))
message, the Wn creates an instance named Wame of the
unit world Class by sending a create (Name , InCh, DutCh)
message to the manager of the unit world Class. In
this case, the definition of Manager listed in section 3.1
iz modified in erder to handle the output channel of an
instance. The cutput channel is held iz a local state of
the instance Name, and its value is initially a difference list
Out{0utCh,OutCh), i.e. an uninstantiated stream.

Then, the window process associated with the in-
stanee i3 created and the window is displayed to the user
terminal according to the parameter (X0,Y0,¥,H), where
the X0 and YO specifies the location of the windsw and
the ¥ and B specifies the size of the window. This window
process has the same name a3 the instance, i.¢. Fane, and
holds the input and output channel of the instance. All
the inputs to the instance and the outputs of the instapee
are displayed to the screen of the window through thess
two channels, and are kept in the window as text. The
inputs to the instance are sent from the keybeard through
the InCh, and the outputs of it are sent to the window
process assoclated with it through the OutCh by usiag
the predicates show and shew_gtreas of the unit world
Instance, which is the highest-level unit world of all unit
worlds along f5_a hierarchy. The predicate show(X) sends
the output X and the predicate show_strean(L) sends the
elemeants of a stream through the outpuf channel by in-
stantiating the output channel varizble of an instance.

If the ¥= receives a (Name,edit) message, it tries to
find the input channel In of the window process associated
with the instance Wama by the predicate find process
deficed in the W=, Then the window process enters the
session manager mode, sm mode for short, by the message

620

i t_chan(Chan)

(b)
Fig.9 Creation of channel connection

edit. In sm mode, the window process becomes an editor
of the histery of the instance, i.e. the window serolls up
and dewn the screen to gee all the text displayed to the
window. The message exit causes the window process
to exit from the sm mode and return back to the normal
window manager mode.

If the Wa receives a {Name, got-chan{Chan)) mes-
sages, it tries to find the input channel In of the window
process associated with the instance Name as shown in Fig.
9 (a). Then the channel Chan given by & user and the

newly created channel Chani are merged into In as shown '

in Fig. 9 (b).

The channel Chanl iz used to send messages from
¥o to the window process, that is, the messages are sent
through the channe] Chani and In (see Fig. 2 (b)). And
the messages are sent to the instance Name unlass a mes-
sage is the query to the window process itself.

The channel connection between the instance Nama
and the other instance Name1 ia created by the given chan-
nel Chan as shown in Fig9(b). The channe] Char is nsed
to send messages from the instance Name1 to the window
process associated with the instance Name and the instance
KNama itself. As a result, & mew communication channel
between two instances Name and Kamel is created dynami-
cally.

If a message, say (Name Wessage), is not the query
for We, it is regarded as the message to the instance
Wame. At first, the meseage iz zent to the window
process associated with the instance Name. The window
process displaye the message and sends it to the instance
transparently.

The modification of the eurrent local world of an
instance iz done by the predicate add, delete and modify
of the unit world Inetance. These predicates are used
to add, delete, or modify the axioms in the current local
world of an instance,

‘The screen output of the example sxecution of ¥=

I ardatelscuster, X, T) g \

Cleas |

H)
¢ up
ahi i

|
I+ Lastldb} :
It =odify{state{X),statel10
i
2

Iz actit

instanos(al, [shov 1], ¥}
svamsber 1]

esastor instanao, of Class
pounter 15 3 Slople_bjeot, I: show
atata{1] ,trus 1

al ..r,ualmlmnt XhVandd|
ap, (enlete{atatel L1 AY =il
doren, {deletelstate(X) el
shiou, | atatel X)Sakoa(X) | ree

.—I al

Tt Last{eelf] [[

sounker - B =

Fig.10 The example of screen output

ia shown in Fig. 10. The window labeled Class is as-
sociated with the manager Clase and the window labeled
counter is associated with the manager of the unit
world countar which is created by Claes. The message

‘create(counter,X,Y) appeared in the window Class in-

dicates the creation of the manager of counter. Note that
messages preceded by |: are input messages and other
messages are outputs of instances.

The window counter is now in the sm mode by edit
message. The prempt -- sm —- within the label of the
counter window indicates that the window is in the sm
mode.

The window labeled e1 is assoctated with the instance
of countar which is ereated by the manager of counter.
The modification of the unit clause state(X) is done by
the message modify(state(X) ,stata{100)) as shown in
the el window.

4 KNOWLEDGE BASE MANAGEMENT ISS5UES

The basic functions of a knowledge base manage-
ment system include knowledge representation, knowledge
utilization and knowledge acquisition. Since the basis of
knowledge representation i ineluded in the basic functions
of Mandala, here, we show how the funstions of knowledge
utilization and knowledge acquisition are achieved.

4.1 Enowledge base search

Knewledge utilization depends on an effective search
strategy for the knowledge base. Therefore, we fecus our
discussion on the knowledge base search function.

In Mandala, a unit of knewledge is represented by a
unit world. Sech & unit world may be regarded as a rela-
tion table in a relational database. To retrieve information
existing in a unit world, it is necessary to have a librarian
that searches for a specific unit world. Such librarian can
be embodied as an instance of the unit world. That is, if
we assume a unit world to be an item of knowledge, we
can regard an instanes connected by an instance of link as

a librarian that searches the knowledge base, rather than
as an instance represented by the unit world. The concept
of a librarian explained here is an another interpretation
of an instance which is explained as a prover in chapter
&

A librarian dedicated to the knowledge base can
periodically update the kmowledge base. The updated
knowledge is held by the librarian itself, while the criginal
knowledge base remains unchanged. This function can
be used to implement hypothetical reasoning and can be
further expanded to place different hypotheses in ssveral
librarians, thereby making it possible to deal with soch
problems as assuming many unit worlds at the same time
and determining which hypothesis is most likely. In
MYCIN (Shortliffe 1976), for example, the likelihood of as-
suming an infections disease is computed for all infections
diseases and several hypotheses are selected as conehuzions
in dezeending order of the degree of their likelihood. This
may be said to be a similar problem. Local updating of
the knowledge base can be implemented by a change in
the state of the librarian itself. Note that this differs from
global updating, which is performed by the knowledge
base manager. Global updating actually rewrites the unit
world; it has a much greater influence on the system as a
whole, and requires strict checking. This problem will be
addreszed in the following section.

4.2 Knowledge base management and knowledge assimila-
tion

There are different aspects of knowledge acquisition
for knowledge base management, but from the standpoint
of conformity with a logie programming language, we will
focus on assimilation problem (Bowen and Kowalski 1981),
(Miyachi et al. 1984(b)). The purpose of assimilation is te
acquire knowledge while, at the same time, ensuring that
it is free from logical contradictions and redundancies.

We implemented a knowledge assimilation program
which manages conslstency and climinates redundancies
in erdinary sequential Prolog (Miyachi et al. 1984(b)).
The program employs the approach of dividing kmowledge
into pogitive kmowledge, which provides specific facts
concerning individual instances, and negative knowledge,
which provides conditions to be satisfied by such specifie
facts. Negative kmowledge is checked when new positive
knowledge is being acquired. This program incorporates
an extension of the demo predicate mentioned in chap-
ter 2. However, it was found that the knowledge as-
similation program using the extended deme predicate was
not quite practical in terms of execution efficiency. If
it iz necegsary to demonstrate that any new knowledge
acquired is consistent with all negative kmowledge, the
execution time required is propertional to the amount
of negative knowledge. Besides, the execution time for
redundancy elimination ia proportional to the amount of
positive knowledge, since the algorithm for redundancy
alimination cheeks each unit of positive kmowledge for
redundancy.

We found that it is possible to implement a more
efficient algorithm in Mandala. As for consistency

621

“eRsiaflarnr

[.
a_torid

Fig.11 The knowledge assimilation system

checking, segmentation of positive knowledge and nega-
tive knowledge permits reducing the amount of negative
knowledge to be checked when acquiring a unit of positive
knowledge. Furthermere, the consistency checking can be
done in parallel in two levels: checking on different nega-
tive clauses, and also checking on each megative clause
(Hiralmawa et al. 1983).

For redundancy elimination, it iz possible to inde-
pendently check the redundancy of each unit of knowledge
within a limited scope and later eliminate all units of
knowledge found to be redundant. Suppose that a graph
formed by implication relations (=) has no clozed loop
and that P and Q are independently shown to be redun-
dant from knowledge base T. The redundancy of P, for
example, iz demonstrated by the derivation of P from T-F.
Howaver, as we assumed the absence of a loop of implicit
relations, it is impossible that @ is wsed for proving P and,
at the same time, that P iz used for proving Q. In such a
case, therefore, it is poszsible to eliminate redundancy by
the paralle]l algorithm referred to above. (As an example
in which the above conditions are not satisfled, consider
the set of formulas A, B, A=B, B=2A.) This technique can
also be applied to Prolog or CF programs which generally
do not fall into an endless loop, because they have no loop
of implication relations.

Fig.11 roughly illustrates how a knowledge azsimila-
tion program is implemented in Mandala. As can be seen
from the figure, the knowledge base management program,
Manager, is expanded to have an assimilator as a part.
The aszimilator itself has two medules, centradiction-
checker and redundancy-checker, which check for com-
tradiction and redundancy, respectively. Manager in-
stance, mgr, manages two unit worlds called p-world and
n-world which contain positive knowledge and negative
knowledge respectively.

A prerequisite for improvement of the execution speed
iz to develop dedicated computers capable of execut-
ing KL1 in parallel. This will have to await future re-
search. In the meantime, we can say that Mandala at

622

least demmonstrates the usefulness of parallelism.

5 SUMMARY AND PROSPECTS

In this paper we have discussed the basic framework
and implementation of Mandala, a knowledge program-
ming system based on KL1. We have also stated that
Mandala provides a basis for a knowledge base manage-
ment system. However, the development of Mandala is
still in a wery early stage, We have much more research
to be done before the system will be completed.

Of particular interest for Mandala as & program-
ming system, iz the introduction of a partial execo-
tion mechanism. This is closely related to the concept
of parameterization or compilation. If the values of
parameters are specified early and the program partially
executed, compilation will be performed. In this case,
parameters cannot be dynamically changed at the time
of program execution. For a programming aystem, it is
desirable to have the eapability of freely specifying levels
of partial execution. This would allow users to contro] the
trade-off betwesn flexibility and execution efficiency. In
a sense, whether a system places emphasis on flexibility
or execution efficiency determines whether it is oriented
toward knowledge programming or system programming.
To provide a practical system with these two facets, it iz
required io realize smooth transition from one facet to the
other by means of a partial execution mechanizm.

Another possible extension of Mandala as a knowledge
base system is enhancement of its expressive power. We
defined unit world knowledge a3 Pure Prolog and/for CP
programs, but this limitation is too strict. The knowledge
representation language KRYPTON is capable of deserib-
ing statements in first-order predicate logic, which is
more powerful than Horn logic in dealing with incomplete
knowledge. A similar capability is a possible direction in
which Mandala will be extended. This requires a powerful
theorem prover in first-order predicate logic.

ACKNOWLEDGEMENTS

We wish to express our thanks to Kasuhiro Fuchi,
Director of ICOT Hesearch Cemter, who provided us
with the oppertunity to pursue thiz research in the
Filth Generation Computer Systems Project at ICOT. We
would also like to thank Hiroyasu Kondou and other ICOT
research staffs, members of ICOT Working Groups 2, 3
and 4, and'the Fujitsu, NEC and Oki Electric researchers
who participated in discusslons with the knowledge rep-
regentation task force. Our thanks go especially, to Dr.
Fumic Mizoguchi of Science University of Tokyo, who,
chairman of Working Group 4, not only provided us with
insights on the development of Mandala but eonsistently
gave us valuable advice in subsequent discussions. Wa
also gratefully acknowledge the informative dizcussions we
had with Dr. Ehud Shapiro from Welzmann Institute of
Seience and Dr. Keith Clark from Imperial College during
their stay at the ICOT Research Center.

REFERENCES

Bobrow, D. G., Stefik, M. The LOOPS Manual (Preliminary
Version)., XEROX PARC Knowledge-based VLSI Design
Group Memo KB-VLST-81-13, 1883,

Bowen JC. A, Kowaliki, R. A., Amslgamating Language and
Mets Language in Logic Programming., Schosl of Computer
and Inform- ation Sciences, University of Syracuse, 1981,

Brachman, R.J. et al., KRYPTON : A Functional Approsch to
Knowledge Representation,, Fairchild Laboaratory for Artificial
Intelligence Research, Fairchild TR MNo.638, 1083,

Clark, K., MeCabe, F., PROLOG : A Language for
Implomenting Expert Systems., In D. Michie and Y.H.Pao
(ed.), Machine Intelligence 10, 1582.

Farukawa, K. et al, The Conceptual Specification of the
Kernel Language version 1, ICOT TR-054, 1984,

Genesereth, M. R., ef al, MRS Manual, Stanford University,
Stanford Heurlstle Programming Project Meme HPP-80-24,
1980,

Geldberg, A., Robeon, D, Smalltalk-80 : The language and its
implementation., Addison-Wesley, 1983,

Hiralawa, H. et al, Implementing an OR-Parallel Optimising
Prolog System (POPS) in Cancurrent Prolog., 1COT THR-020,
1983

Kehler, T. P., Cleméndon, G. D., KEE: The Knowledge
Engineering environment for Industry., IntelliGenetics, 1983,

Kitakami, H. ef al, A Mrthodology for Implementation
of & Knowledge Acquisition System., Proceedings of 1954
International Symposium on Logic Programming, 1954

Miyachi, T. et al, A Knowledge Amimilation Method for Logic
Databases., to appear in New Generation Computing, 1884(a).

Miyachi, T. at al, A Knowledge Assimilation Method for Logic
Databases., Procesdings of 1984 International Symposium on
Logic Programming, 1984(k).

Mevak, G. 8. Ir., GLISP ;: A Lisp=based Programming System
with Dats Abstraction, AT MAGAZINE, FALL 1883,

Shapiro, E., A Subset of Concurrant Prolog and Ita Interprater.,
Inptitute for Mew Generation Computer Technology, ICOT
TR-003, 1683(a).

Shapire, E., Logic Programs with Uncertainties: A Teols
for Implementing Rule-Based Systems., Proc. of IJCAI a3,
1983(b).

Shapire, E., Takeuchi, A., Object Oriented Programming in
Concurrent Prolog., New Generation Computing, Vol.1, No.1,
1983,

Shapire, E., Systems Frogramming in Concurrent Prolog.,
Proc. of Principles of Programming Languages, 1984,

Bhertliffe, E. H., Compuier-Based Medical Consultations -
MYCIN,, American Elsevier, 1976.

Smitk, R. G., Structured Ohject Programming in Strobe.,
Schlumberger Technology Corpsration, 1984

Takeuchi, A, Furukaws, K., Interprocess Communication
in Concurrent Froleg., Logic Programming Workshop'83 in
Portugal, 1083,

