PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
OMN FIFTH GEMERATION COMPUTER SYSTEMS 1984,
edited by ICOT. © 1COT, 19384

563

FROLOG-BASED EXPERT SYSTEM FOR LOGIC DESIGN

Fumihiroe Maruyama, Tamlo Mano, Kazushl Hayashi, Taskeo Kakuda,
MNobuaki Fawato, and Takao Ushara

FOJITSU LIMITED
Kawasaki, Japan

ABSTRACT

Building an expert syatem to asaist in
hardware logic design iz one of the activi-
ties undertaken in the Fifth Genaration Com-
puter Systems (FGCS) Project. This paper
degoribea the ourrent statua of auch an
expert system.

Logic design involves a varlety of
aapects ranging from purely algorithmic pro-
ceasing to tasks that are heavily dependent
on expart lmowledge. Thia syabtesn explores
those aspects by incorporating designers”
expertisze, for instance.

Given a concurrent algorithm described
in OCCAM, the system designs a CMOS circult
to ald the deaigner in the logic design pro-
ceaz. OCCAM is s prograeming language charac-
terized by its treatment of concurrency. It
enables the user to specify concurrent algo-
rithms with great ease. The result of funo=
tional deaign, the flrst half of the logic
design process, is a finite-state machine
desoription in DDL, & hardware description
language. This is tha firat level at which
the correspondence £o hardware aoncepts
emergas. Cirouit design, folleowed by CHMOS
design; the second half of the logic deaign
process, tranaforms the finite-state machine
description into a CMOS cipouit.

A prototype has been implemented in Pro=
log. In the oaourse of implementation, we
evalugted Prolog for its effectiveness as an
implementation language for a new generation
of CAD systems.

1. INTRODUCTION

The Fifth Generation Computer Systems
{FGC5) Project has undertaken research on
knowledge-based aystems in acome application
areas. Among these is hardware logio design.
Previous work in this area inecludes the FPal-
ladio system, developed at Stanford Univer-
aity (Brown et al. 1983). Palladio im an
attempt to create an integrated design
anvironment. Itz main concern is te provide
compatible design tools ranging from simula-

tora bo layout generatora; to permit specifi-
cation of digltal systems from architecture
to layout im compatible languages, and to
provide the means for explicitly repressnt-
ing, constpacting, and testing auch deaign
tools and languages.

We choze hardware Wlogic design as an
application area for the following three rea-
sona. Firat of all; the application muat be
in an area in which human expertise plays a
gignificant role. In hardware logie deaign,
only experienced dealgners can achieve good
regults. Secondly, our target 13 a design
aystem rather than a diagnoatic system. While
there are a numbar of auccessful knowledge-
based diagnostic aystems, few knowledge-baaed
dezign systems are in practical use. This
fact poaes the ochallenge of exploring the
many unknown factors that such a aystem
invelves. Laatly, hardware logle design
encompasses a variety of aspects: many Gypes
of knowledge contributes to expertise in this
domain. Thus, 1t 1is posaible for us to
explore the use of expert knowledge from
various angles.

The implementation language is Prolog,
which ia also used as the underlying
knowledge-repreaentation langiage. Knowledge
represantation is an important isave. A sine
gie multi-purpose framework for Lnowledge
repregentation would be simplest. However, as
deacribed above, hardware logle design
employas various kinds of knowledge, and
dealgn data must be represented as well. In
addition, human designers awitch from one
representation to another in the couras of
their work. Foer these reasons, we have nobt
adopted any particular existing tool for
knowledge representation. We hope that our
approach will result in an effective new
knowledge-representation ramework.

2. OVERVIEW

The aystem covers the entire deaign
processes from specifications, described in
OCCAM (Taylor and Wilson 1983), to complete
CHMOS cirouits. OQCCAM 13 a programming
language charasterized by ita treatmant of

364

CONCUrTEncy . (Strictly speaking, we use
0CCAM=3, the "s-expresaion" version of OCCAM,
for internal expressions.} Tt enables the
uger to easily specify concurrent algorithms.
However, apecifications are not necessarily
hardwara-oriented. In other worda, the user
is not required to desoribe specifications
based on hardwars concepts.

Between the initial atage of OCCAM
deaign specifications and the final atage, in
which CHOS eircults are produced, finite-
state machine desoription is generated in
DDL,; a hardware description language. In
this intermediate design stage the correspon-
dence with bardware concepts first emergea.
The aystem®s final output iz CMDS basic
cells, functional cells, and the eonnections
between them.

The system consists of ten subaystems.
Figure 1 shows how the subsystess are related
o one another. All the subsystems appear in
the figure with the excepblon of the editor
subsystem. The top two subsyatems are raspon-
sible for funetional design. The functional
design subsystem determines the application
of hardware concepts in implementing the con—
current algorithms, and produces the finite-
state machine description in DDL.{Dietmeyer
1971). The state machine optimization sub-
system inspects the finite-state machine
desoription and makes modifications to refine
it.

Concurrent Algarithm (OCCAM]

F Functlomal Casign Subs_vs!unl

]
ISI:n‘I! Machina Optimizotion SLl;aysTemI

Finita-stare Mochine Description{DDL)

[Transiator Subsystem |

futomstan Deslgn
Subsystem

e

Circuit Decomposition
Subsystem

|

Basie Cell Assignment Funetional Cell Design
Subsystem Subsystem

\Hrﬂr____._,_._.---"'"

CMOS Optimization
Subsystem

I

Clreult {CMOS)

Datg Fath Design
Subaystemn

Figure |.System conflguration

The finite-state machine desoription in
DDL is funotional, not structural. (Strictly
apeaking, we use DDL=8, the "s-expressionm
veraion of DDL, for internal expressions.) In
order to deaign eircuita, we need informatien
Aabout hardware structure; thia means that
funoctional deacriptions must be transformed
into structural deseriptiona. Here, the
translator subaystem plays its part. Tt gen-
erates two kinds of design information: that
eoncerning data paths and that concerning
conkrol eircults.

The econtrol circuit design subsystem
implements automata having the appropriate
atates using flip-rlops. It designs a centrol
eireuit arcund these flip-flops according to
information cn atate transibion supplied by
the translator aubsystem. The data path
design subsyatem alloocates data pathz around
functional components, =ooh as registers,
mermories, adders, and decoders,

Both the data path design subsystem and
the control eireuit design aubaystem generate
logical expressions, which are then imple=
mented as combinational eireuits using CMOS
funational oella. Tt is not alwaya posaible
to implement a given combinational eircuit
using a single functional gcell, because large
eells fail teo meet the high performance
requirements. The eircuit decomposition suh-
system takes a logical expression and breaks
it down into subexpressions 4in such a way
that each subexpression can be implemented by
a single eell satisfying the performance
requirements. Theae subexpresaions are
passed to the functional eell design subsys-
tem; which creates a functiomal eell for each
subexpression.

On the other hand, funetional ocom-
ponents, such as registera, memories, adders,
decoders, and I/0 pins, are designed by the
basie cell assignment subaystem. The subays-
tem searches the basic oell library for the
appropriate gell. If one ia found, it is
assigned to the hardware component, posaibly
with slight wmodification. Otherwise, the
subsyatem either assembles a cell uzing baale
cells in the library as components, or it
attempts to design one from seratch,

The aystem provides a faocility that
optimizes the entire CMOS ciroult after the
basic cells and the functional cells have
bean completed, It alse providea a user
interface facility, which is used throughout
the design proceas under control of the adi-
bor subsystem.

In the design process the ayaten
axplores a variety of design aspects. In the
course of this exploration, the techniques
applied rangs from algorithmic approaches to
knowledge-based approaches. We describe
asveral of these bechniques in the following
sections.

3. FUNCTIOMAL DESIGH

Functicnal deslgn can be thought of as
the phase of design that determines the type
of hardware components reguired and desoribes
their interactive behavior. The primary func-
tiona of the functional design subsyatem are
as follows:

1) Implamenting variables deacribed in
OCCiM-5 using hardware elements (registers,
eta.).

2) Designing hardware control mechanisms for
"eonatructs® of OCCAM-S. ("aeq" for sequen-
tial processes, "par® for parallel processes,
ete.)

3) Implementing communication batwasan

processes described inm OCCAM-S. ("input" for
inputting a value from a channel, "output"
for outputting a value to a channel)
The end result of the functional design sub-
aystem i3z a finite-sztate machine desaription,
which is further refined by the ztate machine
optimization subaystem.

The functional design subaystem is one
of the meat knowledge-intensive parts of the
aystem. Figure 2 shows lts four design levels
and the four processes linking them.

1) Cognitive Proceas

Thia procesa takes the entire apecifica.-
tiona level intc account, makea deductions
concerning the intenaion of the concurrent
algorithm, and stores these deductions in the
working memory in the form of high-level con-
cepts deacribed in Prolog.

2} Checking Process

The above deductions are generic in that
the cognitive proocess doea not take context
into account. The checking process makes a
oonjecture in reference to fthe working
memory, goes back to the specificaticns
level, and checks whethear it is true. If 30,
the checking process puts the assertion into
the working mesory.

31} Instantiation Prooess

This proceas Iinstantiates high-level
concapta in the working memory and puks par-
tial DDL-3 descoriptions into the draft.

4) Construction Frocess

The partial DDL-5 descriptions in the

draft are finally assembled into DDL-3 coda.

5635

Tha following ia a rough sketeh of how
this subaystem worka. As an example, we use
the pattern-matching chip proposed by M. J.
Foater and H. T. Kung (Foster and Kung 1979).
Filgure 3 shows part of its algorithm. Here,
concentrate on a part of it:

[par, /¥ following input proceasss are
exascuted in parallel %/

[input,pin,pl, /* from the channel pin to
the variable p %/

[input ,z3in,al] e 1y,

PROC comp (CHAN pin, sin, pout, seut, doutl=
VAR p,5:
5EQ

PAR
p:=0
g: =0
WHILE TRUE
SEQ !
PaR
pout | p
sout | 5
PAR
pinpp
sin? s
dout | pos:

[a) in QCCAM

iprog, comp, [[chon, pln, sln, pout, sout, dout]],
[lvar, gy 51,
1= 1]
Gr
Pioasin, p, 01,
[assign, 2, 011,
[whibe, troe,
[seq,
[par,
[output, pout, pl,
[output, sout, 5]],
por,
Cinput, pin, p}
Cinput, sin, &),
[owtput, dout, [equal, p, sINITIT

(b} in QCCAM-3

Figure 3. Algorithm for the pattern-matching
chip (comparator)

The cognitive process takes the entire
atructure of the algorithm inte acceount from
a hardwara perspective. It deduces, for
inatance, that (1) ocught to be implemented as
a state. In due course, [input, pin, pl 1ia
recognized as an input operation; and
further, as a passive operation, as ia
[input, asin, s]. The following twe deduc-
tiona are put into the working mesmory as Pro-
log facta:

passive_operation((input, pin, pl,...).
pazsive_operation([input, sin, 8l,...}.
By "pasaive operation" we mean an operation
that i= not invoked internally.

Specificarions Waorking Memory
Cagnitive Instontiotion
Process Progess
QCCAM-5 High-= level
Checking Concepts
Process
—
{Qm—

Draft Dresign
Caonstructlon
Partial
.| Dascriptions | Crocess
in ooL-%
DOL-5

Figure 2. Overview of the functional design subsystem

566

On the other hand, the checking process
makes fthe conjecture that (1) may be an idle
state, by which we mean a astate in which the
automaton waita for a signal from the outaide
every time it returns after a series of
operationa; this will be referred to as the
idling condition. Using the knowledge that a
state ocan be an idle state if it is the only
passlve state, the checking process checks
whether (1) 4is a pas=zive state in reference
to the following knowledge:

pasaive_state([par,X|¥1,...0:=
pasaive_cperation(X,...); .
passive_state{[par,X|¥]1,...):=
passive state({[par|¥l,...).
In this way, the checking process finds that
(1) is an idle state:
idle_state([par, [input, pin, pl, [input,
51!‘1,. H]]'!I-ﬂ)l

Onge the working memery {s completed,
the instantiation process begins to generate
partial DDL-S deseriptions. {1) is
transformed into a partial DDL-2 deseription,
the definition of a state, using the follow-
ing instantiation knowledge:

idle_state_instantiation(X,...):-
idling condition(X,¥,...),
action({E,;T,.0.),
asserti{state([idle,¥,2],...}).

The construction procesa assembles the
partial DDL-5 descriptions stored in the
draft and produces the final DDL-3 code.

The above sketeh illustrates that
hardvare concepta can be represented expli-
citly and clearly by Prolog predicates. PFro-
log constitutes a ‘“ooncept-criented" para-
digm.

4. CIACUIT DESIGN

Cirouit deaign stands between functional
design and CMOS deslgn, and provides all the
information neceasary for designing CMDS
funetional ocells and assigning basio cells.
This section illustrates this using aeveral
eXamples.

4.1 Tranalator

The translator subsystem transforms the
DDL-5 finite-state machine deseriptien into
design information for the oircuit design
process. It gathers and edits conditions for
terminal connection, regiater tranafer and
atate transition operations; it then organ-
izea this data in a frame-=like structure.

The tranalator asubayatem, which was
implemented in Proleg, generates this infor-
mation while parsing the DDL-S code, IF we
had uwsed a language like PL/I instead of Pro-
log, & translator generator would have been
indispensabie. TUaing Prolog as the implemen-
tatlon language saved a considerable amount

of work. Roughly speaking, all we had to do
was to write Horn clauses in keeping with the
DDL=-3 grammar. The extracted information is
clasaified into eight categories of hardware
componenta, arithmetie data, and data about
logical expresaions.

411 logisal expresalons are given unique
names to prevent their arbitrary duplication
by combinational eircuits. The occurrences
of each logical expression are counted and
usad to determine which logileal expreasion to
implement as a CMDS functional cell.

4.2 Control Cireuit Design

In this section, we discuss the imple=
mentation of automata.

We use a very simple computer as an
example. The DDL desoription of this machine
iz shown in Figure 4. Figure 5 is a akeleton
state diagram for an avtomaton CPO.

{SYSTEMY SIMPLE ®
CTIMEy CLK <{10)>.
CSTORAGEY M{1024, 16],
CREGISTERY ACCLIG), [IR{IG], MARIIO), LARIO,
CAUTOMATON> CPU: CLK:
{STATES?
ADS: MAR <- IAR, [AR {- [AR +1,-3 IFT.
IFT: IR <-M{MaR, O:18}, -» DEC.
DEC: MAR ¢ —ADR,
PIR(O:5) # 4 -3 L0DA
4 8B =338TA
816 =3 ADD
#32 -»BRA
#3233 = EBRP
LDA: ACC {=MIMAR, O: 16), ->ADS,
STA: MIMA&R, O: 16} {= ACC, —» ADS,
ADD: ACC <- ACC+ MIMAR, D:18], —>ADS,
BRA: [AR {=ADR, —» ADS.
BRP: IE ~ACCION *| IAR {—ADR., =3 ADS.
LEMND?.
{EMDICPU.
{EMD» SYSTEM

Figure 4. Simple computer

ADS @ oddress set
IFT: instruction felch
DEC ¢ decode

LDA : lood oddress
STA: store address
ADD ¢ odd

BRA : branch

BRP - branch-positive

Figure 5. State dicgrom

There ara several approaches to imple-
menting this B-state machine. At least three
flip-flopa are required, although this point
is also subject to discussion, as we ahall
presently =see. Coding elght atates into
three flip-flopas might produce the most
desirable contral charasteristics, Figure 6
shows an instance of such a control cireuit.
At the other extreme, we might use eight
flip-flops, one for each state. This state
assignment greatly simplifies the design pro-
eess, bot this appreach is probably uneconom-
isal.

3
=
=]
th
=

=0

LR L]

uy
=
=]

-

2 el

|
[T TE A8 11 1Rl

sy

Ao IFTIDEC LOW STA ADD BRA BRP

1
(¥

!

Figure &. Control circuit

Ztill another approach recognizes that
the settings of the high-opder six bits of
the instruction register (IR} reflect a
speaifie value for each instruction type and,
thuz, can be used to distinguish the execu-
tion states of the CFD., We might build a U4-
gtate 2-flip-flop machine with atates ADS,
IFT, DEC, and & new state, EXC. When this
2-flip-flop machine 1s in the EXC state, the
aotual state of the CPU iz determined by the
settings of the high-order six bits of the
1R, In this case, the state disgram is modi-
fied as shown in Figure 7 and the control
circuit is modified as shown in Flgure 8.

567

A0S 1T DEE [EXC

I
P
=
L=

i —D—BRP

Figure 8. Improved contral circuit

This approach, described by Dietmeyer (Diet-
meyer 1971}, is often very affective. Cir-
ouit designera deal with & great deal of
auch kinds of knowledge.

This knowledge, however, ls not always
applicable. For exampla, the laat approach
is applicable if and only if the following
four conditions are satisfied:

1) If a state has two or more branches,
the transition between the current atate and
gach of its subaequent states iz indicated by
the value in the same register (here, IR).

2) Each subseguent state has no other
predecessor.

2) When the state transitien oceurs, the
register value iz unaffected.

&) In each subsequent state, there i3 no
recuraive transition that changes the con-
tents of the register.

A Prolog Aimplementation of the last
approach is shown in Figure 9. The program
structure parallels the above conditiona, as
indicated by the corresponding numbers. In
the program, the "feor" predicate is asimilar
to the LISP "map"™ function, and allows us to
legibly express processing on all the ele-
ments of a liat.

branch _ state _ reduction{State) =

02600

next_staotes [State, Mexi _states),
for (¥ in Mext_states,
set_of (', (transilion conditlon (State, Next_staotes, Regigter), = (1}

uniwe_pr:decﬂssnr {“ . siﬂfﬂ]'- {EJ
unaffected (Stote, X, Register), s {3)
unoffected (X, ¥, Reglster), (4)

¥ = (%, Condition]),

I}L

update_table(State, 2}

Figure 7. Improved state diagram

Figure 9. Frolog program

568

4.3 Design of Functional Components

There are two extreme automatic allooca=
tors for functional components: a distributed
allocator and a central allacator {(Thomas et
al. 1983). The distributed allocator adda a
new functional component for each wunique
reference in the functional description.
However, this deaign is inefficient. The cen-
tral allocator tries to map all references
ente a structure with a aingle functional
component. While such an approach might be
adequate for a simple computer, it iz not
optimal for a large system.

Our system £is ecapable of determining
whether to add a new functional component or
to map the refereance onto a structure with a
aingle functional component on a case-by-oaze
basias, by checking whether a component can be
requested from more than one operation at the
same Gime.

Wow, we describe the deaign of an actual
funotional oomponent, taking a decoder as an
example. The apecificationa for a decoder
gonsist of twe items: input and the values
inte which it ia to be decoded (that ia, the
values that correspond to the oukput lines on
a one=to-one basis)., In general, an n-bit
degoder needs an n-input gate for each cutput
line, and the size Sr a full n-bit decoder ia
proportional to 2. Whether we design an n-
bit decoder uaing n-input gates, or assign a
basic w©ell to it, it is often much larger
than necessary. Under certain conditiona, we
can make it conslderably smaller.

(b)

Pl
@

— P=-side
m— H" side

The following rule deals with aush a
case. The didea here is that, if the values
into which the input iz to be decoded are few
and the other wvalues ean be ignored, they
need only be distingulshed from one another.

IF

The number of values to be taken into
account does not exceed the number of bits in
the input;

THEN

1} For each vwalue that is the only walue
with the ith bit on (for some 1), connect ita
output line with the ith input line.

2) For the others, oconnect thelr output
linea with gates a0 that they can be dis-
tinguished from the others.

Figure 8 gives an example. An IR decoder
is shown at the bottom of the figure. 1},
above, is applied to the values, &, &, 1§,
and 33; 2) is applied to 32.

5. CMOS DESIGH

This section discisses the Implementa-
tien of & random logic function on an array
of CHDS transistors. A heuristic algorithm
that minimizes the array size iz presented.

The basic layout of a funetional eell is
illustrated in Figure 10, starting from the
AND/OR (2um of producta) logie specification.
ANDAOR gates in the logic diagram correspond
to the serieafparallel econnectionas in the
circuit diagram. Tt i= clear that for every
AND/OR specification of a Boclean function,
cne can obtain a series/parallel implementa-—
tion in CMOS technolegy, in which the p-MOS
gide and n-MOS side are sach other’s dual.

L
L

E-I.'.'

HE e

il

J
T
Y

Figure [0, Basle layout of the functional cell
{a)Legle diagram (b} Cireuit (c) Graph mode! (d) Layout

Payaically adjacent gatea can be con-
nected by a diffusion area. The layout oan be
further improved by Judicious pairing of
sources and draina. Separation iz required
when there iz no oconnectlon between physi-
cally adjacent transisters,; as shown in Fig-
ure 11. However, the best results are
obtained using the alternative circuit showm
in Flgure 12(b). This cirouit 1is logically
squivalent to the one ahown in Figure 10(b).
Since both the cell helght and the basic grid
size are functions of the technology
employed, an optimal layout 4is obtained by
minimizing the number of separations.
Finally, the layout of the [unetional cell
ean be optimized as shown in Figure 12(d).
The size of this array is amaller than that
of the basic layout by almoat 50%.

separation

1-!_32 /45

s

[@ o
BHHE | e

1! jo

L
-

- a___| [
é_._.._-_1

basie grid size

Figure II. Optimizotion of layout

569

In order to reduce the apray size, 1t is
negeagary to find a pair of Euler patha (an
Buler path 1a an edge ohain that contains all
the edges of the graph model) having the same
asquence of labels on the dual graph model,
because p-type and n-type gates correaponding
to the same input signal have the =same hor-
izontal position in the CMOS array. Since
the graph-theoretical algoritha to obtain the
bast sgolutien 1is exhaustive, the following
heuriatic algorithm has been proposed (Ushara
and wvanClesmput 1981):

Step 1) To every gate with an even number
of inputs add a "pseudo" input.

Step 2} Add this new input to the gate in
such a way that the planar represen-
tation of the logic diagram shows a
minimal 4interlace of "pseudo® and
real iaputs. The vertiecazl order of
inputa on the planar logio diagran
produces an optimel gabte asquance
layout. "Pascudo™ inputs, except for
those at the tep or bottom,
corraspond to separation areaa.

The minimization of the separation areas
can be performed using a logilc diagram, which
olesarly shows tha atructure of the
geriesfparallel graph.

{d}

Figure 12. An alternative circuit and optimal layout :
{a)Logic disgram (b)Circuit (¢) Graph model (d) Layout

570

minlmal : = S:]I'I?Jlﬂ Hst
white_ select -
Select every white friengle and put |t [
in the list. =0
ong - Block & white . selest - [}
Select only one block & white triongle ond Mo
put it in the list with the white port =] @
an tap
block - selact := : G}
Select every black friongle ond put it in
1he ligt. '_
rest_ black S white o select 1 — b
Add the remaining friangles to the llst In F"
such g way that fhelr top ports alternate
{black, white, black, while, ste.). b

color . Sef i—

Determine the list eolor from (D) wW- L1ST, (&) wa-118T,
(2) B-LIST end (@) LOG-EXP2.

Figure I3. Minimal interlace algorithm

an algorithm for oconstructing & minimal
lnterlace iz implemented in Pralog, as out-
lined in Figure 13. Figure 18{b) is a concep-
tual model of the logie diagram shown in Fig=
ure 14(a). The black and white triangles
corregpond to real and “paeudo™ inputs,
reapaativaly.

Fl
Tl Pl TI
TI I§ = lp-
2 2

T2 F2 T2 T2
3 - Pig;.»
4 E
T fe}

L Lkl
T3

E + 5

F3 Flpar~13 e |1
5 LB 2 g i

4. T N

P4 5 z

P2
i) P2

L3

[T R —
2

P2
Pl
TS
o
T

Figure |14. Example of applying the
minimal interlace algarithm

eEdwan-28
{4

Ll]

TS ="

] | i

1

i

]

]

. I;Eunu-

gl

Trianglea 1, 2 and p1 in subtree T1 are
rearranged by the algorithm. The reasult is
represented by a single triangle with a white
top and black bottom(™white-black"), because
the color of the top triangle, p1, is white
and the color of the bottom triangle, 2, ia
black. T2 iz similarly represented by a new
triangle. A new model is then obtained as
illustrated in Pigure 1Y4(d). The arrangement
of subtres T3 is shown in Figure 14(e).
{Note that T3 is represented by a white tri-
angle because the top triangle, p3, is white
and 3¢ iz the bottem of triangle T2.) The
final rearrangemant of tha tree is
represented in Figure 14(f). In the end, we
obtain a logle diagram with an input sequence
characterized by minimal interlacing, as
shown im Figure 14{g) [[1,2,4,37,051]. Thia
sgquence shows the separation between tha two
sublists.

Part of the minimal interlace algorithm,
which is implemented in Prolog, is shown in
Figure 15. The goal, minimal (LOG_EXP1,
LOG_EXFZ2, COLOR} means that applying the
minimal interlace algorithm to the given log-
ical expreaasion, LOG_EXP1, yields the logiocal
output expression, LOG_EXP2, and its eolor,
COLOR. Rules (2), T3} and (%) are used to
chooae an element whose color 43 "white—
black". The goal, minimal, in rule (3),
checks whether the acolor of an element iz
"white-black™. If the color is not "White—
black", rule (U4) i=s applied, which selects a
"white-black" element from among the rest.

We have presented a systematic method of
implementing random logic funcbions using
functional eells. Components such as regia-
ters, memories, decoders, adders, and 1/0
pins are assembled from a library of basic
cells. BZinoe thesze eella are of the same
height, and have the same power oconnections
and astandardized connection points, they can
be readily incorporated into existing
automated layout systems, as shown in Figure
16]

37

minimal {LOG_EXPI, LOG_EXP2, COLOR):~
white_select (LOG_EXF1, [1 , W_LIST, REST1),
one_blaock & white_select (REST1, W_LIST, WE_LIST, REST2},
black_select (REST2, WB_LIST, B_LIST, REST2},
rest._ black & white_selecH{REST 3, B_LIST, LOG_EXFZ], 1,
color_ set{W_LIST, WB_LIST, B LIST, LOG_EXPZ, COLOR)~ {1)
zlUnify at this point J

one._block & white_select([1,[], LIST, LIST) {2)
one_black B white_select ([H]T1, LIST, MEW_LIST, T
minimat(H, NEW_H, white_ black},

one_ blaock & white _select{ [H]|T1, LIST, NEW_LIST, [H] TALL]):-
one_ block & white_ select(T, LIST, NEW_LIST, TAILL, e ()

Figure 15. Prolog implementation of minimal interlace algorithm

Voo ~f—-—
u5$ e e — el Al e e
I — =
o] | (T e
n —
power, _| functional cel

Jer r__.__n [k gl IH

T

Figure |16, Example of a row-based layout scheme

6. CONCLUSION REFERENCES

Using Prolog, we have implemented a pro- Brown, H., Tong, C., and Foyster, G. Falla-
totype expert system for legie design. From dio: An Exploratory Environment for Circuit
this experience, wa have learned that it is Design, COMPUTER, Vol.16, Wo.12, 1983.
poasible to construet an intelligent CAD sya-
tem wsing a knowledge-based approach. More= Taylor, ®. and Wilson, P. OCCAM: Proceas-
over, Prolog appears to have the abiiity both oriented language meets demands of diztri-
to suceinetly expreas algerithms and to buted processing, Electronles, Nov. 30, 1983,

affectively represent Mnowledge.
Dietmeyer, D. L. Logiec Design of Digital

ACENOWLEDGEMENTS Systems, Allyn and Bacon, 1971.
This work is based on the results of the Foater, M. J. and Kung, H. T. Design of
H & D activities of the Fifth Generaktion Com- Speeial-Purpose VLSI Chipa: Example and Opin-
puter Systems Froject. The authors would ions, CMU-CS-T9-14T, 1979.
like to thank Dr. K. Furukawa of ICOT (Inati-
tute for Wew Generation Computer Technology) Thomas, D. E. et al. Automatic Data Path

for his encouragement and support. Syntheais, COMPUTER, Vol.16, Mo.12, 1983.
Uehara, T. and vanCleemput, W. M. Optimal
Layout of CMDS Functional Arrays, IEEE Trans.
Vol.C-30, Mo.5, 1981.

