PROCEEDINGS OF THE INTERNATIONAL COMFERENCE

OK FIFTH GENERATION COMPUTER SYSTEMS 1984,
edited by ICOT. © ICOT, 1984

LOOKS: Knowledge Representation System for Designing
Expert Systems in a Logic Programming Framework

Fumio Mizoguchi, Hayato Ohwada and Yoshinori Katayama

Biosystem Research Laboratory
Dept. Industrial Administration
Beience University of Tokyo
Noda, Chiba, Japan

ABSTRACT

This paper describes an object-oriented approach to
designing a knowledge representation system for develop-
ing expert systems. The system is called Logic Oriented
Organized Knowledge System (LOOKS for short), and
is based on the belief that Prolog's expressive power
consists in versatile interpretation and compatibility, so
as to integrate various programming paradigms, such as
object-orientad and rule-oriented systems. This integra-
tion is accomplished by the use of a concept proposed
by Bowen & Kowalskd which amalgamates object-level
and meta-level knowledge. The meta-predicate "world.
demo” is developed for this purpose and demonstrated
in designing an expert system. The propozed system is
implemented in DEC-10 Prolog and an application sys-
tem called LOOKS/Glaucoma has been implamented to
diagnose glaucoma. Finally, there are some discussions
of the effectiveness of the present approach to knowledge
repregentation.

1 INTRODUCTION

Recent attempts to design knowledge representation
systems have adopted the concept of integrating diverse
kinds of programming paradigms as tools for developing
expert systems. Knowledge representation systems such
as LOOPS (Bobrow & Stefik, 1981) and MRS (Genesereth
M. 1983) have been developed with a trend in this direc-
tion. In LOOPS, there are four programming paradigms
: data-criented, procedure-oriented, object-oriented and
rule-criented paradigms. This system was implemented in
a LISP environment and has served as a tool for develop-
ing an expert system in VLSI CAD (Brown et al.,, 1983).

The present paper takes & different approsch to de-
veloping a knowledge representation system by using the
legic pregramming language, Prolog. This is based cn the
belief that Prolog’s expressive power consists in versatile
interpretation and compatibility with various program-
ming paradigms, even if Prolog is regarded as a seman-
tically flat language among the "LISP community®,

As for the expressive power of Prolog, we have tested
its eficiency by comparing the performance of & rule-based
expert system implemented in Prolog with that of other
programming languages (Mizoguchi,F_,1983). The result
ef this comparison shows that the code size of the Prolog
implementation is almost ten times smaller than the code

size of implementations in other programming languages.
The overall performance of the Prolog-based system is the
same level as that of expert systems implemented in other
languages. Since Prolog is a self-embedding inferenes lan-
guage, the results of comparison are quite natural. As for
describing structured obiects, Prolag is said to be weak
and inappropriate. Our goal is to develop a semantically
rich knowledge representation system using Prolog. "We
have developed a representation system called MIRROR,
which was designed as a preparatory step to test the poz-
sibilities of reflecting several programming paradigms into
the logic programming paradigm (Mizoguchi et al., 1984).

Basing on these experiences, we will develop LOOKS
to describe knowledge used in expert gystems. In this
paper, section 2 explains the object-oriented features of
LOOKS and gives examples of objects used in the diagnos-
tic system. In section 3, we propose a meta-contral predi-
cate called “world demo®, which serves to as integrate
object-orientad and rule-oriented paradigms into a single
expert system. Saction 4 discusses the reaults of devel-
oping an expert system wsing LOOKS and the issues re-
lated to its development. Finally, we discuss on jssues of
knowledge representation for developing expert systems
for reslistic applications.

2 THE OBIECT-ORIENTED FEATURES OF LOOKS

LOOKS makes use of dual representation. Here, dual
reprasentation means that any representation system must
have a dual character such as declarative vs procedural,
structural vs functional, static va dynamic. In LOOKS,
there are two kinds of representation paradigma to be
taken into consideration to achieve this duality. Oneis an
object-orlented paradigm for representing structural ob-
Jects using a elass hisrarchy, as in Smalltalk-80 (Goldberg
& Robson, 1983) (Zaniolo, 1984). The other is a rule-
eriented paradigm for describing procedural knowledge in
terms of production rules (van Melle, 1879). The two
paradigms are integrated by a meta-predicate, which is
explained in the next section. Here, the notion of meta-
predicate means knowledge about how to use the two types
of knowledge 20 a2 to meet specific goals,

The objects in LOOKS are composed of meta-class,
class and instance. The class object represents structured
knowledge with its associated set of methods. The class
decides the characteristics common to a group of instanee

objects. The instance is an entity which belonging to a
specific class. The metaclass object determines the be-
havior of a clasa object. In LOOKS, a class object has
two kinds of variables: class variables and instance vari-
ables. Instance variables describe common property of
all instances belong to a class. They also consist of in-
formation specific to an instance. A method determines
the behavior of a ¢lass or an instanee associated with it.
Thus, an object is processed by receiving a message, which
changes its internal state. An object in LOOKS represents
a unit world, which is used as a prototype for a speciic
ingtance. The method is nsed for processing & message
gent to an object. The class definition and method are
shown in Figare 1.

defclass <0bject Name> ::
supers <{Hameligt> ;
motae <Nameligt> |
clags-v <Name»-<Defipitlou>, ... |
ingtance.v <Name>-<{Defimitiem>, ... |
mathod
felector ;=: Functioml,
Function2, ...
Salector ATguments:
Functicni (Arguments, ...J,
Fupctiomn2, ...
Flgure 1. Class definition in LOOKS
The class definition in Figure I is classified into
three hierarchies: meta-class/class, superclass/class and

classfinstance. This definition is similar to that of LOOPS.
The superclass/class supports the is-z hierarchy, which

describes a conceptual hierarchy for the domain knowledge.

Property inheritance is carried out automatieally between
the superclass and class hierarchies. The meta-class/class
is used for managing behaviors of claes object.

An instance is created by receiving a message to a
class object that represents the instance state. The ob-
ject and method are compiled into an imterpal form in
terms of a Prolog program through the LOOKS loader.
The internsl form of the object and method is shown in
Figure 2. The superset/subset and meta-class/claes rela-
tions are transformed into head parts of a Prolog program.
Class v and instance_v are also head parts. The method of

<0bject>(0bject,superclass, Namelist) .

<object>(Object,metaclass, Namelist).

<0bject>{0bject, c.var, [Name, Definitien]).

<0bject>{0bject,i_war, [Name,Definition]).

<0bject>(Self mothods, [Belector]) :-

Functicnl, Functicn2, ...

<ibject>(Self metheds, [Selector Arguments]) :-
Fonetionl (Argussnte, ...J,
Fonctionz, ...

Figure 2. Internal Form of Class Definition

607

send([Object,Belector]) :=
gend{ [0bject, Belector, [11).
gend ([0bject,Belector . Argument]) :-
next_object(Object, Namel),
gb-count (0bject),
gearchmethod {(Name1i, 0bject, Balector ATgument).

soarchmethod (0bject,Salf, Selector, [1) -
object_head (0bject, Belf ,methods, [Selector]l}, |
gearchmethod (0bject,Balf, Selector Argumant) :-
not(Argument==[]),
object_head (Object, Self ,methods,
[Belector, Argument]), !.
gearchmethod (0bject,Balf fSslector Argument) :-
guper-object{0bjact,Buper),
searchmethod(Super, Balf ,Balector, ATgument) .

Figure 3. Send and Search-method predicates

definition ia translated into a Prolog program. The selec-
tor and arguments in the method correspond to Prolog's
head part. The function for the method are body parts
in Prolog that describe procedure for processing a mes-
sage. There are two types of methods for processing mes-
sages to the class object. In case of the message operator
#r=:" g fanction is processed without arpaments. The
operator “.Argument:” procesees the functions with argu-
ments. [n principle, & messaga to a specific class abject is
processed within the local class world. Message process-
ing is carried out through the predicate “send”, which is
shown in Figure 3.

The predicate has three arguments; the first is the object
name and the secomd iz the selector part of the methed
characterizing the behavior of an instance, The third is
uged for message processing variables. The method search
processing Is carried out by the “search method” predi-
cate. This predicate sezrches the selector in the class. The
predicate has fovr arguments ; the frst argument is the
object name for searching the selector, the second ia the
object that receives a message, the third iz selector, and
the fourth is variable. The matching process of selector is
carried out by predicate the "object_bead”™. The “super.
object” used in the predicate begins with the searching
the superclass through depth-first and left-to-right man-
ner. If there is no method processing the message to the
present class, then the object tries to search for the other
superclass.

In dezsigning an expert system, we must develop a
model of diagnostic formalism. LOOKS only provides a
framework for representing knewledge used in the model.
That is, the knowledge used in the expert system (in this
case, disgnostic system) must be represented using the
LOOKS framework. The overall structure of the disgnos-
tic system is shown in Figure 4.

The model is derived from our experiences using the
EXPERT formalism ([Weiss & Kulikowski, 197%). The
model itsslf is a revision of the EXPERT formalism, which
is extended by introducing the notion of class objects;
one is a factual object corresponding to actual data or
symptoms, and the other is a hypethetical object repre-

608

expErh
dual objeck
Hypothetizzl
objact

Figure 4. Objects uped in the Diagnostie System

sented by a taxonomic category of the domain knowledge,
such as a diseass or a fault state. In order to design & more
concrete image of the diagnostic system, we show one of
the objects that corresponds to the diagnestic formalism.
For example, class object of "finding set™ is deflned in
terms of LOOKS ohjects, as is shown in Figure 5. This
object iz used =0 as to collecting patient finding data,
which is obtained from a user. The other class definition,
shown in Figure B, is the "yes_no” object, which is a subset
of the "finding set® class. This class generatez "yeg mo®
guestions to gather patient data. Thus, the EXPERT for-
malism is very natural for defining class objects hierarchi-
cally. As for the instance object, a symptom is defined
as shown in Figure 7. The present diagnostic system for

defclass Iinding.get ::
gupers expsrt_umit ;
metas meta_azpert .
Instance_v
prompt , suparset - [] ;
mothod
get_val :[Namelst,K Ans]:
{ not(pati.world(gell,Vall)),
{ealf <- get_vald, [Namelst,Ans]}:
pati_world(self, Ans)) ;

active.qa : X :
a{prompt, N),
writelis([wctop,N],Tindings1),
print.gal(self), classname{gell,Class),
gotcvalue (Class, type.X1),
writelia([Xi],findingel),
(salf <= rToad.ga.X) ;

read qa : Ans |
repeat, in_sty{' # °,sell,X),
(sslf <- typecheck, [X Ans]} .

Figure 5. Finding set Class

defclass yoE.NO !
supers Iinding_Eet ;
metas meta_expert ;
clage.v type-"Yes-No:" ;
mathod
active.ga :ADE:
e(prompt, N},
vritelis([vctop,N], findingsl).
clasename {5olf,Claes),
getevalue (Claee, typs,TY),
writelis ([6, Tyl .findings1ll,
{self <- read_qa,Ans) ;
typecheck : [Ans, [Ans]]:
typo_yosno(Ang) ,
pati_world(eelf, [Ans]).

Figure 8. Yes no Class

definstance symptom ::
class.n multiple ;
inetance_v prompt - "Eymptome:* |
supereet - [toplce(symptom}] ,
candidate -
[(rainbow, "rainbow vision/halos'],
{complaint, ‘complaints of decreased
visual acuisy'),
{pain, 'eceular/head pain'),
(digcomfort, ‘discomfort’),
(eye_etrain, 'eys strain’),
{(vomiting, "vomiting'),
(headache, “headaches in dim light'),
({transient, 'transient blurred vision'},
(redness_tearing, ‘redness/tearing'),
{photophebia, 'photophobia’),
{logs, "complaints of loss of field')].

Figure 7. Symptom Inrtance

glaucoma containg about 187 objects (15 class objecta, 172
instance objects).

3 USE OF META-LEVEL KNOWLEDGE
3.1 Concept of meta-level control

In the previous section, we deseribed the objects
uged in LOOKS and the diagnostic model. We alio
showed some examples of object definiticns for the modal
uzing the LOOKS formalism. In this section, we explain
meta-predicates dealing with the integration of diffarent
worlds. This is accomplished by amalgamating objeet-
level knowledge and meta-level knowledge, as proposed by
Bowen & Kowalski (1981). The concept was implemented
by Kitalami et al (1984). This concept uses a procedure
called "demo® predicate, which checks the provability of a
Prolog program. We adopted this predicate for integrating
the object-leve]l and meta-level. The object-level encodes
knowledge about the facts of the domain (in our case, dual
ebjects and patient state), which the meta-level encodes
as control strategies {in this case, methods of integrating

different paradigms). This amalgamation has the follow-
ing two adventages:

« The geparation of object worlda and control information
preserves the clarity of program structure by making it
medular (Davis, 1980, (Bundy, 1981).

« Meta-level integration unifies different programming
paradigms. By meta-level control, an abstract control
mechanism is realizsed for the common comtrol of the
various programming paradigme.

Thus, by introducing meta-level knowledge, we achieve
a general comtrol structure, which combines different
paradigms into a unified world medel. This is carried
out by the meta-predicate called “world_demo®, which
processes a set of object-level knowledge corresponding to
domain knowledge. It takes the form:

world_demo(Waorld, Goal, Dependency, Justification)

where *"World® denotes a world representing a set of object-
level knowledge, and 'Gosl’ is Prolog elauses to being
solved through a et of "World® knowledge. The third argu-
ment ‘Dependency{Shintani & Misoguchi, 1983) retarns
proof tres in solving 'Goal®. It plays a role of explanation
facilities such as HOW in EMYCIN. The fourth argument
*Justification’ returns the degree of belief which denctes
justification of 'Goal". Here, justification is indicated by
an integer between -100 and 100, which corresponds to an
EMYCIN-like certainty factor. The declarative reading
of "world.demo” interprets that a certain goal is derived
from given world (a set of object-level knowledge) and
returns the dependency relation and justification. The
control flow of *world.demo” is shown in Figure 8.

world demo{¥orld, Goal,D,J).

lata_rarldflnrld,llat‘fal'orlgj i
“retrieve meta-world of “World-'"

| 1

X=..[Meta¥orld,K¥orld, Geal,D,J],
eall(X).

*prove "Goal' by using world
knowledge of ‘MotaWorld’*

Figure 8. Control Flow of "world demo” predicate

Each object world is associated with meta-world which
controls a set of knowledge of object world. Meta-world
is specified as follows:

meta world(< ebject_world >, < meta_world>>)
A form of <metaworld> knowledge 2 described as
below,
< meta_world >(World,Goal, Dependency, Justification)
- Body

Here, four arguments: World, Goal, Dependency and Justif-

609

cation are same as used in "world_demo” predicate.

3.2 Realization of meta-level control

In order to apply "world.demeo® in a diagnostic sys-
tem, we prepared three world models: object-world (O-
world), patient-world (P-world) and decision-world (D-
world), D-world contains heuristic knowledze represented
in rule-oriented language. This language is described in
terms of "IF,THEN" type production sets. This is ex-
pressed by Prolog programs with a certainty factor. In
this case, the rule itself iz inherited from the EXPERT
rufa formalism. O-world corresponds to the disgnostic
formalism shown in the previcus section. This world iz
described by LOOKS objecta and controlled by message
passing. The O-world mets-predicate shifts control of
“world_dems” to LOOKS object-oriented message pass-
ing. It converts ‘Goal’, which iz the second argument of
*world_demo”™ to message sending form in LOOKS. The
relation between "world.demo” and object criented pro-
gramming in LOOKS is shown in Table 1.

Table 1. Relstion to object oriented programming

" world demo™ object oriented programming
object(variable(Value)) |getvalue{object, variable, Value}
object{variable{value)} [putvalue{ohject, variable, value)
object(zalector, arguments)send(object selector arguments)

f* Meta-predicate dealing vith
¥mowledge of patlent world =/
nota.-patient-world{World P,D,J) :-
penvar (F), P=assort(Q), !,
¥=..[World,Q,D,J].
agpert (X} .
meta_patient_world(World,P, [1,100) :-
nonvar (P} ,eystealP),!,.P.
meta_patient_world(Werld, (P;Q),D.J) :-
nonvar (P} ,nenvar{Q), !,
meta_patisnt_world(World,F.D1,J 1).
meta_patient_world (World,q,Da, J2i,
(max{Ji,J2,1),
psp1,J=J1 ;
p=p2,J=J2).
meta_patient-world(¥orld, (P,Q},0.J) :-
nonvar (F) ,menvar(Q). !,
mots_patient_world(World F,D1,J1),
meta.patient.world(World,q,p2, 12},
append (D1,D2,D),
timee(J1,J2,0).
meta_patient_world(¥orld,P.D,J) :-
petacall (World,P,D,J),
J==100,
meta-patient_world(¥orld,P.D,J} :-
not (J==1003 ,
bagof((D1,J1) ,metacall{¥orld,F,D1,J1),8),
collact(8,D,J).

Figore 0. The meta-predieate for patient world

610

P-world deals with the patient knowledge base, which is

described in terms of physiological states. The world is
deflned by asserting clauses. The meta-predicate for P-

world is shown in Figure 9.

3.3 Contrel Strueture in Disgnostic System

In develeping expert system, we must implement a
specific inference mechanism for the domain. The *world.
demo” deals with the D-world, which is described using
production rules. The following inference is shown in

Figure 10.

= —a

Tazenomle Troa of Disoases .

“rotrisve the hypothesis with
tha highest wvalua®

@) Gos)

"apply all rules sgsocinted
with the Bypothesis®

Fulas

Bla ¢== ==+«

Bag €=== == =«

‘ratrieve findings =
oD patlent world® G&'ﬁ *gather patisnt isforzation®

[

14
Patisnt Wor Findings

EyEptans
-

madicaticn

"aEgart Fl‘t.iunt/

Figure 10, Inference Mechanlsm in Disgnostie System

The basic features of inference system are as follows:
s Backward chaining
« Best-first search wsing weighted dizeaze hypothesis

The inference algorithm is summarized by the follow-
ing steps.
(1) Retrieve uppermost disease hypothesis.
(2) To verify the hypothesis, apply all rules associated

with it.

(3) If there are some lower hypotheses, generate them and
caleulate their weight. Otherwise, stop.

(4) Retrieve the hypothesis with the highest value and g0
to (2), recursively,

The weight is determined by frequency of ceeurrence
based on past statistical data. Initially, this weight is
based on expert knowledge; it is then revised by caleulat-
ing the certainty factor.

3.4 Implementing status

LOOKS is currently implemented in DEC-10 Prolog
(Peirera et al., 1978) at the Biosystem Research Laboratory,
Science Univ. of Tokyo. LOOKS was developed together
with MIRROR, an experimental knowledge representaticn
system using a logic programming framework, Some
LOOKS modules are inherited from MIRROR components.
By utilizsing these modules, we improved the speed of the
LOOKS implementation. LOOKS consists of the fallow-
ing lines of Prolog code: loader({150), kernel(250), message
handler(50), utility(150) and window package(100].

Ag for the expert system domain, we have chosen
a diagnostic system for glavcoma. Kunowledge about
glaucoma is obtained from owr past experience in de-
veloping diagnostic systems, and from our collaboration
with Dr. HKitazawa of the Department of Optholmogy,
Tokyo University Medical Center. We have developed at
least three versions of a glancoma diagnostic system. The
frat used the EXPERT formalism developed at Rutgers
University. The second was developed using our tool
called MIRROR /Glaucoma, which was implemented in
C-Frolog on a VAX 11 /780 at Tokyo University. The third
iz the current implementation of LOOKS/Glaucoma using
DEC-10 Prolog at the Biosystem Research Laboratory.
The LOOKS/Glaucoma displays the results of the diag-
nogls through a multi-window system. In order to explore
useful expert system tools, LOOKS was ported to a small-
scale micro computer (NEC PC-9801F). This system is
called mini-LOOKS. Prolog KKABA, which is compatible
with DEC-10 Prolog, is used for this implementation.
Mini-LOOKS will probably serve as the pre-processing
system for LOOKS /Glancoma, which will perform more
detailed disgnoses. In mini-LOOKS, we consider the
graphic and color display facilities for representing visual
field and other instrumentation data.

3.5 Output Example

This output shows the disgnostic process of the
LOOKS/ Glaucoma system. This output is from the
DEC-20 system at ICOT Research Center. The firat in-
put in this example is part of patisnt topics for glancoma
prompting the checklist type question. The response to
the question by a user is followed by the asterisk(*). In
this case, question items 2 and 5 are selected. In LOOKS,
this selection is regarded as the message to the symptom
object. The system responses to the items generating
the state of the object. In order to obtain the explana-
tion of diagnostic process, *world_demo® iz used by send-
ing the message to patient world, The output shows the

B

rairbow vislon/halos
complainte of decreazsed wvisual aculty
ocular/head pain
digcomfort
eye BLTalin
vomlting
headaches in dim 1ight
transient blurred vislcno
redress/tearing

10 . photophobia

11 . complaints of loss of field
Checkligt:

cm-lmu.bmun—,:!

* [2,5].
Angles:
1 . Grade 0 - complete or partial closure
Z . Grade 1 - parrow extreme
3 . Grade 2 - narrov moderate
4 . Grade 3 - cpon extreme
5 . Grade 4 - cpen moderate
& . Blit
Chooge one:
* 4.
Enter the intraocitlar pressure (applanation
Humerical:
* 22,

(continuing Q & A)

¥oE
| ?- conclusion.
--— DMagnosls -—-
poagn 40 Primary opon angle glaucoma mild riek
pacg 28 Primary angle closure glaucoma
congl -30 Congenital glaucoma
(partial example of comclusion)

yeE
| 7= world_demo(patient_world,pecg.D.J).

D = [[{{pacg:-ago(56),40<586) ,20)],
[((pacg:-sex(malel)],10}],
[{(pacg: -symptom(disconfort) ;
symptom{eye_strain)}, 50)],
[{(pacg:-angle(gras) , intpr(22),20<22), -100)
J =28
(roascning process)

Figure 11. The Output in LOOKS/Glaucoma

verification whether the current input data is provable or
not within the patient database.

3.8 Reluted Toples

Knowledge representation is one of the key issues for
ressarch in artificial intelligence. There have been a num-
ber of attempts to develop knowledge representation lan-

611

guages beginning with KRL (Bobrow & Winograd, 1977),
and eulminating in the recent development of LOOPS.
These languages and systems were built on the idea of
"Frames® [Minsky, 1975) and were implemented in LISP
(Mizoguchi, 1982). These aystems represents an jmportant
aspect of the "LISP culture®.

Recently, several knowledge representation systems
have been implemented using a logic-based approach.
Systems like MRS and KRYPTON (Brachman et al,
1943 uge the framework of predicate logic. PROLOG/KR
{Naknshima, 1984) is similar to LOOKS, but adopts =
frame-oriented approach using the "with® pradieate for
multiple world modeling. We accomplish this mechanism
using "world_demo®, which integrates the different worlds.
In our present research, the "kpowledge programming
paradigm” is a central concern. It is adopted in Mandala
(Furakawa et al., 1984), which uses Concurrent Prolog,
a language with great expressive power for parallel com-
putation. As a result, Mandala's proposed model of
*simulate” is one of the mest elegant for dealing with in-
heritance using state variables. Our approach is a more
realistic one, wa feel, for wsing meta-level control. Such
control distributes the processing to different worlds, and
goals are then sclved within each world.

The main differences between LOOKS and Mandala
are in the implementation language and the applied aspects
of ¥mewledge representation. LOOKS takes advantage of
Prolog flexibility for implementing object-oriented knowl-
edge representation. Further, LOOKS has been tested
using large objects for the diagnostic system. But our
efforts should be toward the parallel inference strategy for
using Concurrent Prolog (Shapiro & Takeuchi, 1983).

4 CONCLUSION

In this paper we have described an object-oriented ap-
proach to knowledge representation, called Logic Oriented
Organised Knowledge System {(LOOKS). Qur efforts were
based on the belief that Prolog's expressive power consists
of versatile interpretation so as to integrate various pro-
gramming paradigms. This integration was accomplished
by the use of "world demo”, which amalgamated object-
level and meta-level knowledge. The "world demo” predi-
cate was demonstrated in the design of the glaucoma diag-
nostic system. The proposed system is implemented in
DEC-10 Prolog and application system called LOOKS/
Glaugoma is working on the glaucoma diagnostic area.

The significances of present paper are summarized as
Tollows:

» The object-oriented approach in LOOKS provides a
clear structure for separating the object definition of
the domain kmowledge and the control of inference.

« Knowledge representation in LOOKS provides a rich
semantiz strueture for describing structured objects
with clazs hierarchies which are similar te a “frame”
or a "semantic net” representation.

& The rule-based representation in LOOKS provides a
support for unifying the existing production rules into
a LOOKS framework.

612

+« The meta-level predicates, "world demo” in LOOKS
provides a basis for integrating object-oriented and rule-
oriented programming paradigms.

» The eszential parts of LOOKS provides modula libraries
for implementing small scale knowledge representation
system, mini-LOOKS which runs on micro-computer
[NEC-PC9801F) using Prolog KABA (Prolog for miero-
computer).

Finally, we have emphasized the meta-level control
as a mean of integrating object-oriented and rule-oriented
programming paradigms in LOOKS. We have, however,
not yet adequately studied the memory management of
the objects through the same concept. In order to ae-
eomplish the realistic application, we must consider the
large memory space for objects. In that sense, we feel
the strong necessity of Prolog machine with large memory
space such as P8I machine whick ICOT has developed
(Yokota et al_, 1983). Probably, LOOKS will be translated
into ESP (Chikayama, 1984) which is a kernel language of
P51 machine.

ACKNOWLEDGMENTS

The author would like to thank the members of ICOT
Working Group Mo.4 for fruitfol diseussions, We would
glzo especially like to thank Dr. Kazuhire Fuehi, Director
of ICOT Research Center, and Kouichi Furukawa, Chief
of ICOT's Second Research Laboratory, whe developed
Mandala. The glaucoma knewledge was obtained from
the collaberation with Dre. Yoshiaki Kitazawa and Shire-
teru Shirato of Tokyo University Medical Centar. We also
thank Takashi Chikayama of ICOT for allowing us to use
his macro commands TEX editor. Finally, thanks is due
to the referees for useful comments and suggestions,

REFERENCES

Bobrow, D. G. and Winograd, T., An Overview of KRL: A
Knowledge Representation Language. Cognitive Science
1, 1977

Bobrow, I, G, and Steflk, M., The LOOPS Manoal, Memo
KB-VL5I-81-13, Yerox Palo Alto Research Center, Calif.,
Aug. 1981, rev. Aug. 1982

Bowen, K. and Kowalski, F. A., Amalgamating Language
and Meta Lenguage in Logle Programming, School of
Computer and Information Sciences, University of Syracuse,
1881

Brachman, R. J. and Levesque, H. J.,, KRYPTON: A
Functional Approach to Knowledge Representation, Fair-
child Laboratory for Artificial Intelligence Researeh, Fair-
child TR No.529, 1983

Brown, H., et al,, Palladio: An Exploratory Environment
for Circuit Design. IEEE tran. Computer, 41-56, 1983

Bundy, A. and Welkam, B., Using Meta-level Inference
for Selective Application of Multiple Rewrite Rule Sets
in Algebraic Manipulation, Artifieial Intelligence 18, 189
212, 1981

Chikayama, T. ESF Reference Manuaj, ICOT Tech.
Report, 1984

Davis, R., Content Reference: Reasoning about Rules,
Artificial Intelligence 15, 223-239, 1080

Furukswa, K., Takenchi, A. and Kunifuji,5., Mandalzs:
A Coocurrent Prolog Based Knowledge Frogramming
Language/System, ICOT Tech. Report, 1084

Gepesereth, M., MRS: A Metalevel Representation System,
Werking paper HPP-83-28, Stanford University, Heuristic
Programming Project, June 1083

Kitakami, H., Kunifuji, §., Miyachi, T. and Furukawa,
K., A Methodology for Implementation of Knowledge
Acquisition System, Proc. of 1984 International Symposium
on Logie Progremming, 131-142,1984

Minsky, M., A Framework for Representing Knowledge,

- The Psychology of Computer Vision (ed. Winsten, P.),

MeGraw-Hill, 1975

Mizoguchi, F., A Software Eovironment for Developing
Knowledge Base Systems, JARECT, Computer Seience
& Technologies (ed. Kitagawa, T.), Ohm*North-Holland,
1982

Mizoguchi, F., PROLOG Based Expert System, New
Generation Computing, 1, 1983

Mizoguchi, F., Honda, E. and Katayama, Y., Kagamj &
Sugata: Design and Application of Object Oriented Based
Knowledge Representation Language in Prolog, Proc. of
the Logic Programming Conference ‘84, 1-12, 1984

Nakashima, H., Knowledge Representation in PROLOG/KR
Proc, of 1984 International Symposivm on Logic Programm-
ing, 126-130, 1984

Shapiro, E. and Takeuchi, A., Object Oriented Programming
in Concurrent Prolog, ICOT Tech. Report, TR-004, 1983

Shintani, T. and Mizoguehi, F., An Approach to Deszign af
Default Reasoning Systems in Knowledge Base, Information
Processing Society Journal, Vol. 24, No. 5, 805-613, 1983

Peirera, F. C. M. and Warren, D, H. D., User's Guide to
Decsystem-10 Prolog, Oceasional Paper No. 15, Department
of Artificial Intelligence, University of Edinburgh, 1678

Weiss, 8. and Kulikowski, C., EXPERT: A System for
Developing Consultation Models, Proe. of IFCALTS, 1979

van Melle, W., A Domain-independent Production Rule
System for Consultation Programs, Proc. of IJCALTY,
1878

Yokota, M., et al., The Design and Implementation of a
Perzonal Sequential Inference Machine: PSI, New Gensration
Computing, 1, 1983

Zaniolo,C.,, Object-orfented Programming in Prolog, Proc.
of 1984 Internationa! Symposium oa Logic Programming,
265-270, 1984

