FROCEEDINGS OF THE INTERNATIONAL CONFERENCE

ON FIFTH GENERATION COMPUTER SYSTEMS 1984,
edited by ICOT. © 100T, 1584

SPECIFYING HARDWARE IN TEMPORAL LOGIC &
EFFICIENT SYNTHESIS OF STATE-DIAGRAMS USING PROLOG

Masahiro FUJIITA, Hidehiko TANAKA, Tohru MOTO-OKA

Department of Electrical Engineering
The University of Tokyo
7-3-1 Hongo Bunkyo-ku, Tokyo 113 Japan

ABSTRACT

We have already proposed a mew verification
methed for hardware logic design with temporal
logic and Prolog (Fujita et al. 1983a, 1983b,
1984a), which supports hierarchical design con-
sistently. Specifications are written in temporal
logic (Manna and Pnueli 1981, Wolper 1981),
which is an extension to traditional logic and can
easily describe timing relations among variables.
And the verifier for pate and state-diagram
designs is easily implemented using Prolog.

In this paper, in addition to the techniques
for specifying hardwares in temporal logic, we
present the efficient method for automatic syn-
thesis of state-diagrams from temporal logic
specifications. We also show it has much practi-
cal power by applying it to real hardwares and
comparing to the manual design. State-diagrams
can be synthesized by expanding the
specifications to the conditions at present and the
ones in the next time using the temporal logic
decision procedure (Wolper and Manna 1981,
Clarke and Emerson 1981). As the required time
for the original procedure increases exponentially
with the number of temporal operators (Wolper
and Manna 1981, Clarke and Emerson 1981), we
show the efficient method for implementing the
procedure with the automatic backtracking and
the pattern matching mechanisms of Prolog.
The method regards state-diagrams already syn-
thesized as a knowledge and synthesizes the glo-
bal state-diagrams incrementally. The synthesis
time is drastically reduced (to the polynominal
order) and is kept small enough with fairy large
hardwares.

1 INTRODUCTION

In recent years, compuler systems become
larger and more complicated, and they have got
the mosi essential part in our lives. This means
hardware designs must have much reliability and

one can not make logic designs without computer
assistances, Some methods and tools supporting
hierarchical designs smoothly, that is, with which a
designer can formally specify hardwares and verify
designs, or designs are automatically synthesized
from specifications, are indispensable for reliable
designs.

We have already proposed a new verification
method for hardware logic design with temporal
logic and Prolog (Fujita et al. 1983a, 1983b,
1984a), which supports hierarchical design con-
sistently. Specifications are written in temporal
logic (Manna and Pnueli 1981, Wolper 1981),
which is an extension to traditional logic and can
easily describe timing relations among variables.
And the verifier for gate and state-diagram designs
is easily implemented using Prolog.

Hardware systems are divided into two parts:
function part, which actually executes logic and ar-
ithmetic functions, and synchronization part,
which controls timings for data transfer among
function units. Synchronization part requires a
designer to consider the whole design working in
parallel, may have many design errors, and should
be automatically verified. The method proposed in
(Fujita et al. 1983a, 1983b, 1984a) is concentrated
on the wverification of synchronization part.
Designs are verified by automatically examining all
the cases truly needed. Several methods for in-
creasing the efficiency of verification are also pro-
posed (Fujita et al. 1984a), and they keep the
verification time for complex and large systems
small enough.

In this paper, we first show the techniques for
specifying hardwares in temporal logic and second
present the efficient method for automatic syn-
thesis of state-diagrams from those temporal logic
specifications. We also show it has much practical
power by applying it to real hardwares and com-
paring to the manual design. State-diagrams can
be synthesized by expanding the specifications to
the conditions at present and the ones in the next

the conditions at present and the ones in the next
time using the temporal logic decision procedure
{Wolper and Manna 1981, Clarke and Emerson
1981). As the required time for the original pro-
cedure increases exponentially with the number of
temporal operators (Wolper and Manna 1981,
Clarke and Emerson 1981), we show the efficient
method for implementing the procedure using
Prolog. We specily hardwares in the form of logi-
cal AND of simple temporal logic expressions.
The method regards state-diagrams already syn-
thesized as a knowledge and synthesizes the global
slate-diagrams incrementally. The synthesis time
is drastically reduced (to the polynominal u:dfaﬂ
and is kept small enough with fairy large
hardwares.

Since the synthesis method translates any tem-
poral logic expressions to state-diagrams, it is also
possible to check whether or not hardware designs
in temporal logic really satisfies some other tem-
poral logic expressions. Moreover, together with
the wverification method for gates and state-
diagrams in {(Fujita et al. 1983a, 1983b, 1984a),
any designs in temporal logic, state-diagrams, and
pates can be wverified in the same way, and then
the hierarchical design is smoothly supported.

Section 2 informally introduces temporal [ogic
and explains how to describe hardware with it by
showing an example of real hardwares.” It also
presents the lechniques for behavior descriptions
in temporal logic. Section 3 shows the techniques
of how 1o describe state-diagrams in Prolog. Sec-
tion 4 presents the synthesis method based upon
the temporal logic decision procedure and its
efficient implementation in Prolog. Section 35
shows the synthesis example, and section 6
discusses the power of the synthesis method. The
last section has concluding remarks.

2 HARDWARE SPECIFICATION IN TEM-
PORAL LOGIC

2.1 Specification of Synchronization Parts in
Temporal Logic

This section briefly introduces temporal [ogic
and explains how to specify synchronization parts
of hardware with it. The delailed discussions
about temporal logic can be found in (Manna and
Prnueli 1981, Wolper 1981).

Temporal logic is an extension lo traditional
logic with four temporal operators: O (next), O
(always), ¥ (sometime), and U {until). The first
three are unary operators and the last is a binary
operator. Each has the following meanings.

OP: P is true in the next time (in sequential cir-

573

cuits, next clock),

OFP: P is true at present and all the future times,

%P: P is true at least on a time at prE:sent or in
the future,

P U Q: P is true all the times until the first time
where () is true.

Temporal logic can describe temporal se-
quences and therefore can express timing relations
among variables shown usually in timing diagrams.
'If the signal P is active, then the signal () is active
on the next time' is described as

gP—00Q). (1)

{—: IMPLY, A\: AND, V: OR, ~: NOT)
If the time when Q is active is not definite, O is
replaced by V.

aP—v Q) (2
(1) and (2) guarantee 'If P is active, then Q is ac-
tive’, but P may be active otherwise. Il it is
desired 'Q becomes active if and only if on the
next time when P is aclive’, the following expres-
sion should be added to (1),

O(~Q— ((0C~Q) U P)) (3)

The basic timing relationship among signals can be
described with (1) [or (2)] and (3).

'

>

During this interval

P—0Q

For example, the relationship shown in fig.l
(Fujita et al. 1984a): "During the period from the
time when the start signal S is active till the time
when the end signal E is active, il P is active, then
Q) is active on the next time’ is described as

O{S— ((P—0Q) UE)). @)

[(4} assumes that S and E are externally given as
a pulse like in fig.1. This is shown in temporal
logic as follows.

(S — {(0~8)) U E)),

(O~E) US,

O(E— ({(O~E) US))]

{expressions marked off by a comma mean logical
AND of those.)

As seen from (4), a complex specification re-
quires temporal operaiors nested many times.
However, if an interval [such that, 1 is active dur-
ing the period from the time when S is active till
the time when E is active and inactive during the
period from the time when E is active till the lime
when S is active, is introduced, the specification
(4} is described with the logical AND of the fol-
lowing simple expressions.

Fig.l A Timing Chart

574

O{~1— (=) Ush),

Qs =1I),

o= { UE)), (5)

o((AP) — Q)
The first four expressions guarantee that I is active
only in the period from the time when 3 is active
till the time when E is active. And the last expres-
gion means that all the time when [is active, if P
is active, Q is active on the next time.

As a rule, introducing an interval like I in (5),
complex specifications can be described with logi-
cal AND of simple expressions. Moreover, as
shown in 2.3, we can easily describe behavioral
(procedural) descriptions such as algorithms using
intervals (see 2.3). Therefore, not only declara-
tive but also procedural descriptions can be done
in temporal logic. Although an interval 1 shows
an internal state, which is not necessarily observ-
able from the oulside, it makes specifying a
module much easilier. Also, as there are many
simple expressions of the same form as seen in
(5), the synthesis time of complex specifications is
kept manageably small as described in the later
sections.

2.2 Specification Example of Synchronization
Part

This section shows the specification example of
‘the real hardware: the ‘sequencer controfler’ of
the Unify Processor (UP) of the parallel inference

machine PIE. PIE (Moto-oka et al. 1984) is a
highly parallel inference machine. UP (Yuhara et
al. 1984) is a processor executing unification by
hardware and its pilot machine is being construct-
ed. The pilot UP machine (Yuhara et al. 1984)
has the scale of 500 TTL ICs and some memaory
ICs and microprogrammed control. lts internal
structure is shown in fig.2. The goal registers and
definition registers are respectively connected to
the goal bus and definition bus, and the buses are
connected through the switch to the memory di-
vided into four banks. The goal registers and
definition registers access one of the four banks.
If they access the same bank, the goal registers get
the right of the access. However, some micro in-
struclions require successively accesses to memory
depending on the data in the memory (we call this
kind of micro instructions 'successive access in-
struction'). In that case, if the other registers try
io access 1o the same bank, it should be walted.
Also, in the case of execuling the 'successive ac-
cess instruction’, the micro program ssquencer
should be informed to continue the current micro
instruction in the later micro cycles. These are
controlled by the 'sequencer controller® in fig.2,
and we specify it.

First, we describe the meanings of the variables
appeared in the specifications.
fet: signal expressing whether the "successive ac-
instruction’ is executed or not,
wail: signal informing the sequencer to continue
the current micro instruction,

goal definition
registers registers
definition_bus
goal_bus
ackg
endg
ackd switch
endd
init
initd e
bank1
sequencer
controfler memaory
. bank2
fet + * wail
microprogram memory
sequencer bank3
memary

bank4

Fig.2 Internal Structure of UP

initg: signal expressing the first access of the goal’s
registers in the current ‘successive access in-
struction’,

endg: signal expressing whether the successive ac-
cess of the poal’s repisters is ended or not,

ackg: signal expressing whether the goal registers
really get the right of access to memory or
not,

initd: signal expressing the frst access of the
definition’s registers in the current ’succes-
sive access instruction’,

endd: signal expressing whether the successive ac-
cess of the definition’s registers is ended or
not,

ackd: signal expressing whether the definition re-
pisters really get the right of access to
memaory or not,

MNow we specify the "sequencer controller’. As
the logical AND of the temporal logic expressions
(1) and (3) above is used very often, the next ab-
breviations are defined.

IFF NEXT(a,b} =

O — OBACS (~b — ((O~b) Ua)) (6)
IFF PRESENT(a,b) =

cla— ba(~b— (~bUa)) (N

The ‘'sequencer controller’ accepts “ackg',
*ackd’, "endg’, 'endd’, and 'fet’ as inputs and con-
trols ‘initg’, ‘intd’, and 'wait’. The specifications
are described in temporal logic as follows.

{(5-1) The goal registers® access of the *successive
access instruction’ goes [rom the first access
(initg) to the second access (~initg), if and
only if on the next time when the *successive
access instruction” is being executed and the
goal registers really get the right of access
(ackg).

IFF_NEXT({initg"\fet\ackg), —initg)

(5-2) The same fact must be satisfied for the
definition registers.

[FF_NEXT ({initd\fet\ackd), ~initd)

{S-3)} The goal registers’ access of the “successive
access instruction’ goes to the first access (in-
ite) of the next ‘successive access instruc-
tion’, if and only if on the next time when
the registers cease to access to memory
{~fet), or the 'successive access instruction’
is being executed (fet) and both the goal and
definition registers end the accesses
(endgMendd) and the access is not the first
one (~—inilg).

lFl;‘_NE)CTE'[mfet\i'{fau“'nandgﬁandﬂh-initg]},
initg

(5-4) The same fact must be satisfied for the
definition registers.

lFF}_NE-'{T((—-fel,"'f[fetﬁendgﬁenddhminitd}},
initd

575

{8-5) The sequencer is begun to wait, if and only
if the first access of the "successive access in-
struction’ is being executed.

]FF_FRESENT[{ﬁnitg‘#iﬂitd}ﬁfﬂ), wait)

($-6) The sequencer ceases to wait on the same

conditions of (8-3) and (S-4).
lFF_PRESENT({*-I'eU’\
{fet\endgNenddA—~initg\~initd)), ~wait)

The switch in fig.2 can also be specified in the
same way. See (Fujita et al. 1984b) for the de-
tails.

2.3 Behavior Descriptions Using Intervals

Not only declarative but also procedural
descriptions must be necessary to smoothly
describe behaviers of hardwares. Procedural
descriptions have two aspecis: parallel and sequen-
tial. It is easy to describe parallelisms in temporal
logic. Parallelisms are described simply in the
form of logical AND of each action. For example,
‘the two actions: P—O0Q and R—OS are working
in parallel” is described as
(P—OQ)A(R—OS). (8)

However, it is tedious and not easy to describe
sequentialities. For example, when we describe
the fact such that *first execute P and then execute
(', that is, in PASCAL,

hegin
Py
Qo @
end
the following things must be specified.
First P is executed.
All the time when P is executed, Q) is not ex-
ecuted.
If P is ended, then Q is started to execute.
All the time when Q is execuled, P is not ex-
ecuted. (10)

If we use some signals expressing whether P
and Q is executed or not, the conditions above are
easily described. That is, it is very useful to intro-
duce intervals that are exactly active during the
period when actions such as P and Q are executed
like section 2.1. Let Ip and Ig be interval signals
respectively expressing whether P and Q are exe-
cuted or not, and let Ip.beg and Ig.beg be signals
expressing the beginning time of those intervals
and Ip.fin and lg.fin be signals expressing the end-
ing time of those intervals. Since Ip.beg, lp.fin
and Ip are the signals for the same interval, the
following conditions are assumed.

First lp.beg and Ip is active.

In the following some period Ip is active.

Last Ip.fin is active.

376

[These are described in temporal logic as follows.
a(Ip.beg—((IpNO~Ip.beg) U (Ip"\Olp.fin))]

Then, (10} is described as follows.
Q(lp—P), o(lg—Q)
Ip.beg,
C(Ip.fin—Ig.beg), (11)
O(~(IpAlg)).

MNote that Ip.beg, Ip.fin, lg.beg and Iq.fin have
almost the same meanings as in Interval Temporal
Logic by Moszkowski (Moszkowski 1983). How-
ever, we deseribe them only in Linear Time Tem-
poral Logic (Manna and Pnueli 1981, Wolper
1981) for ease mechanical handlings.

Interval signals are additional variables and in-
dicate internal states of the hardware specified,
and therefore, they are not necessarily observable
the outside. However, the idea of intervals makes
both parallel and sequential descriptions much
easier. Moreover, using intervals, we can specify
behaviors of hardwares in logical AND of simple
temporal logic expressions, which drastically
reduces the required time for synlhesis and
verification (Fujita et al. 1984a). We are now
studying on a hardware description language,
which is based upon intervals and Linear Time
Temporal Logic, and its assistant tools using Pro-
log. Some resulis are already reported (Fujita et
al. 1984¢c). The details will be appeared elsewhere.

3 STATE-DIAGRAM DESCRIPTIONS IN
PROLOG

This section presents how to describe state-
diagrams in Prolog and how to get the global
state-diagram from given state-diagrams. The syn-
tax of Prolog used here is that in the book *Pro-
gramming in Prolog’ (Clocksin and Mellish 1981).

State-diagrams are expressed with the present
values of variables, the present state, and the next
state, and so, they are deseribed in Prolog with the
table of those values.

For example, a state-diagram shown in fig.3
{a) is described in Prolog as in (b). *a°, 'V, *c’,
and 'd" in fig.3 (a) are some logical expressions
(traditional logic) for state transitions, and "1’ and
‘2" are state names. The first two arguments of
'state_diagraml’ in (b) mean the present state and
the next state, and the last argument (P) is the list
of the values of variables. Each definition of
'state_diagraml® corresponds to state transitions.
‘logic’ is a predicate expressing the logical expres-
sions for "a’, 'b’, '¢’, and 'd’. Assigning adequate
logical expressions to 'a’, 'b’, '¢’, and "d’, fig.3 (b)
can express various state-diagrams. For example,
in order to express the state-diagram in fig.3 (o),

the ’logic’ in fg.3 (d) should be added to (a).
The first argument of "logic’ is the type of condi-
tions and the second is the list of the wvalues of
variables. . As seen above, the same forms of
state-diagrams (the states and the relations of state
transitions are the same) are expressed in a single
clause of Prolog using "logic’.

The global state-diagram of given state-
diagrams is casily acquired with Prolog. For ex-
ample, in order to get the global state-diagram of
the two state-diagrams (fig.4 (2)), a new predicate
for the global state-diagram whose head is the glo-
bal state-diagram’s name and whose bodies are the
two descriptions in Prolog for state-diagrams,
‘state_diagram1® and ’state_diagram2® (c), is
defined as in (k). The execution :

-state_diagram_all(S,Sn,P) print ([S,Sn,P]),fail.

gives the global state-diagram in fig.4 (a). Using
the descriptions for state-diagrams as bodies, the
global state-diagram is easily acquired.

Co 0D-
S

d
{a) A State-diagram

state_diagram1(1,1,P): — logic{a,P).
state_diagram1(1,2,P): — logic(b,P).
state_diagram1(2,2,P): — logic(c,P).
state_diagram1(2,1,P): — logic(d,P).

{(b) Prolog Descriptions for (a)

inf\—out
Co @D
— inf—out — —inf\—out
' infout
(e) A State-diagram Specialized from (a)
logic(a, [0,0).
logic(b, [1,00).
logic(c, [0,0]).

logic(d,[],11).
Vals
in out
(d) 'logic’ Added to (b)

Fig.3 A State-diagram and its Descripiions in Proiog

b

T A
EC@R‘_J@QE

Y

d

577

@y @

__..-—-.__‘

UG

Y
Q‘nf

mf

(a) State-diagrams and their Global State-diagram

state_diagram_all{[S1,52],[Sn1,5n2],P):— state_diagram1(51,5n1,P),

(b) Prolog Descriptions for (a)

state_diagram2(3,4,P):— logic(e,P).
state_diagram2(4,4,P):— logic(f,P).

state_diagram2(S2,5n2,P).

state_diagram] is the same as in fig.3 (b)

(¢) State-diagram Descriptions for (a)

Fig.4 State-diagram and their Global State-diagram in Prolog

4 THE SYNTHESIS METHOD AND ITS EF-
FICIENT IMPLEMENTATION IN PROLOG

This section briefly explains the synthesis
method based upon the temporal logic decision
procedure (Wolper 1981) and shows its efficient
implementation method in Prolog. See (Wolper
and Mannpa 1981, Clarke and Emerson 1981) for
the details of the decision procedure.

The synthesis method in (Wolper and Manna
1981, Clarke and Emerson 1981} is intuitively as
follows.

First, the specifications in temporal logic ex-
pressions are expanded to the conditions at
present and the ones in the next time using the
temporal logic expansion rules. Next, the outmost
O operators of the conditions in the next time are
removed and the rest conditions are also expanded
to the conditions at present and the ones in the
next time. This expansion is repeated until the
conditions in the next time are the same as the
ones already treated. After treating all the condi-
tions appearing in the expansion procedure, a

state-diagram, whose states correspond to the con-
ditions and whose state transitions correspond to
the expansion process, is oblained.

The expansion rules for each temporal logic
operator are shown in table 1. Table 1 is acquired
from the temporal logic axioms and, <1> in
table 1 indicates that 'OP means that P should be
satisfied at present and OP should also be satisfied
in the next time'. And <2> indicates VP
means that P is satisfied at present, or P is not
satisfied at present and WP should be satisfied in
the next time'. However, if ~PANOVP of <2> is
always taken, VP will not be satisfied (O—P is
satisfied). Therefore, when —PAOVP of <2> is
taken, the condition that P will eventually be
satisfied must be added. This is called "eventuali-
ty' and {P] behind —~PAOVP of <2> indicates
that.

Using this lable, any temporal logic expres-
sions can be expanded inlo the conditions at
present and the ones in the next time. After
treating all the conditions appearing in expansion
process, if some eventualitics appear, the state-

578

<1> OP=PNOOP

<2> VP=PV(~PAOVPIP})

<3> Pl UP2=
PIVIP1IA—~P2NDI(P1 U P2))

<4> ~OP=~PV(PAO{~OP){~P})

<5> ~VP=~PNO(—VPF)

<G> —~(P1 UP2)=(—PIN~—P2)}
V{(—P2AO(—(P1 U P2){—P1})

Table 1 Expansion Rules for Temporal Logic Operators

PA~Q
—~PVQ

C(ee=9) (%%a°

—PV 0O

Q e

<1> OP=/lalw,P]

<2> VP=[eve,P]

<3> Pl U P2=[unt,P1,P2]
<4> —P=[not,P]

< 5> PINP2=[and,P1,P2]
<6> P1VP2=[or,P1,P2]

Table 2 List Expressions for Temporal Logic

PA~Q

(a) State_diagram Synthesized from O(P—VQ) (b) Removal of State Trans:ltmns not Satisfying Eventualities
Fig.5 State-diagram Synthesized from O(P—VQ)

present next’

T
expand ([alw,F], Ha;'::ﬂ[an],E. En,P):—

- - present and next precent values of variables
conditions conditions eventualities

if_exist_delete(F,E,E1), —=—— il Fis in E, E is deleted from F

develop(F,Fn,E1,En,P),
simplify(Fn,Fnn).
expand{[eve,F],Fn,E,En,P):
if_exist_ dc’[nt:{l’-‘ E.El},
develop(F,Fn,E1,En,P).

and the rest is El

T simplification of expressions

expand{[eve,F], [[Eve F]Ian] E,[FfEnl],P):—

simplify [F.FFJ ,

if_exist_delete(Inot,F],E,El),
develop([not,F],Fn,E1,Enl,P),

simplify (Fn,Fnn).

Fig.6 "expand’ Corresponding to Table 1

diagram is checked whether each state transition
path really satisfies those eventualities. If not, it is
deleted.

We expand O(P — VQ) as an example. First,
O(F — VQ) is expanded as follows, referring to
<1> and <2> of table 1,
o(P—vQ)

= {P—VQAOP—VQ (by <1>)
= (~PV{PAVQINOCO(P — VQ)
= (~PV(PA(Q\/ (~QNOVQIQI))N
NOO(P — VQ) (by <2>)
= ((~PVQ)NCO(P — VQ))
V{PA~QINOD(P — VQAVQ[Q)) (12)
As O(P — VQINVQIQ] is appeared as the

conditions for the next time, it is expanded next
in the same way. .

0P — YQAVQIQ]

=(QN\OO(P — VQ))
V(~QNO@(P — VQIAVQIQD) 13)
(12) and (13) are the expressions already treated.
The state-diagram obtained from (12) and (13} is
shown in fig.5 (a). However, the continuous tak-
ing the state transition * in (a) does not satisfy the
eventuality {Q}, so this state transition is deleted
as shown in (b).

The procedure above is easily implemented in
Prolog. If the temporal logic expressions are
described in lists as seen in table 2, the predicate
'expand’, which corresponds to <1> and <2>
of table 1, is shown in fig.6. The first argument of
‘expand’ is the expression fo be expanded, the
second is the expressions in the next time, and

the next two are the present and the next eventu-
alities, which are used for the “eventuality check’
described above. The last is the list of the present
values of variables. All the conditions in the next
time are acquired by backtracking them compul-
sorily, and so a state-diagram is easily oblained us-
ing the procedure described above,

However, the required time for this procedure
increase exponentially with the number of the
temporal operators in the specifications. So, some
methods for increasing the efficiency must be re-
quirad for the practical use.

Seen from section 2, specifications are ex-
pressed with logical AND of simple expressions,
and each simple expression has the same fﬂrm

T = TIAT2A . ATn (14)

T is the specification and each Ti is a fairly simple
expression. If each Ti is expanded in advance, the
slate-diagram for the specification T can be syn-
thesized by making the global state-diagram from
state-diagrams for Ti. In fact many Ti have the
same form of temporal logic expressions (in the
sense that those are all expressed in the same Pro-
log descriptions like in fig.d (a)). Using state-
diagrams for Ti as & knowledge, this method drast-
ically reduces the required time. The efficient syn-
thesis algorithm is as follows.

{STEP1) The specification is assumed to be ex-
pressed in the form of (14). Expand each
Ti using the predicate "expand’ in [ig.6.

(STEP2) Make the global state-diagram from the
state-diagrams for Ti in the same way as
in section 3. If necessary, check eventu-
alities of each state transition. If some
state transitions do not satisfy eventuali-
ties, delete them.

(STEP3) Simplify the state-diagram acquired from
(STEP2). That is, put together the states
having the same transitions and simplify
conditions for transitions.

The state-diagram obtained from the algorithm
above can also be used in (STEP2), so the state-
diagram for the large hardware can be incremen-
tally synthesized by repeatedly applying the algo-
rithm above. If the number of staies of the state-
disgrams synthesized is nol so big, this strategy
has enough practical power. Also, the state-

379

diagrams used in (STEP2) may be ones obtained
from a register transfer level hardware description
language like DDL or gate level descriptions (Fuji-
ta el al. 1983a), the state-diagram for the new
hardware which is an extension to the already
designed hardware by extra specifications can be
synthesized in the same way.

The algorithm above is implemented in C-
Prolog which is developed at Edinburgh University
{Pereira 1984). The program size is about 1400
steps.

As for the wverification, in order to check
whether a temporal logic specification satisfies the
design or not, one has only to expand the nega-
tion of the specification into the state-diagram by
the algorithm above, and then check whether the
design satisfies the negation of the specification or
not as shown in (Fujita et al.-1983a, 1983b,
1984a).

5 SYNTHESIS EXAMPLE

This section presenis a synthesis result of the
‘sequencer controller’ in section 2.2 as an exam-
ple. In order to reduce the synthesis time, the
global state-diagram is synthesized incrementally.
The synthesis flow is as follows.

(1} As the specifications (S-1)~(S-6) have the
form of IFF_NEXT and IFF_PRESENT,
IFF_NEXT and IFF_PRESENT are expanded
first using ‘expand’ in fig.6, according to
{STEP1} of the synthesis algorithm.

(2} (STEP2) is executed next. ‘2’ and b in
IFF_MEXT and IFF PRESENT are replaced to
fit the expressions (S-1) ~ (S-8), using ’logic’
in section 3. Since (S-1) — (S-6) have a
conflict of themselves, specifications for the
switch' in fig.2 (Fujita et al. 1984b):

Olendg — (endg U (initgV—fet))) (15),

O(endd — (endd U (initdV~fet))) (16),
are added to (8-1) — (3-6). Then, instead of
state-transitioning all these specifications to-
gether, they are divided into two groups: (S-
DAS-3)A(S-5)/\(S-6)/\(15) and - (S-2)A(S-
4}/A(16). The former controls *initg’ and
‘wait’, and the latter controls ’'initd’. Each
group is state-transitioned as (STEP2) respec-
tively.

step of the synthesis flow

2 3 4 5 ol

CPU time (seconds) on
HITACHI M-280H C-Prolog

088 1.03 1.68 0.36 0.82 477

Table 3 Timings for the Synthesis of 'Sequencer Controller’ in fig.2

580

(3) (STEP3) is executed to reduce the redundancy
of the two state-diagrams obtained from (2).
(4) Again, (STEP2) is executed to make the glo-
bal state-diagram for the two state-diagrams ob-
tained from (3).

(5) Again, (STEP3) is executed to reduce the
redundancy of the state-diagram.

The execution times for the synthesis flow
above are shown in table 3. The state-diagram
synthesized has 8 states, and so it requires 3 flip-
flops. As compared to this, in the manual design,
‘sequencer controller’ is divided into two parts,
because the state-diagram for all the 'sequencer
controller’ is too complex for a designer to
manage. Each is designed with 3 states (i.e. 2 flip-
flops), and so the manual design for all the
'sequencer controller’ has 4 fip-flops. Seen from
table 3, the required time is fairly short, and the
results are satisfactory as compared to the manual
design.

6 DISCUSSIONS

Both the synthesis time and the quality of the
state-diagram synthesized in section 5 are satisfac-
tory. As a rule, the required time for the original
decision procedure (Wolper and Manna 1981,
Clarke and Emerson 1981) grows exponentially
with the number of temporal operators. However,
the incremental synthesis method proposed in sec-
tion 4 grows polynominally both with the number
of variables and with the number of states in the
synthesized state-diagram.

Specifications are assumed to be expressed in
the form of (14). Let Ni and No be the numbers
ol input and output variables respectively. As seen
from section 2.2,

n« No
If' the global state-diagram is synthesized by ad-
ding a expression one by one, the number of re-
peat of (STEP2) and (STEP3), Np, is

Np e ne No
Let Ns be the number of states for the final state-
diagram synthesized. Sincs the number of states
of the state-diagrams is not considered to exceed
several times of Ns during the incremental syn-
thesis procedure, the required time for one cycle
of (STEP2) and (STEP3), Tc, is considered to be

Te = Ns™*(Ni+No)
Then, the synthesis time, Ts, is
Ts = Te*Np & Ns?*(Ni+No)}*No

Therefore, the synthesis time grows polynomi-
nally both with the number of variables and with
the number of states of the state-diagram syn-

thesized.
7 CONCLUSIONS

We have presented the efficient method for
automatic synthesis of state-diagrams from tem-
poral logic specifications, and we have also shows
it has much practical power by applying it to real
hardwares and comparing to the manua! design.
As the required time for the original procedure in-
creases exponentially with the number of temporal
operators (Wolper and Manna 1981, Clarke and
Emerson 1981), we have presented the efficient
method for implementing the procedure with Pro-
log. The method regards state-diagrams already
synthesized as a knowledge and synthesizes the
global state-diagrams incrementally. The synthesis
lime is drastically reduced (to the polynominal
order) and is kept small enough with fairy large
hardwares.

The synthesis method translates any temporal
logic expressions to state-diagrams, so it is-also
possible to check whether or not hardware designs
in temporal logic really satisfies some other tem-
poral logic expressions. Moreover, together with
the wverification method for gate and state-
diagrams in (Fujita et al. 1983a, 1983b, 1984a),
any designs in temporal logic, state-diagrams, and
gates can be verified in the same way, and then
the hierarchical design is smoothly supported.

The powerful pattern matching and automatic
backtracking mechanisms of Prolog make the im-
plementations much easier and simpler, It is con-
cluded that together with the verification method
in (Fujita et al. 1983a, 1983b, 1984a), a powerful
CAD system for logic design, which smoothly sup-
ports hierarchical designs and has enough practical
power, can be constructed with Prolog.

Finally, we are studying on a hardware descrip-
tion language which is based upon intervals and
Linear Time Temporal Logic {Manna and Pnueli
1981, Wolper 1981). Its results will be appeared
elsewhere.

REFERENCES

Fujita, M., Tanaka, H., and Moto-oka T: *

Verification with Prolog and Temporal Logic”,

IFIP 6th Computer Hardware Description

Ii,;.élguages and their Applications, Pittsburgh, May
a.

Fujita, M., Tanaka, H., and Moto-oka, T.: "Tem-
poral Logic Based Hardware Description and its
Verification with Prolog", New Generation Com-

puting, Vol.1 No.2, Ohmsha and Springer-Verlag,
New York, 1983b.

Fujita, M., Nishiyama, 5., Tanaka, H., and Moto-
oka, T.. "Efficient Verification Metheds [or
Hardware Logic Design and their Implementation
with Prolog", Proc. of the Logic Programming
Conference "84, Tokyo, March, 1984a.

Manna, Z. and Pnueli, A.: "Verification of Con-
current Programs, Part 1: The Temporal Frame-
work", Dept. of Computer Science, Stanford Univ.
Report STAN-CS-81-836, June 1981

Wolper, P.: "Temporal Logic Can Be More Ex-
pressive”, 22nd Annual Symposium on Founda-
tion of Computer Science, October 1981,

Wolper, P. and Manna, Z.: "Synthesis of Com-
municating Processes from Temporal Logic
Specifications”, Proc. of Logics of Programs, New
York, May 1981,

Clarke, EM. and Emerson, E.A.: "Design and
Synthesis of Synchronization Skeletons Using
Branching-Time Temporal Logic”, i.b.i.d.

Clocksin, W.F. and Mellish, C.5.: "Programming
in Prolog", Springer-Verlag, New York, 1981.

Moto-oka, T., Tanaka, H., Aida, H., Hirata, K.,
and Maruyama, T.: "The Architecture of a Parallel
Inference Engine —PIE—", Proc. of FGCS'84,
Tokyo, 1984,

Yuhara, M., Koike, H., Tanaka H., and Moto-oka,
T.: "A Unify Processor Pilot Machine for PIE",
Proc. of the Logic Programming Conference "84,
Tokyo, Japan, March 1984,

Fujita, M., Tanaka H., and Moto-oka, T.: "Specify-
ing Synchronization Parts of Hardware with Tem-
poral Logic and Automatic Synthesis ol State-
Diagrams", Technical Research Report, EC83-59,
IECE of Japan, 1984b (Japanese).

Pereira, F.: "C-Prolog User’s Manual Version 1.5",
EdCAD, Edinburgh University, Edinburgh,
February, 1984,

Moszkowski, B.: "A Temporal Logic for Multi-
Level Reasoning aboul Hardware", IFIP 6th Com-
puter Hardware Description Languages and their
Applications, Pittsburgh, May 1983,

Fujita, M., Tanake H., and Moto-oka, T..
"Hardware Functional Description Based upon
Temporal Logic and its Interpreter”, Technical
Research Report, EC84-23, 1IECE of Japan, 1984c
(Japanese).

381

