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Abstract

A hnowledge based system for plant
diagnosis is proposed in which both event-
oricnted and function-eriented knowledge are
used. For the proposed system to be
of practical wuse, these two types of
knowledge are representcd by mutually nested
four frames, i.e. the component, causality,
criteriality, and simulator frames, and PED=
ductien rules. The system provides Fast
inference capability for use as bokh a pro-
duction system and a formal veasoning sys-
Cem, with wunceértainty of knowledge taken
into account in the former, Event-oriented
knowledge is used in both diagnosis and gui-
dance and function-oriented knowledge, in
diagnosis only. The inference capability
required is forward chaining in  the former
and resolution in the latter. The causality
frame guides in the wuse of event-oriented
knowledge, whereas the criteriality frame
dees so for function-oriented knowledge.
Feedback nature of the plant reguires the
best first search algoriths that uses his-
bories in the resolution process. The
inference program 13 written in Lisp and
the plant simulator and the process IJ0 con-
trol programs in Fortran. Fast data transfer
between these two languages is realized hy
enhancing the memory management capability
of Lisp to comtrol the numerical data in the
global memory. Simulation applications to a
EWR plant demonstrated its diagnostic capa—
bility.

1 Introduction

Complex power plants should be eguipped
with aids to support safe operation and
improve availability. In anomaleus situs-
tiens, the plant operators must observe and
interpret many signals displayed on control
panels and make appropriate decisisns as to
what is% wrong and how to correct it,

Some model is required to perform diag-
nesis. Generally, this model describes ano-
maly propagation and can be regarded as
knowledge about cause and consequence rela-
tionships of anomaly situations {event-
oriented knowledge} as is seen in computer
hardware diagnoses [Bennett and Hollander
19813, C[Shubin and Ulrich 19821, C[HMcDermott
and Brooks 19823. The possibility has been
suggested of making diagnoses of nuclear
power plants by collecting many pieces of
knowledge  about causality relationships

CHells and Underwood 15821, CYoshida et al.
1983]1. The reasoning process, however, is
one of searching the state space of classif-
ications. In this regards, the approach
regquires an explicit expression of causal-
ity: cause and result relationship.

A second new approach that has been
put forward is to use knowledge about s¥cstem
descriptions, i.e. intended structure and
expected behavior {function- oriéented
knowledge} EGenesereth 19821, CDavis .ot ail,
1982].

This approach requires no information about
how a gystem fails., Use of resolution in
predicate caleculus logie has shown the pos-
sibility of gencrating knowledge directly
useful for diagnosis of a nuclear power
plant without requiring causality relaticn-
ship [¥amada and Motoda 19833 as was done in
CGenesereth 19821, Although this approach
simplified the task of building diagnostic
systems, dinefficiency lies in its implemen-
tation of knowledge representation and a
general inference procedura.

These two approaches are characterized
in that the forméer wuses knowledge of
anomalows situations, wheoreas the latter
uses lknowledge of normal situations. The
former is more direct and hence is BOEe
efficient, but it requires all anomalous
situations be covered for completeness, The
latter is not as efficient as the former
because it is indirect. However,as it is
much easicr to describe how the sS¥atém
should work if functioning normally, the
latter is more powerful,

.This paper introduces an attempt to
build an expert system that can use the
knowledge of hoth types fer diagnosis of a
nuclear power plant. For the proposed systen
to be appiicable for on-line usc, kneowledge
is represented in a frame structure inte
which fast infercnce capability is built.

Section 2 describes a general diagnog-
tic procedurc. Section 3 explains knowledge
representation schemes and section 4 infer—
Bnce capability. Seetion 5 summarizes
results in applications to a boiling water
reactor (BWR).



2 Diagnostic Froceduro

Plant diagnesis is regarded as the cou-
pled procedures of problem diagnosis and
guidance in corrective acticns. The problem
in then to identify the faulty componentis}
from the given symptom(s) indicating an ano-
waly and to make necessary recommendations
for operator actions based on the diagnosis
results.

2.1 Identification of Faulty Componentis}

The diagnogis starts when a symptom
does not mateh that expected. The gencral
procedure of diagnosis <consists of three
steps: suspect pick up, suspect discrimina-
tipn and test gencration. The last step is
necessary only when the second onc fails to
identify the cause. First an attempt is
made to use event-oriented knowledge. If
the cause is identified, the system turns to
the guidance phase. Otherwise, it looks for
function-oriented  knowledge to  further
discriminate between the suspects.

Event-oriented knowledge is given as
production rules. These are divided into two
categories depending cn the form of thelr
conditional part: {1} those that have only a
logical expression of symphtomsa (observed
daca) and (2) those that have at least one
intormediate hypothesis (uncobserved datal.
The rulcs in the first categories are desig-
nated chack rules. These are grouped into
different sets each pertinent to some symp-
tom or component.

One of the check rules in some sebt is
fired first. There i% & special set whose
rules have to be referred to regardless of
the firing condition. Forward chaining is
started from all of the check rules in the
fired amd the spoccial sekts. Rules in the
second category are used im  the succeeding
chainings. Simulators are executed when
necessary during the course of chaining.

Function-criented knowledge consists of
structure, behavior and statua of the plant.
Since this knowledge is not directly useful
for diagnosis, deduction by formal reasoning
is necessary to generate knowledge applica-
ble ko diagnosis.

Resolution is wused for each of the
three steps in the diagnosis. Starting reso=
lution with the component wherc an anomaly
is first detected, a clause consisting of a
set of components, a sek of sensors and
their functicnal relationships with vari-
ables remaining unsubstituted is obtained.
It is not necessary to go back to a state in
which all the components were normal because
the input and output relationships of a nor-
mal component is consistent regardless of
the value of its inputis)., It is possibie to
use the observed data at a state whose
effects propagate through all the components
at least once before being detected by some
gensor. Execution of the simulator using
these observed data shows some discrepancy
between the observed and expected value of
the symptom. This resolves dinto a sat of
suspect candidates.

Hext, resolution is used in a similar
manner to pick up a minimum set of observ-
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able data sufficient to check +the opera-
tional status of a specified component in
the suspects. Again by simulation the
observed &and expected walues can be com-
pared. If there is some discrepancy, the
components in  the obtained clause are the
discriminated suspects. The order of com-
ponents from which to start resolution is
guided by some heuristic knowledge such as
redundancy, a prieri faillure probability,
ete. because this provides information about
how important a component is in the systom
or about how likely a component is to fail.

If there is more than one suspect left
in the discriminated seti(s), an attempt is
made to gencrate tests for further discrimi-
nation under the single fault assumption in
each sot. Changing the selector switch of
redundant components or opendclose mandipula-
tion of some wvalves are such tests. At this
point toleological knowledge such as switch-
able, achievable etc. is used, in conjunc-
tion with the status information such as
redundancy, or-state ete., to select the
component(s) from which to start resolution
in the set. For each of the sclected com—
ponent, resolution results in a clause that
contains a set of components, at  least one
of which 4is different from those in the
discriminated suspects obtained in the pre-
vious step. The generated tests are then
evaluated to see if they are successful or
noc.

2.2 Guidance for Corrective Acotions

Once the faulty componentis) has been
identified, the guidance for corrective
actions is straightforward. Rules for gui-
dance are also grouped inte sets similar to
the check rules in the diagnostic phase.

At each time step of simulation, rules
in the special set are searched to categor-
ize the plant behavior. This activates the
relevant set to focus on the rules to
select. The rules for guidance can be dis-
tinguished from those for diagnosis by con-
text change. If there are uncertainties in
the ddentificd causes, corrective actions
are suggested for each possible cause.

3 Knowledge Representation

The pnature of plant diagnoses has the
follewing preroeguisites:

1) Mot only static data (e.g. operational
status of ecach component), but timo
varying process data should be handled
appropriately.

2) Inference should be fast cnough for theo
overall diagnosis to be of practical
use. Ao is often the case, rcal Lime
inference is needed.

3} A numerical simulation pregram, coded by
Fortran or some other language,
should be utilized in the inference
process.

In order co meokt these needs ,
function-oriented knowledge {functional
hierarchy, connectivity and behavior) is
represented  in frame structures correspond-
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ing to the real plant schematics. Event-
priented knowledge is embedded around Ehese
frames. Along this line, the knowledge Dbasc
is classified inte the following four
frames, the component, causality, criterial-
ity, and simulator frames, and production
rules.

- In the following explanation, examples
are taken from a BHR nuclear power plant for
which feasibility of this approach has been
studied. Figure 1 shows schesatically the
main components of a EBHE. The lknowledge
dealing with the high pressurc condensate
pump (HPCP} is given in Fig. 2 by a causal-
ity description, and the knowledge dealing
with the controller (ATEC, ¢f. Fig. B) in
Fig. 3 by a function description. In these
frames, each symbol and list linked with a
dotted line from left to right denote frame
name, slot name, facet name, and value pairs
or their modifications.
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(1) Component f[rame

This frame describes component proper=
ties within each functionally hierarchical
level. All the component frames hawve at
least four slot names - i.e.
specialization-of, status, inport and out-
pork to specify hicrarchical structure,
sperational status, and inport and oubtport
attributes. Static data are stored directly
az facet values, and time varying numerical
dnta obtained from both observabtion and
simulaticon arec stored in vectors with ereor
bounds, the pointers to which are stored as
facet values., Pointers to criteriality and
simulator frames are also stored as values,
while pointers to causality frames are
stored as slot andfor facet values. In order
to control the inference procedure, teleo-
logical knowlodge is implemented by using a
teleology facet.

(2) Causality frame

This frame structure is introduced to
realize fast inferonce capability as a pro-
duction system. Names of the related causal-
ity rules (event-oricnted knowledge) are
stored as the wvalues of 1f and then slots
for e=ach possible status of the corrospond-
ing component or port (e.g. anom, run , trip
in Fig. 2, $ for unknown state).

Ruies in the if slot have at least one
term for this component or port as their
conditional part. Rules din the then slot
eonclude something about this component of
port. The conn slot relates the symbols to
numerical values (e.g. process data).

{3} Criteriality frame

This frame structure is introduced €o
realize general infercnce capability [formal
reasoning) upon frame structured knowledge.
It gpecifies inter- relationships among pro-
perties of ecach component frame. These are
mainly concerned with inport and outport
properties, deseribing two types of behavior
rules: forwvard and backward rules in wnich
the former relates inputi{s) to output and
the latter output to inputis). Here, cri-
teriality means that the suceess or failure
of satisfying this relationship directly
determines the operaticnal status of the
corresponding componcnt.

Each inter-relationship is stored over
the two slots: the po and ne slots {cf. Fig.
3), each of which econtains posiktive and
negative terms respectively when expressed
in a conjunctive normal form. It further
stores a pointer to the simulator frame if
simulation is inwelved in that relationship.
If & time difference exists between proper-
ties, it is expressed by using a variable St
assuming a constant time step in  each
hicrarchical lewel (e.g. $t. (= &t 1} in
Fig. 3).

{4) Simulator frame

It describes the name of the function
used for simulatien. Inputs to this function
and its output are specified by referring to
cthe corresponding criteriality frame.
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{5 Production rules

There are two types of rules, one for
c¥pressing the causality and the other for
expressing the guidance, both beingy event-
oriented knowledge. Each rule is assigned a
certainty factor. There are soveral prede-
fined predicates. These include and, or,
crue, walue, last, before, cont, etc. For
example, (true A B} means that A is true in
situation B; (value A B) means Gthat the
value of A is B; and {(before A B) means that
event A occurs before event B.

The rule for causality shown in Fig. 2
means that if the state HPCP-run and LPCP-
trip continues for 3 seconds, it is definite
that the HPCF {(more preciscly the value of
the putport 1 of the HPCP) is anomalous.
Likewise, the rule for guidance in Fig. 4
means that if the water level of the CST is
below 4fts limit and the source of the RCIC
is the CST, then its source must be switched
to the suppression chamber (SC).

BULE 140
{ir {and Eust L13]
true [value (outport 1 CST) Sv) Se)
= v Linit)
trug [value [inport 1 RCIC) CST) St))
- fla?g [value (import 1 ACIC) SC) St))

Fig. 4 Example of rule used for quidance of corrective
actions

To reduce the burden of proparing the
knowledge in frame structures, function-
oriented knowledge is given by predicate
calculus. Examples corresponding to Fig. 3
ara shown in Fig. 5. Event-oriented
knowledge is also giwven in & similar manner.
These two kinds of knowledge are automati-
cally converted to the above frame ropresen-
tation.

The inference program is written in
Lisp and the simulators and the process I/f0
control programs, in Fortran. The fast data
transfer among theoso programs is realized by
ephancing the memory management capabllity
of Lisp to contrel the data in the global
HEMOCY .
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[conn Euu:rm 1 FWFME){ [RPORT 1 ATEC))
[conn (QUTPORT 1 ATEC)[INPORT 1 AMS])

[value {itlbl.li FHEME] OK)
{value [status ATEC) 0K}
{value [reted ATEC} 1.0}

(PRESUME (status ATEC)}
(0SSERVAILE [OUTPORT 1 FWFME)]

Fig. 5 Keowledge expressed in predicate calcwlus
[user input]
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4 Inference Capability

Event-oriented knowledge is used in
both  diagnosis and guidance and the
Tunction—oriented knowledge in diagnosis
only. The former requires forward chaining
capabllity, and the latter, resolution capa-
bility. The infercnce capability of the sys-
tem, however, covers more Eo enhance the
generality.

4.1 Inference Capability as a Production
System

(1} Forward chaining

The main flow of this procedure is
first to get a causality frame attached to a
specified component or port. It then picks
up rules in the if slot that have the same
facet name as the value of the data (e.q.
run in Fig. 2} and the & facet name, and put
them in agenda list together with other
rules in the special set if any.

Interpreting the predicate of terms in
the condition part of these rules, it gets
the causality frames, corresponding to the
teems in  the concluding part of the satis-
fied rules and recursively ecalls itself
until there is no change in the certainty
factor of the conclusion.

{2) Backward chaining

The main flow of this procedure is
basically the reoverse of the above. It looks
for the rules in the then slot of the
causality frames for backward chaining.

4.2 Infercnce Capability as a Formal Reason-
ing System )

(1) Forward chaining

The main flow of this procedure is
first to get the criteriality frame attached
to the specified component property, second
Eo check all the component properties in the
ne slot and them to get the property speci-
fied in the po slet of that frame, the value
of which is then transforrcd to the other
properties through the connectivity rela-
tionshipg. Simulation programs are automati-
cally invoked and executed when all input
values are gathered. A control necessary for
thiz procedure is simply not to conclude the
property already inferred.

{2} Backward chaining

The main flow of this procedure is
basically the roverse of the above. It first
gobs the criteriality frame that concludes
the specified cemponent property in the po
slot and checks whether the component pro-
perties in the ne slot of that frame have
available data or not. These steps are
recursively executed through the connec-
tivity vrelationships wuntil all available
data that lead to those propertics have been
found .

(3} Resglution

The starting point of resglution is
either a compenent frame or a port value.

In the fermer case, it picks up one of the
criteriality frames attached to the com-
ponent and follows the same procedure as the
latter.

COrdinary, there exist many feedback
loops in the system description of an actual
plant and besides, inter-component feedback
loops are formed when dynamic behaviors of
each component arce discretized. Therefore,
it is definitely necessary to implement scome
kind of a best first scarch mechanism in
order to achieve an efficient reosoclution
procedure.,

The main flow of the resolution pro-
cedure is controlled by the histeries of
resoluktion of each term. The numbecr of
resolvent terms does not decrease when con-
nectivity and criteriality are used. Which
to use next depends on how the current state
has been established. One of the control
rules for selection is shown below. :

If the torm to be resolved is
a negative one,
it is outport property. and
it was resolved by using
criteriality,

then select the criteriality to find
a resplver.

Six other similar rules arc implemented
for efficient control. If the resolution
procedure terminates normally, the result is
a clause® consisting of terms cach of which
has a specified teleclogical knowledge in
the corresponding teleology facet.

The purpose of this procedure is to
ganerate knowledge useful for diagnosis. In
plant diagnosis, assembling the necessary
conditions to caleulate the specified com-
ponent property. picking up a minimum group
of ocbservation data to determine the opera-
tional status of a specified component and
generating a test form, for cxample, arep
achieved by this method.

It is alse made possible to specify not
bEo execute the simulation program when it is
encountered, by which a kind of symbolic
simulation is performed.

This frame representation makes the
best use of structural information. it
helps reduing the uwnnecessary wunifications
which would hawve been reguired i1if the
knowledge was represented in predicate cal-
culus as in Fig. 5. Efficiency improvement
is worth noting. The seccond example in See.
5 ran by the order of two as fast as in the
case of the straightforward implementation
as in [Yamada and Motoda 1983). Execution
time increases almost linearly with the
number of components because of the connec-
Eivity nature of & real plant.

4.3 Capability of Uncertainty Treatment

The uncertainties considered in  this
systerm are the following two:

1} ervors introduced in observed process
data and simulation results; and



2} uncertainty inherent to &vent-
orisnted knowledge.

Interpretation of eguality of the
numcrical values allows some allowable
bounds. Interpretation of inequality
assumes & npormal distribution of the value

with its specified error egual to the stan-
dard dewviation and includes a statistical
evaluation. Uncocrtainty is propagated by
using the cvaluation rules for combination,
conjunction, disjunction, and implication on
the basis of either fuzzy logic or EMYCIN
logic by option.

5 Application Study

The foregoing approach was impleomented
i YAX11l with Franzlisp to explore ita diag-
nostic capability. Figure & shows tho organ-
ization of the experimental system. To best
evaluate the approach two examples are shown
here in which knowledge of each Eype Was
used scparately.

GLOBAL AREA

INFEREMCE PROGRAM

SIMULATOR

| KHOYLEDGE 3ASE
TERMINAL TERMIMAL ERAPHLL
- DISPLAY

Fig. & Ovganization of experimental system

The first example was a diagnosis based
on event=oriented knowledge. The assumed
causes were LPCP trouble (primary event) and
HPCP startup failure {(succeeding eventl. Theo

results are shown in Fig. 7. Both of the
assumed causes were identified correctly
together wikth the appropriate corrective
actions to guide the reactor to cold shut-
down.

The secoend example was a diagnosis
pased en functicn-oriented knewledge. The

assumed cause was the [ailure of water level
sensor (5-W-A) and fthe anomaly was first
detected by the flow sensor (S-TDFLOW-A} at
the TD/RFP output, by which time the anomaly
had already propagated through many com-
ponents. The results are shown in Fig. 8.
The diagnostic process could not focus on
the cause uniguely by using the observed
data alone. It , therefore, gencrated a test
indicating the switching of the selector
WLS2 from the 5-W-A te the S-K-B. The test
was successful and the cause was identified
correctly as the 5-W-A. In this case the
switching itself was the right corrective
action.

Although the models uged hero wore sim—
ple eones, the method worked as cxpected and
its capability for process computcr applica-
tions was domonstraced.

Core pressure (MPa)
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& Conclusion

A knowledge based system pertaining to
plant diagnosis was presented. The system
used both event-oriented and functicn-
oriented nowledge. These two types of
knowledge were represented by sutually
nested frames and production rules, This
implementation scheme significantly reduced
the search process.

Forward chaining mechanism was used to
provide both diagnosis and guidance based on
event-oriented knowledge, whereas the reso—
lution mechanism was used to make a diag-
nosis based on function-oriented knowledge.
The feedback nature of the plant required
the best search mechanism that uses hig-
tories in the resolution procedure.

Fimulation applications to a BWR plant
diagnosis has demonstrated the diagnostie
capability of this system.
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