PROCEEDINGS OF THE INTERNATIOMAL CONFERENCE
OM FIFTH GENERATION COMPUTER SYSTEMS 1984,
edited by ICOT, © ICOT, 1984

SIDUR - A STRUCTURING FORMALISM
FOR KNOWLEDGE INFORMATION PROCESSING SYSTEMS

Dan D, Kogan ?
Michael J. Frelling

Oregon State University

ABSTRACT

A new claze of Information applications is emerging
(Fuchi 82; Ohsuge B2) for which neither Artificial
Intelligence (Al) nor Database technologles alone are well
gilted. The work presented in this paper deseribes a
formalism called SIDUR, which Integrates a manipulation
mechanism with {ts representation components using a
declarative notation known as the sigma expresslon.
Declaratlve components cam them be combined to form
high-level, semantleally motivated schems deslgns which
include the specificatlon of virtual data, the definition of
transactions, malntenance of semantic integrity constralnts
as well as the ability to define high level data manipulation
operations. Such an Information model with precisely
limited {in this case noh~combinatorial) Inferential
capabllities lorms an appropriate level of interface between
the more general deductive powers of an AT component and
the back-end data storage and manipulation mechanism.

1.0 INTRODUCTION AND MOTIVATION

Database and Artificial Intelligence [Al) techmologies
represent the extremes of & continoum on which the
solutions to Information intensive problems fall. Database
applications are usually well understood and can be realized
through algorithmic methods. They require the
malntenance of large collections of facts which may change
over time, but have a somewhat regular strecture. The
overriding concerns Ineclude data independence, integrity
and consistency of the stored information, and efficlency of
maniputation (Date 81).

Artificial Intelligence; on the other hand, iz usually
applied to problems which are not Polly dnderstood and
require the use of heuristic Inference techniques [Barr and
Felgenbaum B1). The Information these problems require
may not have & regolar structure and Is often highly
Interconnected. Furthermore, the individual pleces of
Information are often much fewer than In database
domains, numbering only in the thousands, rather than in
the millions. The Important considerations for Al
formalisms are representational richness and ease of
manipulation by the Inference mechanism.

Recently, It has become apparent thet there are many
applicatlons that require combined Meatures from Dasabase
and Artlficlal Intelligence technologies. These applications
are characterized by & need to malntain large databases
while also requiring the inference capabllitles of Artlficial

Autbor's surrent addresies:
1 System Development Corporation, Sants Monics, Ca., #HIE.
¥ Tektrapiz Ine., Beawerton, Or., 87077,

Intelligence systems. Systems which address these
applications have been called “Knowledge Information
Processing’ (Fochi 82; Ohsuga B2; Suwa et al. B2),
"Knowledge Management' (Hellogg 52) and "Knowledge Base’
(Wiederhold 84) systems.

Applications of this type arise in two ways. The frst
Is from datsbase applications which "cutgrow" exlsting
database techmologles requiring the Incorporstion of
Inferential capabilities. The second comes [rom the
growing complexity of Artificlal Intelligence applications:
and the meed to provide & "Knowledge Base" with Hmited
Inferential capabllitles but Independent of the primery
Inference engine (Brachman and Levesque 84).

Such systems must be capable of performing some
deduction not only during retrievel operations, but during
updates as well (Ohsuge 82; Wilederhold 84). Furthermore,
they must present a uniform conceptual structure which
can lend ftsell to manipulation by general purpose
reasoning mechanisms (such as those based on first order
logic).

The characterlstics of these applleations require
inference mechanlsms which are net search-based, but
capable of representing and performing simple infercnces
on thelr own, as well as nterfacing to more general and
powerful deductive systems. Such mechanisms must meet
the functional requirements of these new applications while
& the same time reconciling two sets of conflicting
demands: representational asdequocy or naturalness and
computaftonal effectiveness. Representational adequacy
refers to the ease with which Important aspects of the
application can be expressed within the constructs of the
moiel. Computational effectiveness Includes the
pragmatics of an application, such as avolding
combinatorial searches to minimize response times.

This paper describes a formalism for strocturing
Information based on o user orlented model of Information.
This formalizm, called SIDUR, Integrates a manfpulation
mechanism with 165 representation components nsing a
declarative notation known as the sigma expression. These
components can then be combined to form high-level,
semantically motivated schema designs. In particular, they
enable the specificatlon of transections, constraints amnd
virtual information in & declarative and natural way.

2.0 SIDUR FRAMEWORE

SIDUR's maln strength lies In its abllity to provide a
framework For defining natural and semantically motivated
query operations. For example, a typlcal dete manipolation

operation in SIDUR would be

PERFORM [{TransferEmployee
(mgent *John Brown®)
[souree *System Design”)
[destination *Formal Verification®}]]

to transfer an emplovee Trom one project to another.

The active nature of such primary tasks as the
definition of transactions arlses [from interpretation
functions which are applied to declarative expressions In
the database schema. Selection of the appropriate
expression Is achleved by access of slots in an cbject-based
schema framewerk. The major ohjects In this framework
are known 85: Data Value Classes, Object Clanses,
Situations, Computations and Aetions.

A complete trestment of the syntax and semantics of
the model Is given In {Kogan B4). This paper outlines the
structure of SIDUR and Its manipulation language.
Exzmples used are taken from the schema of & decision
support system for project menagers [Kogan 84),

2.1. El;wi Expressions

SIDUR's declarative notatlon §s called the sigma
expression. Its symtax Is similar to that of logle-based
langnages such as the predicate caleulus or thelr database
variant, the relational caleulus (Ullman B1).

An atomie sigms expression has the form
{CI{RIPI;...(RHPJ;

where ¢, is the name of a sltuation or computation, the
R, are role names and the P, may be constants or
variables. Figure 1 shows & atomic sigma expression.

(HasEmployecSkills (agent E){object 8]}

Figure 1 - Sample atomic sigma expression.

Open sigma expremsions are bullt from atomle sigma
expresslons using the conmectives snd, or, not and empty.
The open sigma expression in Flgure 2 speclfies that the
skllls required by a project P are the same a5 those
assochated with employee E.

{AND [HasEmployceSkills {agent E) {objest 5))
(HasSkillRequirements {agent W) (object 5]}

Figure 2 - Sample open sigma expression.

Open slgma expressiong are equivalent syntactically to
expressions In first erder logic, though thelr Interpretation
15 different In some respects.

Finally & closed sigma expression is bullt from an open
one via the form

faigmnfvl,-,vbjslj

where § | is an open slgma expression and the V , are
varlgbles which may or may nol appear In the expression.
Figure & shows & closed glgma expression densting projects
whoss expected completion dates are not met,

597

[AND

[Expected CompletionDate (agent) (time D1J)
[CurrentDate (sgens Dij)

(LESSTHAN (agent D1) (abjoct D2))

)

Figure % - Sample closed slgma expression.

With respect to the current datebasc state, a sigma
expression Is taken as denoting an abstract date structure
called its extension. An extenslon 15 & set of unigue binding
tuples each of which assigns values to varizbles of the
expression. Flgure 4 shows & possible extenslon for the
sigma expression of figure 1.

{<(E -= *John Brown® {8 - *Database Systems"] >
<(E-> "Jack Smith*}{§ - > "Expert Systems")>}

Figure 4 - Sample extenslon.

This Is different from the first order logie expressions,
which are usually taken as denoting predicates rather than
extenslons.

2.2. Interpretations of Sigma Expressions

In order to utllize the syntactleally declarative sigma
expression to support inference and update, an operational
Interpretation must be asslgned to these structures. Most
attempts to add Inferential capabilities to an Information
model {Brachman 53; Konolige 51; Kellogg 78), usually stop
with a single semantic Interpretation of Intenslonal
expressions. This single Interpretation relates Intensional
expressions as to their use In query, or data retrievel, but
not to their use in updates.

The SIDUR approach s te explicitly define several
interpretation functions relative to the model in which an
expression is uwsed. In this fashion a reliable update
semantics can also be assigned to these expressions by
adding update semantlcs to the more standard query
interpretation function. Accordingly, we assign three
distinet Interpretation Tunctions to sigma expressions,
known as *enquire, “mseert and *deny. These
interpretetions correspond respectively to Inguiry, addition
and removal of Information.

2.2.1. *enguire

The *enquire Interpretation fametlon returns the
extension Which & sigma expression denotes with respect to
the current database state. It §5 analogous to DADM's
QUERYAMALYSIS [unction or the Frolog interpreter
viewed as an interpretation Tunction for Horn clauses
{Clocksin and Mellish 81) The rules for determining which
binding tuples belong to the extension of a sigma expression
are outlined below.

- The extension of an atomic sigma expression Is the
extension of its underlying sltuation.

- The extenslon of two sigma expressions joined by and
corresponds te the carteslan produet of their
extensions I they do not have commeon variables and
the equifoin of thelr extensions if they do have
varjables in commaon.

- The extensions of two sigma expressions joined by or
corresponds to the union of the extenslons of thelr
component sigma expressions.

598

® The extension of an atomic sigma expression enclosed
In net corresponds to the negatlve extension I the
indicated situation Is Interpreted under the open
world assumption. Otherwise not Is interpreted as set
subtraction and can only be used under certaln
conditions.

. The extension of a sifma expression enclosed In
empty 15 & Boolean (true or false) value, depending on
whether Its slgma expression has an empty extension
oF not.

. The extenslon of a closed slgma expression
corresponds to the relational projectlon of the
extension of the enclosed open eigma expresslon onto
the sigma variables.

2.2.3. *ameert and *deny

Fetrieval operations are only part of the complete set
of capabliities an Information wanipulation mechanism
must possess. The purpose of the *assert Interpretation f=
to perform such actions as are necessary o ensure that the
extension underlying a sigma expression Is not empty. The
*deny Interpretation, on the other hand, acts to ensture that
the underlying extenslon is empty.

I an atomle sigma expresslon contalns no varlables,
then its Interpretation Is strelghtforward. Under *assert a
binding tuple corresponding to the constants In the
expresslon 1s added to the extenslon of the sltuatlon In the
sigma expression, whereas under the *deny Interpretation
it Is removed. This Is dome omnly I' the appropriate
congtraints are not violated. For example, the extension of

*aesert [[HasMame (sgent TOHO0M) (value *John Brown®)|
adds the binding tuple
<(E -> TOKOO) (N -> *John Doe*)>

to the extenslon of HasMName. That same expression under
the *deny interpretation would effect the removal of the
binding tuple. The rules for determining what actions are
taken under the *assert and *deny Interpretations are given
in APPENDIX 1.

Atomic expressions containing variables can match
several binding tuples. For example,

[EmployesAssignment (agent X) [object TOK999))

represents all employees working [lor the project
represented by the token TOK999. Under the *deny
Interpretation, all binding tuples matching the above
expression are removed. Under the *assert Interpretation,
binding tuples are added with new tokens created to fill the
slots represented by wariables (In a similar fashion to the
way GEMSYM creates new atoms In Lisp). However, new
tokens ere created omly for slots whose fillers are token
values; other slots musé be filled with actual valuwes.
Although SIDUR does not provide noll values, the setion
construct enables them to be speclfied in a way meaninglul
to the application (section 8.3 and Figure 12).

Sometimes the Interpretation of slgma expressions
produces ambigeity. This fz the case with disjunction
under *assert and conjunction under *deny. Conslder, Tor
example, the expression in Figore 5 which can be satisfied
by non-deterministically removing appropriate instances of
aither conjunct.

*deny [[AND
[HasEmployeefkills (agent E} [object 5))
(HasSklIRequirements [agent W) {object 5)))

Figure 5 - *deny in a conjolned sigma expression.

Theough It may be possible under certaln conditions to
infer which cholce to meke from context, It Is not
reasonable to encode these declsions into the data model
Itsell. A general solutlon to this problem would require
generation of combinatorial search requests, resulting in
unacceptable performance costs. SIDUR's solution 1z to
Invoke a functlon extraneous to the model called CHOICE
which Is assumed to be able to resolve these amblgultles. A
particular Implementation of CHOICE depends on the
demands of the application (Roth B4). At Its simplest,
CHOICE returns to the user for more advice.

2.3, Bemantic Data Manipulstion

Dats manipulation in SIDUR 1s not performed through
the primitlve semantie Imterpretations *enquire, *assert
and *deny. Rather It is performed viz a more developed set
of semantic manipulation o s which In turn . are
defined In terms of the primitive semantic interpretatiofs,

The Tollowing Is a partial catalog of these operations.
ENQUIRE determines the extension of its query extenslon.
CHECK treats a query extenslon as & predicate and returns
true or false. ASSERT establishes an extension. DENY
removes an extenslon. PERFORM performs the Indicated
transaction. PERMIT? determines whether it is possibie to
perform a transsctlon. PEREMIT! ensures that it is possible
to perform a transactlon. Sectlon 3.6 shows examples of
these gperations In use and describes the mechanism which
enables their definition.

3.0 SIDUR DETAILS

SIDUR provides five baslc constrocts: Data Value
Clanses, Object Classes, Situations, Computations and
Actions. Erch SIDUR construct s defined by & set of slots
which specifies the form of the construct and Its connection
to other constructs. These clots can be divided into two
classes: deseriptive and interpretative. -Descriptive slots
deserlbe the Inherent propertles and constraints of a
construct, while interpretive slots describe the connections
hetween constructs of the same or different types.

3.1. Situations

A situation defines associations among objects which
represent meaningfal information about the application. It
unifies descriptive concepts commonly kKnown as attributes
and relatlonships without Imposing arbiteary distinctions
between them; this Is a desirable feature since such
distinctions are notoriously ambiguous (Kent 78) and
subject to change depending on the user's view,

In a SIDUR Implementation, the situation {& the only
struecture which 15 actually mapped into physical storage.
Each Instance of a situstion provides a connection between
the representatives of the partlcipants of that situation.
An Imstance of that connectlon 15 called & binding tuple
because It binds the particlpants to actual data velues. The
set of binding tuples which are valld for & situation at any
point In time Is called the extension of the situatlon.

The sltuation construct has three descriptive siots:
participants, cardinalities, and extension. It also has three

{nterpretive slots: definition, necemary and required.
The participants slot specifies those objects which

participate In the situation as well as the roles they play
via a sequence of triples of the form:

<role name > [<varlable> [<object class >

Roles provide a position-independent label for the
participanss; they do not Imply &ny semantic properties of
the filler other than those explicitly stated in the definltion.
The varlable is wsed for identification of the partlclpant
within the sisuatlon description Itself and the object class
provides a domain rom which the participant must be
drawn.

The eardinalities slot represents a common [orm of
integrity constraint (Roussopoulus 79; Brachman 79). It
specifies the meximum number of Instances in the eurrent
extension with common values for the Indlvidual
particlpants. Flgure & shows a partial definition of a
situation specifying that & manager, can be In charge of at
most 3 projects.

{situation: lsTechnicalManager
[participanta:
agent/EfEmployee object/W (WorkOrder)
[eardinafities: | <E>, 3 <F>)

Figure & - Sltuation with explicit constraints.

The extension slot specifies whether the extensiom of a
situation conforms to a closed or open world assumption

{Relter 78).

In additlon to the descriptive slots descrlbed above,
situations have three manipulative slots called defimition,
necessary and required. The definition slot elther specifies
that & situation can be Instantiated directly via database
lookup, le: the extension of the situation is stored directly
in the database, or It provides a formula (vla a sigma
expression) lor deducing the extension. The necessery and
required slots contaln expressions representing consistency
erlteria which must hold before a sitnatlon can be asserted.

The simplest filler lor the definition slot Is the atom
PRIMITIVE. It stipulates that the extenslon of & situation
is stored directly in the database. In this respect, It acts
much like the "support Indicators" associated with each
predicate In DADM (Kellogeg 7).

However, not all sltwations meed be expllcltly stored.
An advantage of higher order information structuring
formallsms is their abllity to specily inferred data. A
sigma expreesion filling the definltion slot indicates how the
extenslon of the sicuatlon can be deduced. Figure T shows
a non-primitive sltuation defining a qualified employee to
be one having those skills required by a partieular work
order. The extension of this situation s the extension of
the expression filling the definition slot. As explained
earlier, thiz extension can be computed via an equijoin over
5 on the extensfons of HasSkils and HasSklllRequirements.

{situation: laQualifledFor
icipants:
[p.;:;mlzﬁjhpwu abject /W fWarkOrder]
{defmition:

[Egrhpj.mmﬂn (sgent E) {ohjsct 5]}
(HasSkillRequiraments (agent W) {[object S))]))

Figure 7 - Sample non-primicive sitoation

599

The necessary and required slots are filled by sigma
expressions and represent two types of constraints [Sergot
§2). The term "necessary™ can be viewed In the sense of
logleally necessary; the expression filling it must always
hoid. The required slot, on the other hand, refers to
condicions which In general must hold, but can admit te
exceptions, for example, administrative policy which can be
violated when good reason exists.

Operationally, the differerces between these two types
of constraints are realized in the way the two slots are
Interpreted. The gigma expression filllng the necessary slot
is checked before amy update is performed by elther the
REFLECT or ASSERT operations (see Data Manipulation
Interface) The sigma expression filling the required slot is
onty checked by the REFLECT operator, during =an
ASSERT operation; it may be overridden. For example,
the sitnatlon defined in Flgure 3 specifies that a project
must have a fanding source and a work order number.

[situntion: IsProject

(participants: agent/F fProject)

(required: (HasProjectMame (agent P) (vahae N)JT

[necessary:

[AND
(HasFundingSouree (agent P) (value)]
(HrsProjectWorkOrder (agent P) [value W)

{definition: PRIMITIVE)

[extension: CLOSED)

)
Figure B - The necessary slot,

1.2. Computations

Computatlons are special forms of situations which
can be thought of as assoclations between seversl
"argument” particlpants and & "result" particlpant such
that unique combinations of non-result participants (called
argnments) determine & unique result. However, since the
potenslal set of arguments can be very large, It s clearly
{mpossible to store the extenslon of a computation. The
computation definition, therefore, provides a method by
which the unlgque result participant can be determined.

Computations can be defined over Individual Instances
of situations and used in sigma expressions, such as
EARLIER-THAN In Figure 9 (SYSTEM computations are
those Implemented by a primftive algerithm). This use of
computations is analegous to DADM's "compute relations®
{Kellogg 77) or the use of "experts” In (Stonebraker 80).

{eamputation: EARLIER-THAN
(participante: domain-1/X/DATE domain-2/Y /DATE])
{definition: SYSTEM)

)

(situation: LateProject
(participants: agentP [Project]
[(definition:

(sigms (P)
AND

(ExpectedCompletionDate (agent P) (time D))
[CurrentDate [agent D2}
) (EARLIER-THAN [agent D) (object D))}

Figure 9 - Computations over {ndividual instances.

Computations can alse be defined over whole
extensions, permitting the speclficatlon of aggregate

500

information, a common component of database
&pplications. Figure 10 specifies a computation lsting the
mifnber of employees assigned bo work on each project.

(computation: COUNT-OF
{participants: domain/X/EXTENSION-OF (5]
messure /Y [ROLE-OF (5}
result|Z/INTEGER)
{definition: SYSTEM)
)

[semputation: NumberOfEmployeesPerProject
[participants: agent/P fProject valoe/N/INTEGER}
{definition:

(sigma (P N)
[AND
[E:mplmﬂ.uignmnl. {l.gent E]} {object P]]
[COUNT-OF
(doemein:
(sigma {EZ)
(EmployeeAmignment
{agent E2} {object P)J]
(mensure
(resals MY

Figure 10 - Computations over whole extensions.

Motlce that no additional notation Is required to
specify the partltion on the extension of the
EmployeeAssignment siteation. Such additlonal constructs
25 "group by" found In languages like QUEL [Youssefi 77)
and 3QL (Chamberiin T6), are unnecessary becawse the
attributes which Induce & partitlon can be explicitly
delineated by linking the appropriate slgma variables.

3.8, Actions

Actlons describe events in the applleation domain
which affect the wnderlying database. These constructs
permit the declarative specifycation of transactlons.

Actlons are syntactically simllar to situatlon
definitions. However, rather than denoting an extenslon or
& method for determining an extension, actloms speclfy
operations on the extenslon of some sitvations, or
alternately, a set of update Munctions which map one set of
current extensions into another. Figure 11 shows a simple
action describing the transfer of an employee from one
wark order to another.

{aetion: TransferEmployee
{porticipants: agent/E /Employee
objeet] [W1 WorkOrder
objeet? W2 Wark Order)
{prerequisites:
{AND
(NOT (EMPTY
(EmployeeAssignment (egent E) (object W1))))
[EMPTY
[Employeedssignment (agent E) {object W2]))
[::Irquuncdl?or {sgent E) (object W2))jj
resunlis:
[AND
[EMPTY
(EmployeeAssignment (sgent E) {object Wijj)
(NOT (EMPTY
{EmployeeAssignment
(sgent E) {abject W2)}j)

Figure 11 - Sampie actlon definition.

The participants slot fdentifies the object classes
which participaté In the action as well as the roles they
play, just as l'or sltuatlons.

The prerequisites slot permits database administrators
to control the conditlons under which certaln actlons can
teke place. This slot Is flled by a slgma expression
possibly heving constants substituted for variables. In
order for the action belng defined to be carried out [by the
PERFORM! operator), the expression in the prerequisites
slot must have & non-empty extenslon.

The results slot describes the state of the database
after the actlon has been carried owot. Like the
prerequisites slot, the valve for the resulcs slot 1s a sigma
expression. When an actlon is PERFORMed, this slot is
REFLECTed causing the database to be appropriately
updated so that a non-empky extension is created.

Actlons alse permit schema designers teo specily
methods for handilng lncomplete knowledge, lrequently
without having to resert to ‘null” valoes. For example,
Figare 12 shows how an emplovee’s salary can be initialized
to the lower bound of his/her salary grade.

[attion: InitializeSalary
{participants:
agent [E/Employee
value /3 Salary)
|prerequisites:
{AND
[EMPTY (HasSalary (agent E) (value 8)])
(HasSularyGrade {sgent E) (objeet G))
[HasSalaryLevels
(agent G} (lowerBound 8} [upperBound 1))
[results:
[HasSalary (ngent E) (value 5)))

Figure 12 - Incomplete Information and actions.

Currently, database mechanisms must typically resort
to arbitrary procedural ineluslon (Abrial 74; Britton-Lee B3;

Mylopoulos 80}, either via application programs or specialiy
destgned transaction facilitles Mor performing updates while
preserving integrity and consistency.

34. Dats Value Clanses

Data Value Classes specify displayable or publicly
available data and she form these data may take. They are
analogous to dele type specifications in traditional
programming languages.

The purpose of the data value class definitlons i5 to
allow the schema designer to assign names to recognizable
classes of data type values, which may later serve as
representatives for specific objects of Interest to the
application. Two aspects of these definitions permit Inicial
levels of imtegrity constralnts: the Interpretation of the
class and the precise formats to which values In the class
must adhere.

A data value class specification can have up to six
deseriptive slots defined below. Figure 13 shows the
definition of three data value classes from the sample
schema.

The primary reason for the type slot 15 fer checking
the suitability of Indivldual values =as arguments to
computations. The sise and form slots are optional;
respectively they permit the schema designer to aflocate a
maximum number of cheracters for string data and &

regular expression format for defining acceptable members
of the class. The maxval and minval slots specily the range
of permissible values for numeric data. The precision slot
guarantess that all operations on data of fype real will be
carried out to the speclfied number of digits.
{data-value-class: Employeell

{type: INTEGER]

{mimwal: 1)

(maxval: 99599)

[data-vahve-class: PersonMame
[type: STRING)
[sizes 30}

] [form: [FA®-*E*]["a®-"2*] < 15)

(data-value-class: Salary
[type: REAL)
[rminvals 0.0)
[masvak 99995.00)

[precision: 8.2)
)

Figure 13 - Data Value Class definltions.

In addition to the displayable data values, represented
by setrings, Integers and real numbers, SIDUR also supports
a special internal data value ciass called & TOKEN. YValues
from this class are anigue, similar to Lisp GENSYMs
[Xero83) and their use will be made clear in the next
section.

4.5, Object Clapses .

Philozophers, loglcians and more recently computer
sclentists have recognized the problems which can result
from the Failure to distinpoish between an object and its
representation [Quine 40; Kent 78). Therefore, object
classes indicate the major components of an application and
are roughly equivalent to the speclfication of the domalns
underlylng a universe of discourse in logie. It is important
to nete that data velue classes are a purely syntactic
censtruct; they acquire meaning only when they serve as a
name or representaiive Tor objects.

Three descriptive slots are associsted with object
classes: representative, superclasy, and names. Figure 14
shows examples of object class definltlons.

[object-class: Employee
(representative: TOKEN)
(names: (PersonMame Employeeld])
: (definition: ISEmployee)

|object-class: Mannger
{mprﬂ!nhl.m: TOKENM)
(superclass: Employes)
{definition: IsManager)

)

(object-cluze: Project
[representative: TOHEN)
(rames: (ProjectMame WorkOrderMamber))
[superclass: WorkOrder)
[definition: IsProjsct)
|

Figure 14 - Object Class definitions.

Each object must have a representative which Is the
name of a data value class. Notlce that sithough each
object must have a representatlve drawn from some data
yelue clags, not all elements from a glven class will

601

necessarfly be representatives for some objfect.
Furthermore, the representatives of Important object
classes will generally be TOKENS rather than displayable
data, TOKEMS, also known as snrrogates (Hent 78), are
unigue non-public data values which meke j¢ possible to
separgte the representation of an object from any of its
properties including Its name.

The names slot provides a way for objects represented
by TOKENS to be externally referenced, for example by
users. It contalns the name of one or more assoclations
connecting the tokems with the objlect's publicly avallable
names. The definition stot specifies the valid members of
an object clags. It Is similar in intent to the Be-Relations
of {Borkin 79) and provides a means to enlorce a degree of
referential integrity (Date 81). The saperelams siot Induces
a type hlerarchy (Smith and Smith 77) where the
speclalized «¢lass ecan Imherit sueh propertles as
representatives and names from its superclass.

3.8. Defining Manipulation Operations

Four operations on situations are shown: ENQUIRE,
CHECK, ASSERT and REFLECT. ENQUIRE and ASSERT
are expanded applications of the *enquire and ®assert
interpreiations of sigma expressions. CHECK returns a
boolean value depending on whether a situation holds or
not. EEFLECT will update a situation as long as both lts
necessary and required slots hold.

ENQUIRE accepts a sigma expression as argument
and returns its extension. Flgure 15 shows the semantics
of ENQUIRE expressed in terms of the underlying *enquire
jnterprecation.

[1] Cheek that all constants Alling slots in the ex-
pression § are of the correct type, Le.: they
belong to the correct data value class.

[2] Apply *enquire interpretation to 8
Figure 15 - ENQUIRE (5].

CHECK is & closed (Gallaire and Minker 78) form of
ENQUIRE which returns a boolean value. CHECK returns
the EMPTY extension If ENQUIRE does, otherwise It
returns the FULL extenslon which acts as boolean “troe’.

REFLECT updates the extension of the sigma
expression In it argument. 1t s & weak application of the
*agsert Interpretation which only performs the updates I
both the necessary and required slots do not retdrn an
EMPTY extenslon. Figere 16 shows the semantics of
REFLECT In the same style used above.

[1] Check that all constants filling slots in the ex-
presglon S are of the correct type, lLe.: they
belong to the correct data value class.

[2] Perform CHECK on the expressions filling the
necepuary &nd reguired slots of 5; IF either re-
turne EMPTY, REFLECT [alls and must be
becked out.

[3] Apply *assert Imterpretation to 5, backing out
of the operation I *assert fafls at any step.

Figure 16 - REFLECT {S).

A stronger application of the *assert Interpretation,
ealled ASSERT, differs from REFLECT in that It performs

602

the CHECK only on the necessary slot. It is shown In
Flgure 17.

[1] Check that all constants flllng slots In the ex-
prestlon S are of the correct type, Le. they
belong to the correct data value class.

[2] Perform CHECK on the filler of the mecessary
slot of 8; If CHECK returns EMPTY, AS-
SERT fallz and must be backed out.

[8] Perform REFLECT on the filler of the re-
quired slot of 5.

[4] Perform REFLECT on 8.
Figure 17 - ASSERT (S).

In additlon to the four operations on sigma
expressjons defined sbove, several operstions can also be
defined which take actlons as arguments. The elmplest one
is PERFORM which models the oceurrence of an action, as
shown in Figure 18.

[1] Check that all constants filling slots Tn A are
of the correct type, L.e.: they belong to the
correct data value elass.

2] Perform CHECK on the flller of the prere-
quisite slot of A. IF CHECK returns EMPTY,
the actlom can not be performed.

[3] If CHECK succeeds, perform REFLECT on
the filler of the results slot of A.

Figure 18 - PERFORM (A).

More operations ean be bullt In this fashlon; for
example, PERMIT? determines whether an action can be
performed by CHECKIng Its prerequisites slot, while
PERMIT! ensures that an action cam be performed by
ASSERTIng the expresslon filling 1ts prerequisites slot (this
ensures that the database remains consistent). The
definltions For these operations are glven in appendtx C.

As a complete example, we show how how an event,
the transfer of employee "John Brown" from ome project,
"System Deslgn" to another, "Formal Verificetlon® is
modeled by the following request:

PERFORM [(TransferEmployes
{sgent *Jobn Brown®)
[souree "System Deskgn')
{destination "Formal Verification®])]

The first step I to ensure that the constants filling each of
the arguments belongs to data value classes representing
the expected object elass. This 1s equivalent to ensuring
that the person belng transferred (John Brown in this case)
Is a valid employee and that the two projects are similarly
valid, thus providing an Initial level of referential integrity.
This Is performed by consultng the extenslon for the
situation flling the definition slot of the object class
PErson.

The next step, emsuring that the prerequisites are
met, Invokes a CHECK operator with the arguments
substitoted:

CHEGK [{CarSupport
[agent *John Brown®)
{ebject "Formal Verifieation®))]

CHECK retarns the EMPTY extenslon If the project can
not support an additional employee, otherwise [t returns
the FULL extension, representing boolean ‘true’. If
CHECK returns EMPTY and the transaction ails, the user
can Issue

PERMIT [[TransferEmployes
[agent *John Brown®)
[somree "System Design®)
{destination *Formal Verifieation®))|

to generate

REFLECT {{CanSupport
{agent *John Brown")
{vhjeet *Formal Verificatlon™])]

and force a state of affairs where the action can be carried
out. Finally, ensbling the transaetlon to be carrled out
conslsts of REFLECTIng the sigma expresslon In the
reselts slot of the TransferEmployee, with the appropriate
vilues instantiated:

REFLECT
[(AND
{NOT [EmployeeAssignment
{sgent "John Brown") (ohject *System Design®]))
[EmployesAssignment
(agent *John Brown") {objeet *Formal Verification®)})

1.0 RELATED EFFORTS

The integration of diferent representation and
manipulation paradigms §s net & movel approach. Other
Independent work can be roughly classified Into three major
lines of development. The first of these attempts to
integrate the Inferencing capabilities of loglc based
formalisms with the descriptive powers of other knowiedge
representation schemes. (Brachman 83) is representative
of this work. The second group sttempts to enhance the
expressive power of data definition lamguages with first
order logle In order to support deductive guestion
answering, as exemplified In (Konolige B1). There Iz a third
effort that bridges these two thrusts. The KM-1
architecture (Kellogg 82) uses a logle-based inference
engine to support deductive question answering from
relatfonal databases, but alse enhances Its knowledge
structuring capabliities by providing & semantic network-
like concept graph (Kellogg 81).

The KRYFTON system (Brachman 83; Brachman 82)
differentlates between terminological and assertional
competence. Terminologleal competence refers to the
ability to represent the speclalized vocabulary used In
application domalns and to maintaln the relationships
between the various terms. This ability is best embodled
by such knowledge representation mechanisms as KL-ONE
{Brachman 79). Assertional competence, on the other hand,
Implies the ability to form a theory of the world knowledge
required to solve problems in a particular domain and to
reason with this theory. This type of competence is best
achleved in a first order logle framework, becanse the
inferences required to suppors It are much more complex.
Brachman suggests that the two Torms of competence can
be Integrated In & system where a KL-ONE style classifier
{Lipkis 82) provides the terminological component, while a
general theorem prover provides the assertional capabllity.
Related works In this area Include (Rich 82) and [Moore
B2

{Konolige B1) presents a method of formally
representing the information comtents of a relatlonal
database with the primary alm of supporting deductive
question answering. This 1s done by taking the vlew that
the database forms & model Tor & first order language based
on the tople relational caleulus (Ulimen 20). The
application domaln itsell 1s 2 model of another firet order
language, called a metalanguage, based on the domain
relational caleulos. User queries concern the application
domaln itsell, not merely the database, so they are posed in
the metalanguage. The two langusges are Integrated by
mappings which generate database requests when answering
a guery requires extensional information. Other related
works are foand in (Gallalre and Minker 78} and (Gallalre
&t al. B}

The KM-1 architecture (Kellogg 82; HKellogg B4)
gupports the definition of virtual relations derlved from
explicitly stored data. It comslsts of an inference machine
and a searching engine, each malntaining [tz own separate
database. An Intensionel Data Base contalns first order
logic statements (called premises), semantic advice roles
and a type hierarchy used by the deductive component
known as DADM {Kellogg 81) for developing plans Tlor
searching and computing over the extensional store. The
Extensionzl Data Base can be any database slthough most
KM-1 development has focused on relational databases and
the carrent KM-1 configuratiom connects the deductive
englne to a Britton-Les IDM-600 relational database
machine (Brition-Lee 83). The Inferentlal component of
the KM-1 architecture includes a concept graph to aid
database administrators In maintaiping potentlally large
numbers of virtmal reletions (derived predicates) Its
mzintenance 15 a cooperative task between the database
administrator and the system iself.

Although shese works bear some relationship to the
SIDUR effort, they do not provide a eomplete database
Interfece. ‘The KM-1 application must resort to
mechanisms provided by the underlying database
management system {currently the IDM-G00) in order to
perform updstes. The KRYPTON system alds the
malntenance of complex descriptions for the development
of expert systems ({for example 2 computer Eystems
copfigurator |[Freeman et al. B3)), however It does nob
address the problem of managing large datebases. Finally,
while HKonolige's work addresses itsues Important to
deductive question answering, other elements of & datebase
interface, namely updates, are net treated.

These works assume a statle application domaln
where meaningful world events do not reflect changes in
database states. In contrast, one of the basle constrocts of
the SIDUR formalism provides a structure sround which
database trapsactlons may be bulls. The emphasis In
SIDUR Is to provide useful inferemce capabillties in all
phases of Knowledge Management, including updates.

6.0 CONCLUSIONS

SIDUR, & structuring formalism lor Knowledge Bases,
permits the definition of virtual infermation, specifcation
of transactions and the enforcement of eonstraints. It does
s by Integrating manipulation and representation
components of the model via the declarative formalism of
the sigma expression.

Because SIDUR does not resort o arbitrary

procedural Inclusion to define 1ts manipulation operators, it
becomes = mmore tractable vehicle around which

603

applications Tor Knowledge Information Processing
Systems cap be buflt and a valuable complement to Al
Jangnages such as Prolog.

It should be stressed thet SIDUR does not enhance the
representationsl power of first order logic. Rather, It adds
diselpline to the use of &n underiying inference mechanism
for database intensive applications. This discipline is
applied to structuring as well as maintaining the
information. '

The six SIDUR constructs suggest a disclpline around
which & set of rules of "good" scheme design can be
developed. Two such rules suggest that the representatlves
of Important ohject classes should be TOKENs snd that
each situation should be used to represent only one
meaningful association among lts participants. Schemas
designed In sccordance to these rules seem to be amenable
to evolutionary growth in accordance to the demands of the
application in & manner similar to normalized relations
[Kent 83). The design of the Manager's Assistant
knowledge base was made more tractable by Tollowing these
guidelines. It should be noted that these design rules can
serve s the basis Por antomated design tools once they
evalve to & matare state.

In edditfon to & stracturlng disclpline, SIDUR also
provides a manipulation discipline. This disclpline I
embodied by the *assert and *deny Interpretations of sigma
expression when used in conjunction with the required and
necessary slats. These control pragmeatics permit the
specification of tramsaction definitions while ensuring the
conslstency of the informatlon. An implementation of
database transactions In Prolog (Kowalskl 74), for instance
would reqaire the Incorporation of a teleological semantics
as well s control pragmatics similar to SIDUR's Thils would
permit the specification of conditions under which clauses
are evalosted when performing assert’s and deny's to the
database of pground clawses. These notlons are
approxlmated in the metalevel control suggested by (Bowen
£2; Gallalre and Lasserre 82)

APPENDIX 1

The rules for determinlng the actions to be performed
under the "assert and * deny Interpretations are given
below.

*deny

+« If 5 I5 an atomle sigme expression and conflorms to
the open world assumptlon, them apply *assert
Interpretation to negative extension of 5.

. I' 8 Is an atomic slgma expression and conforms to
the closed world assumption, then remove applicable
Instances from {ts extension.

- If § is an open sigma expression and its connectlive 1s
AND - Invoke CHOICE to decfde which conjunct will
be applied the *deny interpretation.

» If S Is an open slgma expresslon and its connectlve is
OR - recursively apply the *demy Interpretation to

each of the comstituent dizjuncts.
« If & 15 an open sigma expression and Its connective is

MNOT - apply the *assert interpretation to 3.

« IrSlsanopen sigma expression and 165 connective s
EMPTY - apply the *assert Interpretation to 8,

« ITS is & closed sigma expression, apply *deny to its
underfying open sigma expression.

604

*sEaert

* I 3 Is an asomic sigma expression and [t Is Fully
instantiated, update the extension of 5 to reflect the
binding tuple,

. I 5 is atomic but only partially Instantiated, If the
representative of the uninstatiated participant(s)
ls[are} TOKEN(S), then fill the missing participant(s)
with gemerated (GENSYM) token(s). IT the milssing
participant{s) can not tokens, but elements of other
datk value classes, the *assert falls as those cannot he
generated automatically.

+ Il 5 is an open slgma expression and the connective ls
AND - Then, ensure that the common varfables are
filled wlth same values, and mssert each of the
constituent conjuncts.

. Ir 5 15 an open sigma expression and the connective Is
NOT - And the underiying sigma expression conforms
to the OPEN WORLD assumption, Then apply *assert
to the negative extension and *deny te the posltlve
extension.

+ IS 15 an open sigma expression and the connective iz
MOT - And the underlying sigma expression conforms
to the CLOSED WORLD assumption, Then remove
applicable Instances from its extension.

. IF 5 15 an open sigma expression and the connective is
EMPTY - Apply the seme Interpretation as for
negation.

* If S is an open sigma expresslon and the connective 15
OR - Invoke CHOICE to declde which disjunct
recelves the *assert Interpretation.

¢ IF 5 is a CLOSED sigma expression apply *assert to
its underlying open sigma exprassion.

REFERENCES

Abrial, J. H.; Doats Semantics; Dets Hase M anogement; J, W,
Klimbie and K. L. Kolemann (eds.); Morth Holland Pub. Co.
Amsterdam, 1974,

Barr, A., and Feigenbaum, EA.; The Hondéosk of Ardifieial
Inielligence.; HBourisTech Preas, Stanford, California; 1881,

Britton Lee Ine; DM Seftware Reference Manual; Version 1.4;
Jamuary, 1983,

Borkin, 5.A.; Equisalence Froperties of Semantic Date Models for
Database Syslems; Laboratory for Computer Science,
Mpssachussets Institute of Technolopy, Technical Report 208
Jan. 1978,

Bowen, LA, and Kowslski, B.A.; Amalgamating Language and
Metalsnguage in Logic Programming; Logic Programming; Clark,
K.L. and Tamlund, 8.-A. [eds.); Academic Press; 1982,

Brachman, F.J. and Levesque, H.I: Tractability of Submmption
In Frame-Based Description Langusges; Proc. AAALB4; pp 34 -
41; 1984,

Brachman, HJ., Fikes, R.E., and Levesque, H.J; KRYPTON:
Integrating Terminology and Assertlon; Proc. AAAJ—#8 pp &1 -
5; 1684,

Brackman, A.l. and Lovesque, H.L; Competence in Knowledpe
Representation; Proc, AAAT—82; pp 189 - 197; 1982,

Brachman, R An Introduction to KL-ONE Resesrch in Natural
Longuags Understonding, Annval Reperl; Report No. 4274, Bolt
Beranek and Mewman Ine; Aug 1979,

Chamberlin, TLD, Astrshan, M.M., Eswaran, K.F., Griffiths, PP,
Lagie, R.A., Mehl, J.W., Reisner, P. snd Wade, B.W.; SEQUEL 2
A unified Approseh to Data Defnition, Manipulation and
Controly JBM Journal of Research ond Development; Vel 20, No,
6, pp 560 - 5T5; Nov. 1976,

Clocksin W.F. and Mellish C.5 Progromming in Prolog;
Springer-Verlag, New York; 1981,

Date, C.l Referentinl Integrity; Proc. ¥LOB; 1981,

Date, C.d; An fniroduction to Dolabase Spetems, third edition;
Addison Wesley; 1981, .

Epstein, R.; Technigues for Processing of Aggregates in Relational
Datobpse Sysems; Memorsmdum No. UCH/ERL Mvo/s;
University of Califarnia, Berkeley; Feb 1979,

Fiul'ﬂul.‘t-. C. J-; The Case for Cua; Universals in Lin.-p-ul']h'{
Theory, Bach and Harms eds.; Holt, Reinhart and Winston Ine.;
Chicago, IL; 1068,

Freeman, M.W., Hirszhman, L., MeKsy, D.P., Miller, F.L. and
Sidbn, D.Py Logic Programming Applied to Knowledge-Based
Eystems, Modelling and Simulstion; Aréificial Intelligence
Conference, Cakland University, Rockester, Mi. Apr, 1983,

Freiling, M.1., Carter, A., Ecklund, E., Hakanson, M,, Kalvin, P.,
Kogan, D., Roth, 5, Rood, A; The SIDUR 2.0 Referemee
Manual; Compuler Sclence Depariment, Oregon State University,
Corvallis; 1983,

Fuchi, K Aiming for Knowledge Information Processing
Systems; Internofional Conference of Sth. Generation Computer
Fyatems; Moto-Oka, T., ed.; North-Holland Pub. Co., Japan; 1982,

Furukawa, K., Nakajima, R, Shigeki, G., Aoyams, A; Problem
Solving and Inference Mechanisms; fnfernational Conference of
Sth. Generation Cemputer Spsfems; Moto-Oks, T., ed. MNorth-
Haolinnd Pub. Co., Japan; 1987,

Gallaire, H. and Lasserre, ©. Metalevel Contral Tor Logie
Programs; Logic Programming, Clark, K.L. and Tarnlund, 5.-A.
{eds.); Academic Pross; 1982,

H. Gallatre, J. Minker and J. M. Micolas {eds.); Advances in Dato
Buost Theory, Vol. 1; Plenum Fres, New Yorky 1981,

Gallaire, H. and Minker, 1. (eds.); Logic and Dote Bores; Plenum
Fresy, New York; 1078

Hellogg, ©.; The Transition from Data Management to
Knowledge Management; Proe. [EEE Conference on Dala
Engineering;: Los Angeles; 1984,

Kellogg, C.; Enowledge Monagemenis A Practical Amulgam of
Knowledge and Data Base Technology; Proe. AAAT—58; 1983,

Kellogz, C. H. and Travis, L; Reasoning with Data in a
Deductively Augmented Data Management System; Advances in
Date Base Theory, ¥ol, 17 H. Gallaire, J. Minker and J. M, Nicolss
[eds.); Plenum Press, New York; 1981,

Kellogg, C.H. and Kishr, P.; Dedustive Methods for Large
Databases; Prec, 5th. IJCAI; Cambridge, Ma.; Aug 1977,

Kent, W., A Simple Guide to Five Normol Forms in Relationsl
Database Theary, Communicalions of the ACM, Vel 18, No. 2,
Feb 1983,

Kent, W.; Data and Reality; Morth-Holland Pub. Co., Amsterdam:
1978,

Kogan, D., The Mansger's Assistant, an Application of
Knowledge Management; Prec. [EEE Cenferemce on Dats
Engineering; Los Angeles; 1084,

Kogan, D., Sidur - A Formalism for Structuring Knowledge Bases;
M.5. Thesis, Dep. Computer Seience, Oregpon State University,
Carvallis, 'Dmgm:: 1884,

Honolige, HK.; A Metalangunge Repressntation of Relational
Databases for Deductive Question Anewering; Froe. Tth. [J CAL;
Pp 488 - 503; 1981,

Kowalski, LA Predieate Logic s a Programming Langusge;
Proe. [FIP-T4 Congreas; North-Holland, 1674,

Liphkis, To; A KL-ONE Classifier; Proz. 1581 KL—0ONE Workshap;
Sehmelze, J.G. snd Brachman, RJ. (eds.); BBN Report No. 4843
1982,

Moore, R.C., The Role of Logic in Knowledge Hepresentation
and Commensense Ressoning, in Proe. AAAT—8E, pp 428 - 433,
1582,

Mylopoulas, J., and Weng, H. K. T.; Seme features of the TAXIS
dats model; Proc. Sizth Internationsl Conference on Very Large
Drate Boses; Montresl, pp 389 - 410; 1960,

Ohsugs, 5., Knowledge Based Systems as s New Interactive
Computer System of the New Generatlon, in Japss Anniwal
Rewiew in Electronics, Computers ond Telecommunicstdons:
Competer Seience ond Technelegies, Kitagaws, T. (ed.), Morth-
Halland Puab. Co., Japan; 1982,

Quine, W.¥. Mathematical Legie; Harvard University Press; 1940,
revised 1981,

Reiter, R.; On Closed World Dats Bases; Logic and Data Bases;
Gallaire, H. and Minker, J. (eds.); Plenum Press, New York; 1978

Rich, C.j Kmowledge Representation and Predieate Calenlus: How
to Have Your Cake snd Eat It Too; Proe. AAAN—2£; pp 193 - 196
1982,

Roth, 53 Implementing o Sementie Dats Model; Masters Thesks,
Computer Science Department, Cregon State University; 1984,
Roussopoulos, N. CSDL: A Copceptual Schema Definition
Langusge for the Design of Data Base Applications; IEEE
Tremssclions on Software Engineering;, Yol 8E-5 MNe. 5
September 1970,

Sergot, M. Prospects for Representing the Law; Logic
Programming; Clark, K.L. and Tirnlund, 5.-A. {eds.); Academic
Press; 1982,

Smith, JM, and Smith, D.CF.; Database Abstractions:
Agpgrogation and Generalization; &CM Tronsactions on Datsbase
Syatems; Vol 2, Mo 2, pp 105 = 133; Jun 1977,

Stomcbraker, M. and Heller, K.; Embedding Expert Knowledge
and Hypothetical Duta Bases into & Data Hase Eystem; Prec.
SIGM0D=80; pp 58 - 64; 1980,

Guws, M., Furokaws, K., Makinouehi, A., Mizoguchi, T.
Yamasaki, H., HKnowledge Base Mechaniems; International
Conference of Sth. Generation Computer Systems; Mota-Oka, T.,
ed.; Morth-Holland Pub. Co., Japan; 1883,

Uliman, J.J0; Prineiples of Dotobare Systems; Computer Stience
Press; 1980,

Wiederhold, Gy Knowlpdge and Database Mapagement; IEEE
Seoftware; Vol 1, No. 1; Jan 1984,

Kerox Corporation; Ieterlisp Reference Manusl; October, 1983.

Youssefl, K., Ubell, M., Riss, D., Hawthomn, P., Epstein, B,
Berman, H. and Allman, E; INGRES Reference Manual —
Version §; Memorandum No. ERL-MSTH; Engineering Reacarch
Laboratory, College of Engineering, University of California,

Berkeley; 14-Apr-1077 {revised).

6035

