PROCEEDINGS OF THE INTERNATIONAL CONFERENCE"

ON FIFTH GENERATION COMPUTER SYSTEMS 1984,
edited by ICOT. & 1COT, 1984

551

Execution of Bagof on the Or-parallel Token Machine

Andrze]j Ciepislewski and Seif Haridi
Dept. of Telecommunication and Computer Systems
Royval Inztitute of Technology
10044 Stockholm, Sweden

ABSTRACT

In order to achieve &f ficient parallel execution of
|ogic programs new computer architectures and new
ways of contraolling execution of programs must be
deviced. In this paper we discuss cne aspect of Or-
parallel execution, We déscribe mechanizms necas-
sary for parallel execution of the bagof construc-
ticn and show how their implementation is supported
on a parallel token maching consisting of a limited
number of processors, a token pool and a storage. In
the context of Or-parallel execution the bagof con-
struction is not only a way to collect alternative
selutions of a relation in a list (bagl. It is also a way
to control paralielism, because the search tree of a
program becomes smaller when the bagof iz used.
Besides, the bagof has been proposed as an interface
between pure Or-parallelism and & form of And-
parallelism. The main problems encountered during
distributed implementation of the bagof are: con=
trol of termination of subcomputations looking for
the ziternative solution: to a program, and merging
of the solutions into the environment of the compu-
tation waiting for the results. The dacentralised
mechanizms we propose here are also of interest
outside the domain of pure Or-parallelism.

1. Introduction

In arder to achieve efficient parallel execution of
iegic programs new computer architectures and few
ways for controlling execution of programs must be
deviced, Inour research we have concentrated on
problems of Or-parallel execution of logic programs,
partly because they are easier than the problems of
combined And-0r-parallelizm, and partly becausa
their solutions are part of the soluticns to the more
general problem,

‘we have defined a process model for Or-parallel exe-
cution and a storage model for managing multiple,
simultaneous bindings produced during the execution
£1,2]. We have also defined a mechanism for aborting
unnecessary processes [2,3). Finally we have designed
a parallel token machine supporting Or-paraliel exe-
cutian, abortion mechanism, and the storage defined

by the model [2,3,4].
In this paper we describe mechanisms NECessary for
paraligl execution of the bagof construction, and

show extensions to the token machine supporting
implementations of the mechanisms.

The bagof is a construction for collecting solutions
toa relations in a list, The construction can be
invoked anywhere in a program. In the context of
parallel execution the bagef has an important side-
effect of controlling parallelism, because the search
tree of a program becomes much smaller when bagof
Is used,

The bago+ construction we use is analeg te the ones
described in [5,6,7].

The rest of this paper ks organised as follows. First,
to make the paper self contained, we give an over-
view of the token maching with the model of storage
for maintaining multiple, simultaneous bindings of
variables, and introduce shortly the semantics of the
pagof. Afterwards, we describe the problems of a
parallel implemantation of bagof, and prazent the
mechanizms necessary for solving them. Finally we
show the extensions that muszt be done to the taken
machine in arder to suppeort implementation of the
mechamisms, and show a small example.

2. Ovarview of the Or-Parallel Token Machine model

An Or=parallel computation can be visvalized as an
unlimited number of independent processes, one for
each alternative nondetarministic branch in the
search tree of a program, sharlng a storage for
winding enwvironmants and programs (see Figure 1),

o ."\FEJ: @ , Processes
\T-" -

ipruuraml |i:|:|.r|u:IJ.n-gs storage

Figure 1. An gr-parallel computation model.

In the Or-Farallel token machine madel, the unlimited
number of processes is mapped onto a finite number

552

of processors, On this conceptual level the machine,
az depicted in Figure 2, consists of a token pool, a
set of processors and a storage, The storage is
divided into a static memory for programs and a
dynamic mamary for the binding environmants and
other management information. Tokens in the pool
reprasent processes which are ready for execution
but are not allocated a processor. Processors exe-
cute processes as prescribed by the tokens and
create new tokens. Processors communicate with
the storage to access program and data.

st
o Lo 5

Y
VARV

PIrocCessors

static memory dynamic memory

program environment and
coda storage management
infermation

Figure 2. The Or=-Paraliel Token Machine model,

The state of a procass consizts of 4 lizt of goals and
a binding environment. Such a state iz represented in
our machineg by a token residing in the token-poal or
in one of the processors, a binding environment
residing in the dynamic memory, and by a, possibly
empty, list of continuation frames alzo residing in
the dynamic memory,
A token consists of the following fields:

1. Literal referance (L),

2. Context name (),

3. Environment reference (E],

4, Continuation-Frame reference (CF)

5. Term lizt reference
A Binding ervironment of a process consists of con-
texts for storing values of variables in literals. A new
context is created each time a literal is invoked., A
context name refers to a context in a given environ-
ment. During Or-parallel execution sach variable may
be bound to zeveral values, still each process must
have access to just one value, the one in its environ-
ment.
There are several methods for maintalning a separate
address space for each binding enviranment. In this
paper we present a simplified version of the storage
modal described in [1,2], Other models are described
in [8,9,101.
The storage for binding environments consists of
two types of storage: directory storage and context
storage. A directaory, stored in the directory
storage, consists of referances: to contexts stored
in the contaxt starage. Each process has a private

directory. The binding environment of a process coh-
sists of all the contexts referred from its directory.
Varjables in the environment of a process are
accessed and updated through the unigue name, a
triple: ¢environment reference, context name,
variable name», where environment reference is the
addrass to the directory of a process, context names
is the offset of an entry in the directory, variable
fame 15 the of fset in the context addressed by the
entry.

‘when a proce:s creates two or more offsprings each
gets a private directory. The new directories are
created from the old one in the following way. Each
context referred from the old directory is investi=
gated. If it does not cantain unbound vartables - we
say it is committed, then the reference to it iz
placed in all the new directories at the same offset
as in the old one. If the context containg unbound
variables - we zay it is uncommitted, then a copy of
the context is made for every new directery, and
the reference to cne copy is placed in each direc-
tory at the same offiet as in the old one. By making
copies of uncommitted contexts we ensure that
alternative values will be given to variables in
separate contextz belanging to different enviran-
ments. At the same time we utilise the single assign-
ment property of logic variables by allowing sharing
af committed contaxts.

@I 18| = q.:l ¥ | wn bousd
2 g, 1[a]wia
il before
) T
@1 1)p|x ¥|a|Ril
- - | x
z J l 13x]a 2]y]e 3
3 ra) e
— T T
@1 — —4x qltlyldii
— L EIE
z _—I
: | —
1] after

Figure 3. Snapshot of the storage before and after
creation of two processes and duplication of the
envirgnment. At (k) context 11 is shared betwaan
the new environments, context 10 has been copiad
into contexts 12 and 14, wherse y has got different
values.

An improved modal in which investigation of all
entries in the directory of a process is avoided, when
new directories are created, is described in [1,2].
A continuation frame has the following fields:

1. Literal reference (L),

2. Context name (C) and

3. Cantinuation-Frame reference (CF).
Continuation frameas are read-onhyf data abjects that

are wsually shared among several tokens.

The pair <L,C>, either in a token or a continuation
frame, represents a goal; the L-field identifies a
static literal and the C-field identifias the context,
ir a given environment E, containing the values of the

variables ocourring In the literal L. Literals of a
clause are selected form left to right. Thiz implies
that the head of the goal-list is always the current
goal and the tail consists of the remaining goals. The
pair <L,C» of a token represents the current goal,
whereas its continuation frames reprezent the
remaining goals, Below, when the machine instruc-
tions are gutlined, the L-field in tokens and con-
timuation framez will be a reference to an instruc-
tion.
A processor execution cycle proceeds as follows, The
procassor fetches a token from the token pool,
fetches the referred instruction from the static
storage, and finally decodes and executes the
instruction. A result of an instruction is zerao, one or
mare tokens. Mo more tokens means that this
branch of the search tree has terminated, either
with success or with failure, One token means that
the current branch is continued. More tokens means
that a nondeterministic point has been encountersd
and a& fork into new branches has cccurrad,
Horm clauzes are translated into an abstract machine
code. Below we show only sequences of generated
instructions; the machine represantation of terms is
given in [111.
we use the following metavariables, which may be
indexed, to range over basic syntactic entities:

Terms: t.q,r.s.

Literals: R,3.
By #t and R we mean a reference to the representa-
ticn of the term t and to the relation (clause) R
respectivaly.
A program consist of an initial cafll and relations.
An initial call baving n terms containing m distinet
variables as paramaters:

Rt ..t}

is translated ipltn:

THET-CALL m #R (8t1 22 . #tn)

DISPLAY
Execution of the first instruction initializes a com=
putation, The initial token transfers the controi and
the parameters to the relation R. The initial con-
tinuation frame points to the followlng DISPLAY
ingtruction. This instruction will be executed by all
computatiens which will complete R successfuily.
An assertion having n terms containing m distinct
variables as parametérs:

Rit1,....tn})

iz translated into:

#R -» ENTER-UNIFY m [#t1 #t2 .., $#tn)

RETURM
A token invoking a relation (assertion or implication)
carries the context name and the parameters of the
caller, Before the unification is executed ENTER-
UNIFY creates a new context. When the code of an
assertion i3 executed no new goals are created,
after the unification has finished successfully the
comtrol is transferred to the caller, If an assertion
has been called by an initial call the next instruction

553

to be executed after RETURN is DISPLAY.
An implication having m terms containing m distinct
variables az parameters:
Rtt‘l .+.-.--tr-ﬂ =
S1igt,...,.qmi} &
£2(rt,..rm2] &

Sz, smil)
is translated into:
#R -» ENTER-UNIFY m (#E£1 ... 8tn}
FIRST-CALL £51 [#g1 ... #gm1)
CALL #52 (8r1 ... #rm2)
LAST-CALL #51 (#=1 ... #aml)
The instructions of an invoked implication are always
executed in the same context. when a relation,
invoked by a FIRST-CALL instruction or a CALL
instruction, terminates, the next instruction to be
executed iz identifiad by the continuation frame
created during that call. On the other hand & LAST=
CALL instruction does not create any continuation
frame, and therefore whes a relation initiated by a
LAST-CALL terminates, control is returned to the
caller of the implication. Thiz leads to tail recursion
optimisation.
A Relation R consisting of several clauses, C1 C2 ... Cn,
iz tranzlated into:
#R -» PAR=CHOICE {(#C1 #C2 ... #CN)
#C1 -» DUPLICATE HON > DUPLICATE
Cogde for .. Code for
clause C1 clause Cn
PAR-CHOICE results in a number of new subcomputa=
tions. Each will start by creating a copy of the
current environment,
The following description of the instructions, is
relative to the token being interpreted, so "Remove
first continuation frama” actually means to remove
the first continuation frame from the list associ-
ated with the interpreted token.
Another abbreviation we use is “transzfer control and
parameters to X", it means: create a token referring
to ¥ and its parameters and send it to the token
poal.
(1} IMIT-CALL m 8RR (#t7 #£2 ... 8tn) :
Create the initial environment; create, in the new
environment, a context for mvariables; create a
continuation frame, save address to the next
instruction in it and link it first in the continua-
tion frame list; transfer control and paramaters
to R;
[2) DISPLAY
Dizplay values of the variablés in the context
carresponding to the initial call.
{3} ENTER-UNIFY m ($T1 #£2 ... &t} :
Create a context for m variables in the current
anvironment. Execute a unification step; the call-
grs parameters are referred to by a secondary
field in the interpreted token.

554

(&) RETURM ;
Return control to the caller. A reference to the
next instruction to be executed is stored In the
first continuation frame.

{5} FIRST-CALL #5 [#t1 ... #tn} :
Create a continuation frame referring to the next
instruction and link it first in the continuation
frame list; transfer control and parameters Lo 5.

{8) CALL #5 (®C1 .. 8tn):
Remaove the first continuation frame; create a new
continuation frame referring to next instruction
and link it first in the continuation frame (ist;
transfer control and parameters to 5.

(T} LAST-CALL #5 (#t1 .., #tn} :
Remove the first continuation frame; tranzfer
control and parameters to 5.

(8] PAR-CHOICE (8C1 #CZ .., #Cn) :
Create n tokens sharing environment of the inter-
preted token; The created tokens share also the
continuation frame list of the interpreted token.

{3} DUPLICATE
Duplicate the enwirenment of the interpreted
token; Transfer contral to the naxt instruction.
This instruction, as well a5 the other storage
operations, is described in detail in [1,2].

The cemplete specification of the basic machine is

prazanted in [2,4].

3. Semantics of Bagof

Invocation of a predicate with the help of Bagof will
have the following format: bagofib-variable, term,
pradicatel. Thers are two constraints: b-variable
mMuUst fot occur in the term or the predicate follow-
ing it, and all variables occurring in the term must
also ocour in the predicate following it. The above
constraints are introduced to enforce the intended
use of Bagof (see balow).
Let us show an exampie of an implication containing a
bagof call.
primefactorsilp#,x) <=
bagofi{lpf,u,primedivisoriu,xl).
The initial call primefactors{ipf, 10} will produce,
assuming the function primedivisor is properiy
defined, the list Ipf=<2, 5.
Bagofiz, t,P) iz logically equivalent to:
s=<u | v, v (U=t A PI>
where y_ ..y arevariables occurring enly in Pand t
(local o bagof). The bagof can only be used to pro-
duce a binding for s, it cannot be used to test if
some list satisfies a condition or to generate values
for any non—-focal variables, To satisfy the last
-azsumption, and still be able to have an efficient
implementation, we require all non-local variables to
be ground.
Bagofi(s, t,P] invokes a relation with the same name as
the name of P, and produces a list 5, where each alg-
meant is an instance of t with variables bound by an
alternative salution of P. The invoked relation is exe-

cuted in Or-parallel made, as described earlier. The
list of terms is produced only |f execution of the
invaked relation terminates.
Let us show two more examples.
A program
imitial call: motherofchildren(Eve,chh.
relation: motherofchildrenim,ch) <- femalelm) &
bagofich,q.ehildafig,mih.
with properly defined relations female and childof,
will produce the list,ch, of all children of Eve.
And a program
initial call: bagofllist-of-pairs, Pair(s,[].pls,0).
relation: pls,l} <- student(z) & bagofill,u, takes-
coursels,ull.
with properly defined relations student and takes-
course, will produce a list of pairs: a student, all
courses taken by the student.
The examples above are taken from [5).
Alternative deflnitions of bagof are possible [B], but
in the context of Or-parallel execution the one
above seems to be the only reasonable one, since
invocation of a relation finds all salutions to it (all
sots of bindings making it truel.

4. Implementation Problams

WwWhen a relation with several statements i invoked a
set of independent computations is started, each

Cworking on [ts own binding envirenment. Each com-

putation branches into several subcomputatians ete,
until the successful leaves lempty goal list) of the
search tree are reached, A successful leave of a traae
contains a final binding environment. To be used,
each result (binding of a set of variables) must be
extracted from a final environment,
When a relation p iz inveked by bagaf(s,t,p) in an
environment EO, an ordinary Or-paraliel computation
iz started for p, except that its initial anvironment
i= 2 copy of ED, i.e, contains all bindings created prior
to the invocation. When the execution of the rela-
tion p iz ready, the results from the final environ-
ments must be transferred to the envirenment EQ,
and the list s constructed, consisting of the
ingtances of the term t with different bindings. we
will illustrate the problem by a schematic exampie.
In the schematic examples below, we will use & nota-
tien similar to the one used in the preceeding sec-
tions but extended with netation for the bagof con-
struct and bagoef goals.

Variables: x.v,z

Terms: t,q.r.s

Literals: P,Q,R,5

Bagof conztruct: bagofix,t,P)

Ordinary goals: <P>, <R¥> €53

Bagaf goal: <bagof{Plx <&
Motice that the goal cerresponding to the bagof
construct consists of two goals: a proper goal for
the literal invaked by bagof, and a "L" (Collect-} goal,
which will be explainad shortily.

Consider the following schematic program P, The
proagram consists of the initial call P and the follow-
ing relations:

(1) P <- O & bagaflxtR) &S

(2)a <= Q1

{3va<-a2

{6} R «- R

(5} R <- R2

S is an pzsertion

L] 1]
?!{fﬂlifhi'ﬂ[iliﬂl EEI J:I:M‘Hh:nﬂll‘liii}ttl

i [enagarizizess ta] 3 [smagutirizsa]es]

L1 m i LH

Figure &. Search trees for the program P. [(a) thows
the search tree for P without the search subtree
for an irvocation of bagof{R] ("main” tree), and (bl
the search tree for an invoacation of bagofiR)
[“auxiliary” treel. A node ina search tree consists
of a list of goals and an environmeant reference.
Variables in bagoef are not shown. Collect goals are
ignored in this figure,

Consider Figuras &a and &b. wWhen the goal <bagof(R)>
ina.g. node 4 is executad, the traversal of the
branch in the main tree centaining thizs node is
suspended, until the auxillary search tree for the
goal <R> is traversed. Traversal of the auxiliary
search tree is started. The initial binding environ-
rn-nnr: in the root of the search tree for B (node 100,
is 0 copy of the enwironment E4. When all the laaves
of the auxiliary tree are reached, construction of
the suspended branch can continue, The environment
EE |5 constructed from E&, and the results
extracted from £13 and Et4. The goals in tha branch
beginning with node 6 can use all the results created
during the execution of bagof{<R>) and gathered in
tha list x.

There are two problems 1o be golved: synchronization
of the final subcomputations of a bagof goal, and
merging of the results from the environments of tha

final subcomputations Into the envirenment of the
suspended computation.

Let us first consider the synchronisation problem.

553

5. Synchronization Mechanism

Wwhen a leaf in an auxiliary search tree is reached, it
must be known If all other leaves in the tree have
been reached (termination problem), and which gaal
is to be executed next,

To solve the termination preblem, we introduce a
collect goal and a counter. The collect goal is part oF
a bagof goal, and the counter is associated with the
suspanded node of the main tree. when a leaf ima
auxiliary tree |5 reached, the next goal to be invoked
is the collect goal following the bagof proper goal,
which had invoked traversal of this auxiliary tree.
Conceptustly, for every subcomputation in the ausili-
ary tree, the list of remaining goals consists of the
goal list in the current node and the geal list in the
suspended node in the main tree, When a successful
leaf inan auxiliary tree is reached, then the next
goal to be solved, is the first goal on the list in the
suspended node. When a goal in a node of an auxiliary
tree fails, all tha remaining goals in this node must be
skipped, and the first goal in the suspernded node
should be invoked. To achieve this, we introduce
references from nodes in an auxiliary tree to the
goal to be taken in the suspended node. The probiem
arises because oven Failures must ba counted in
order to know when the execution of & bagof goal
terminates.

The synchronisation mechanism works as follows.

The counter is initialised te 1 when the proper goal
of a bagof is invoked, and iz increased by n-1 when n
descendants of a node in an auxiliary tree are
creéated. The counter is decreased sach time when
the collect goal of the bagoef goal iz inveked., The col-
lect goal is executed every time = finaf leat in the
auwillary tree is reached, even in the case of a
failure. The construction of the main tree continues
(the goal following the collact goal |s invaked] when
the counter reaches zarg,

V| ols chagod B3 ekdesabEl |
 f—

I 1
21| 4813 <bagal B3 tlru::]t'l—l ED Itﬁnmn:ilnh L rII.ll

41 [ebagarinirensets[es]ezs]
tal

'I1.-.|t!hil:1!il.l.tl.>b li:j 1“:]:12' s ,ﬂnl

sl

Figure 5. Initial levelz of the trees from Figure &
sugmented with the contral information. {4, <3} iz
a reference to the collect goal in the node &, (2) is
the value of the counter.

556

Consider Figure 5. The bagof goal in node & was exe-
cuted and the traversal of the auxiliary tree was
started, The counter associated with node & is 2 and
there are two leaves in the aum'riar'y tree, The con-
tinuation paint after the construction of the auxili-
ary tree is the goal <&> in node &,

In parallel systems it is not good to have centralized
resources, like the counter we have just defined,
accassad by many computations, because access to
such resources creates potential bottie-neck. Hav-
ing a common counter would lead to memory contan-
tion.

Instead of having a one counter we propoze a tree of
eounters. The shape of a countear tree corresponds
to the shape of the associated auxiliary search trae,
that is, sach node of a counter tree corresponds to
a node with more than one descendant in the associ-
ated ausiliary tree, A node in the auxiliary tree has a
reference to the corresponding node in the counter.
tree.

A counter tree is managed as follows.

- The root of a counter tree is created when the
first node in the auxiliary tree having more then ane
descendent is reached. The counter in the root iz ini-
tialised to the number of descendants of the node in
the auxiiary tree. Al descendant nodes will refer to
the created counter tree node.

- A descendant to a node in the counter trase is
created when a node in the auxiliary tree, referring

to this counter node and having more than one dos-
cendant, is reached. The counter in tha new node is
initialisad to the number of descendants of the
associated node in the auxiliary tree. All descendant
nodes of the node in the auxiliary tree will refer to
the created counter tree node. IF a node in an auxi-
tiary tree has just one descendant, the descendant
inherits parent’s reference to a node in the counter
tree.
= The counter in a counter tree node is decreased
when one of the final leaves referring to it is
reached, and the following collect goal is invaked.
when the counter in a node reaches zero, the
counter in its ancestor node is decreazed racur-
sively. Wwhen the counter in the root reaches zero,
i.e. when all the leaves of an auxiliary tree are
reached, the construction of the suzpanded branch
in a main tree can continue,
Consider Figure 5 again, The counter tree for this
example consists of just one node, and it is thus
reduced to a single counter.
Let us show a more complex example.
initial call; T
relations: T ¢- bagofix,t, P} &3

Pe-RAS

R<=R1

R €= R2

2 <51

£ ¢- 52

5¢= 53

Q.R1,R2,51,52.53 are assertions,

ERiEaT tree

11, et | roaf

i
Figure &. [a) shows the rnlin search tree for the pro-
gram T, (b) shows part of the auxiliary tree and
the aszociated counter tree. [1,<&>) is a refer-
ence to the collect goal in node 1 of the main tree,
(n) iz a reference to node n in the counter tree.
The continuation information is shown only in the

leaves of the auxiliary tree.

Consider Figure &, Node 0 in the counter tres was
created when the goal <> in node 5 was invoked.
Moda 1 in the counter tree was created when the
goal <5 in node 8 was invoked. Say, <R2» innode T is
invoked and falls. Then the counter in node 0 is
decreased, and when goals <513, €523, and <53> get
ready in any aorder, the counter in node 1 is
decreased and when it reaches zero the counter in
node 0 is decreased, and alse becomes zero.

Let us now consider the problem of merging the
rezults from the environments of final subcomputa-
tions into the environment of a suspended computa-
tion.

6. Merge Mechanism

when a goal of the form <bagofis,t, P> is executed, a
list 5 is constructed, consisting of instances of term
+ with the variables bindings provided by the alter=
native salutions to the relation P.

Consider Figure T, 5 is bound to a data constructor
List with the variable bindings in the context with
name 2 and address 10, Components of List are
tly,z,wl, and the auxiliary variable », The bindings of
y and 2 are the solutions to P, and the binding of x
links two solutions to P. Context 10 contains values
of v and z provided by the first solution, the value
of 5, and the value of x referring to the second solu-
tion. Context 40 contains values of v and z provided
by the second solution, and the value of x, baing in
this case Nil. Contexts 30 and 50 contain the rest of
the binding trees of » and v provided by solutions 1
and 2 respectively.

eontedl WLAFEGE sEabie dtorags

diFrerory
ilerigr

i EE— LEsritdy, z.wh, el
e Bt £ 2% C I C I C OB D 8
1} piel

: :—1L==-uuu
LI - alz
LT PYARE] B3 00 1 TN 1 "

L]

Fa

i s [2]e -]

Figure 7. The storage representation of a possible
solution to bapofis, tiy,=wh,Ply,z):
suListit(A,p(B),E),ListitiglD].C.E)Nil)). We have
azsumed that Ply,z) have two solutions, and that w
is a non=local variable, The offsets in the direc-
tory and the addresses in the context storage are
choszen arbitrarihy.

Whan a bagof computation is started it gets a

private copy of the current binding environment,

and the reference to the current environment is
saved. Each Or-parallel subcomputation executes in
its own environment. When a subcomputation suc-
cessfully terminates, the results: provided by it,
must be copled from its environment to the saved
one. Aresult is the binding for variables in the term

t. in a bagof eall.

Tha binding of a variable consists of a tres of values

{provided there are no circular bindingz). Each value

is a pair <Term, ContextName>, where ContextMame is

a reference to an entry in an environment directory.
Whan a value is copied from a context in one enviran-

ment toa context in another environment, the Term
field remains unchanged, but the ContextMame field
gets a new value, becaute the corrasponding antry
will get a different of faet in the new directory,
than in the old one.

direeiary esatanl WLeFIgE
QT

L sLiiy. s =l =l
x —10: [s]4,-[a] 3] Junveunaufe- [u]1)

L

directary cenkent storage
Wlafaga

i I qiel
Talele"-[afunseund]et - [o] sansuns

ititic atersge

statin alerage

2 ——1

¥ —
Lee
Figure 8. Cantant of tha storage after both salu-
tions shown in Figure T are ready, but only the
first solution has been copied. (a) shows the saved
environment with the incomplete list of solutions.
() shows the envirgnment of the second salution.

Consider Figure 8. Bindings provided by the second
solution, see (b, will be copied to the saved environ-
mant and linked to the first solution, see (a) . During
the copying, the dynamic part (ContextMame) of the
valuge of v in context 22 is changed, the result is
shown in Figure 7. Notice that only the ralevant con-
texts in a result environment are copied to the saved
environment, and that the variables have the same

557

offiets before and after copying.

Motice alse, that the reguirement about the non-
local variables being ground has bean done to make
afficient copying of values between environments
possibie.)

Copying of solutions between the environments is
done independently for gach subcomputation, the
cooperatien is needed only when a solution is linked
inte the list of solutions. The cooperation is achieved
by aszociating with the suspended computation a
reference to the currently last slement on the list
of solutions. When a solution is copled the saved
réfarence i replaced by the refarence to the new
solution, and the new sclution is linked last in the
list,

Consider Figure 7. When the first solution is ready,
the context name 2 (referring context 10) is azsoci-

atec with the suspended computation, When the
tezond solution is ready and copied, it is linked In the
list by binding ® in context 10 to the second selution.
Was it not the last solution then the context name 5
freferring context 40) would be associated with tha
susponded computation,

7. Implemantation of the mechanisms on the token
machine

In order to support the bagof construction the
baszic maching must be axtended to handle the infor-
mation associated with the described mechanisms.
Two new types of frames, collection frames and
counter frames, and some new instructions are
introduced, and two instructions are modified.
Tokans are extended with three figlds, Collection—
Frame raference, Countar-Frame reference, and
Type, and congist of the following filelds:

1. Literal reference (L),

2, Context name [C),

3. Environmant reference (E),

4. Continuation-Frame reference (CF)

5. Collection-Frame reference (CL)

6. Counter-Frame reference {CH)

7. Type

B. Term list referenca (T)
Collection frame referance identifies a list of col-
lection frames associated with the token. The head
of this list corresponds to the most recently Invaked
bagof goal, since bagod calls can be arbitrary nested.
Counter frame reference identifies a list of counter
frames associated with the token. The head of this
list corresponds to the most recent node of the
auxiliary search tree having more than one descen-
dant node. The type fleld indicates if a token
represents a failed or a successful computation.
Continuation frames are unchanged,
Collaction frames have the following fields:

1. Literal reforaence (L)

Z. Destination context mame (DC)

3. Rasult context name (RC)

4. Context name (C),

558

5. Environment reference [E],

6, Continuation=Frame reference (CF)

7. Collection=-Frame referance (CL)

8. Counter-Frame referance (CN)
A collection frame is created for each invocation of
a bagof goal proper. The fields of a collection frame
are used In the foliowing way. Literal reference and
Continuation-Frame reference are uszed to find the
continuation point when a computation terminates.
0On a successful computation the same information
Jmdy be found in the first continuation frame
pointed by the token, Destination context name,
Result context name, Context name and Environment
reference are used to transfer bindings betwesen
anvironments, and to link the alternative solutions.
Besidez, Envirenment reference and Context name
are used to build a new token when all computations
invoked by the corresponding bagof call proper have
terminated. A result context name identifies the
context containing variables of the term t in a bagof
goal, this name is the same for all solutions, The des-
tination context name identifies the splution most
recently appanded to the list of solutions. The
fields Collection=frame reference and Counter-
Frama raference are neceszary for nested invoca-
tions of the bagof construct. The nested bagof calls
are implamented by the same technique as the
nested calls in general, i.e. by linking frames, in this
case collection frames.
Counter frames have the following fields:

1. Counter

2. Counter-Framsa reference
A counter frame is created each tim= a goal in a node
with more than one descendant is executed. The
Counter field records the number of non terminated
branches.
Both collection and counter frames are shared data
obyjects which must not be duplicated,
The execution cycle of processors is unchanged,
Horn clauses without the Bagof construct are
translated and executed as before. An implication
containing m unique variables and having a bagof call
in its body, but not in the first or iast call position,
with other calls of any type:

Rit1,...,tn) <=

bagofis, t.Pgl,...gkl) &

s

is translated into:
R -> ENTER=-UNIFY m (#t1 ,..#ttn)
BCALL &Pil#fg1 ... #gk)
COLLECT mi-1 s #¢ #x

whera m is the number of distinct variables in the
clause plus link variable x, whare x iz an auxillary vari-
able necessary for constructing a list of solutions.

A gimilar implication with a bago¥ call first in the
body, and other calls of any type, is translated into:

47 -» ENTER-UNIFY m (#£1 ...4tn)
FIRST-BCALL 2Pi{#tq1 .. #gk)
COLLECT m=1 #s #1 #x

And finally, a similar implication with a bagof call last
in the body, is translated inte:
#R -» ENTER-UNIFY m (#1171 ... #tn)

a
i

BCALL #Pil#gi ... #gk)
COLLECT m—1 B3 8% #x
IMPL-RETURN
Tha synchronization and merge mechanizms are imple-
mented as follows. when a bagof goal proper is
invoked, the information about the suspended node
in the main tree is saved in a collection frame, which
containg alzo a referencs to the instruction to be
taken when a subcomputation fails and the informa-
tion needed by the merge mechanism. The counter
trees are built of counter frames. A collection
frame is created when BCALL, FIRST-BCALL, or INIT-
BCALL is executed. Its Destination context name
field is updated when a COLLECT instruction is exa-
cuted. A collection frame is released when the asso-
clated counter tree becomes empty. A counter
frame iz created, and it: counter initialised, when a
PAR-CHOICE instruction is executed, The counter is
decreased when a COLLECT instruction is executed,
and the frame released whan the counter reachesz
ZEro.
Two instructions of the basic machine, ENTER=UNIFY
and PAR=CHOICE, are modified, The new and the modi=-
fied instructions are described below. As before,
the description of an instruction is relative to the
token being interpreted.
{3") ENTER-UNIFY m {#t1 #t2 ... #tn) ¢
Create a context for m variables in the current
amvironment; execute a unification step; tha call-
ers context name and parameters are referred to
in the interpreted token; if the unification
succeeds, transfer contral to the next instruc-
tian; if the unification fails and it i a computation
working on a solution to a bagof goal, i.e. the token
refers toa collection frame, transfer control to
the instruction saved in the first collection frame.
{3') PAR-CHOICE (#C1 8C2 ... #Cn)
If it is & computation working on a solution to a
bagof goal, create a counter frame with the
counter equal to n and link it first in the list of
counter frames; create n tokens sharing the bind-
ing environmeants and all the frame lists of the
interpreted token.
The above named instructions BCALL, INIT-BCALL, and
FIRST-BCALL are very similar, for this reasen and for
the lack of space we show just BCALL.
(10} BCALL &5 (#t1 ... #tn):
Remove the first centinuation frame; create a
continuation frame referring to the next instruc-
tion and link it first in the continuation frame list;
duplicate the current environment; create a

coltection frame and save in it: the current con-
taxt name and the enwironment reference, the
address of the following COLLECT instruction and
the address of the current continuation frame,
name of the context for variables in 5, the refer-
@ance to a node in the current counter tree; link
the created collaction frame first in the collec-
tian frame list: § will execute in the new environ-
ment.

{11} COLLECT | #d 8t #=
If the type of the current token is not a fallure:
add a solution to the bag s, i.e. sllocate in the
environment saved in the first collection frame, a
new context fFar all variables in the clause except
for s, zave its name in the first collection frame,
copy the bindings of variables in the term t from
the current environmant to the saved enviren-
meant, and link the new solution last in the list of
solutions (the list is empty in case all subcomputa-
tions failed): independently of the type of the
current token, decrement the counters recur-
sively, starting frem the first countar frame; if
the rasulting counter tree is empty: close the list
of salutionz, and restore the part of the token
saved in the first collection frame icontext name,
environmant reference, continuation frame
referaence, collection frame raference, counter
frame referancel; transfer contral to the next
instrection: the next instruction will execute in
the restored environment,

{12} IMPL-RET:
Femove the first continuation frame; return con-
trol to the caller. A reference to the next
instruction to be executed is stored in the con-
tinuation frame which has bacome first.

The complete specification of the extended machine
is presented in [2].

8. An Example

Before discussing the results presented in this
paper, wa will show search trees and the code for
one of the programs mentioned in Section 3.
The program:
initial call: mother-of-children{Eve,children).
relations: mother-of -childrenim,ch) <-
femalelm] & bagofich,q.childof(g,m}.
famale{Evel, female{Marial.
childofiJack,Eve), childof{Jane, Evel,
childofiDaniel,Evel, childofiMark, Marie)
In the trees below, we replace the variables textu-
ally, where possible, by the terms to which the vari-
ables become bound, instead of showing the contents
of environments,
In contrast to the schematic examples presented
aarlier, we show explicitly that a goal consists of a
literal and a context name.
The main search tree:

559

-
0:[motnerefenilarani Eve, Childron| “18]En|

y: [Famatat fewy 11 [oaged lch.a.chaldor (o, Evel 1,21 [11 fer]

2:[bagatich,a, chidsafin Evel 1 11]s 11 |E2]

E B

The auxiliary search tree for the bagof goal in node 2
of the main tree, and the counter tree correspond-
ing to a situation when nodes 1, 2 and 3 of the auxili-
ary tree has just been reached:

plillary troe
|.-I..-._umnq..:un:1au|hu|z.l.t

u[Jes]zaln] 2:[Teazfealo] aa] Jeas]e.a]a]

counteér Lfee [Just ome nodel
w3

The code:

0: INIT-CALL 1 #motherofchildren #Eve #children
1: DISPLAY

gmotherofehildren —» 2: ENTER-UNIFY & m ch

3: FIRST-CALL #famale #m

&: BLALL Behildof g #m

5: COLLECT 3 #ich 8q #x

6: IMPL-RETURM

Bfemale -» 71 PAR-CHOICE 8 11

B: DUPLICATE

9: ENTER-UMIFY 0 8Eve

10: RET

11: DUPLICATE

12: ENTER-UNIFY O #Harie

13: RET

#childof -» 14&: PAR- CHOICE 15 18 21 24

15: DUPLICATE

16: EMTER UNIFY 0 #Jack #Eve

17: RET

18: DUPLICATE

19: ENTER UNIFY O #Jane H#Eve

20: RET

21: DUPLICATE

22 FNTER UNIFY O #Danisl $Eve

23: RET

24; DUPLICATE

25: ENTER UNIFY O $#Mark #Marie

26: RET
with the information shown above the reader should
be able to simulate execution of the program, in
order to discover that the final result of the execu-
tion is children = <Jack,Jane, Daniel>. We restrain
from showing execution snapshots, because of the
lack of space.

560

9, Dizcussion

‘we expect that the results prezented in thiz paper
will be useful alse outside the domain of pure Or-
parallelism. It was proposed in [12], that the bagof
construction is uzed as an interface between pure
Or-parallel execution, and a form of And-parallel
execution. Besides, any truly paraillel implementation
of And-parallelizm muzt deal with non determinism
with the help of some form of Or-parallalism, so our
results will be relevant also there.

References

[1] A.Ciepielewski, S.Haridi, A Formal Model for Or-
parallel execution of Logic Programs, in
proceadings of IFIP 83, Horth Holland P. C.,
Mason (ed)

[2] A.Ciepielawski, Towards a Computer Architecture
for Gr-parallel Execution of Logic Programs, PhD
Thesis, Department of Computer Systems, Royal
Institute of Technology, TRITA- CS«B401, May
1984

[3] A.Clepielewski, 5.Haridi, Control of Activities in an
Or-paraliel Tokan Hachine, in procesdings of
IEEE Sympeasium an Logic Programming, Atlantic
City, Feb 1984

[4] S.Haridi,A.Ciepieiewski, An Or-parallel Token
Hachine, Logic Programming Workshop 83,
AlgarvefPortugal, also TRITA=CS=8303, Royal
Institute of Technology, Stockholm 1983

[5] K.L.Clark, F.G.McCabe, 5.Gregory, IC-Prolog
Language Featuras, in Logic Programming, Clark
and Tarnlund (eds), Academic Press, 1982

[6] L.M.Pereira, F.Peraira, L.Byrd, D.wWarren, Users
Guide to DECSYSTEM-10 Prolog

[7] K.Kahn, A Primitive for Control of Loglc Programs,

in IEEE Symposium on Logic Programming,
Atlantic City, February 1984

[8] G.H.Pollard, Parallel Execution of Horn Clause Pro-
grams, PhD Thesis, Imperial Callege of Science
and Technology, University of London, 1981

[9] 0.5 Warren, Efficient Proleg Memory Management
for Flaxible Control Strategies, in IEEE Sympo-
sium on Lagic Programming, Atlantic City, 1984

[10] G.Lindstrom, Or-parallelism on Applicative Archi-
tectures, in proceedings of the 2nd Interna-
tional Logic Programming Conference, Uppsala,
July 1984

[11] 5.Haridi, D.5ahlin, An Abstract Machine for LPLO -
DRAFT, TRITA-C5-8302, Royal Institute of Tech-
nology, Steckholm 83

[12] K.L.Clark, 5.Gregory, PARLOG: A Parallel Logie Pro-
gramming Language, Research Report DOC 83/5,
Imperial College, London, Department of Com-
puting

