FROCEEDINGS OF THE INTERNATIONAL CONFERENCE

ON FIFTH GENERATION COMFUTER SYSTEMS 1984,
edited by ICOT. © ICOT, 1984

SEQUENTIAL PROLOG MACHIME PEK

Waoyuki TAMURA*, Koichi WADA*, Hideo MATSUDAY, Yukio KANEDA**, Sadac MAEKAWRY®

* The Graduate Scheol of Science and Technology,
Kobe University, Rokkodai, Wada, Kobe 657 JAPAN.

** Department of Systems Engineering, Faculty of Engineering,
Kobe University, Rokkodai, Nada, Kobe 657 JAPAN.

ABSTRACT

This paper describes the
seguential Preoeleg machine PEK
currently under development.

FPEK is an experimental machine
especially designed for high speed
execution of Proleog programs. Our
objective is to research the hardware
architecture available for a Frolog
machine. PEK employs bit slice LSIs
ag the seguencer and ALU, and micro-
program control. To enable the high
speed execution of Prolog programe,
PEK includes hardware circuits for
unification and backtracking.

Simple Prolog interpreter has
been developed to assess the
performance of PEK. The performance
is about to 48K LIPS (logical
inference per second) that is
equivalent to the performance of DEC-
18 Prolog compiler on DEC=2068.

1 INTRODUCTION

Prelog is a logic programming
language which has reecently received
considerable attention for its
application in the field of artificial
intelligence. As the execution
mechanism of Prolog is gquite different
from the other conventional languages,
the research of the hardware
architecture for Prolog is important.

ICOT's PSI (Personal Sequential
Inference machine), designed for
research and evaluation purposes,
employs a tagged architecture, micro-
program control, hardware stack, and
multi-processing support functions
(Taki et al. 1284). PEK includes more
ambiticus hardware functions, such as
automatic trailing circuit, auvtomatic
undoing circuit, ete. To attain high
performance of more than 186K LIPS by
ong processor, these special hardware
functions will be needed, because only

188 instructions can be executed per
one leogical inference if the cycle
time iz 19Bnsec.

Segquential Prolog machine
designed by Evan Tick and David Warren
employs a reduced instruction set, a
pipelined execution, and an
interleaved memory to improve
executicon speed of compiled Frolog
programs (Tick and Warrenm 1984). O0OFf
course, compiling logic programs is
necegsary for high speed execution,
but we alsc believe that a Prolog
machine should interpret Prolog
programs efficiently.

PEK is an experimental Prolog
machine including some ambitious
hardware functions, and is designed to
investigate the architecture of Prolog
machines which can execute Prolog
programg efficiently. To enable these
functions by low-cost hardware, we
employed following design policies.

1.1 Sequential execution

It is true that the large-scale
parallelism is necessary to attain
high performance for logic programs,
but, as David Warren pointed cut in
his paper (Tick and Warren 1984), it
is important to investigate the
maximum performance that ¢an be
achieved by a sequential Prolog
machine because the performance will
be bottlenecked by the speed of
sequential inference. Therefore,
small=-scale parallelism is exploited
in PEK instead of large-scale
parallaelizsm.

* Data transfer is performed in 3
fields, ie. frame field, tag fiald,
and value field.

* Data areas are separately allocated
to memory medules, such as common
memory, PpProcess memory, global
stack, trailing stack, eto.

* Horizental micro—instruction format
is employed to enable simultaneous

contral of hardware modules.

* Undoing of the assignments for
variables is performed by a sub-
sequencer .

* Reading of structures is pipelined.

1.2 Micro-program control

FPEK employs micro-program
control, and its Proleg interpreter is
written in micro-codes, and also its
compiler will translate Prolaog
programs into micro-codes. Bit slice
L5Is (Advanced Micro Devices, Am2Z909A
and Am29@3A4) are used as the seguencer
and AL to reduce the size and cost of
hardwara.

1.3 Structure sharing method

T "The decision as to the use of the
structure sharing or structure copying
method is a subject of considezable
diseussion. Structure sharing was
adopted with PEK: and processes for
which owverhead 1s predicted are
improved by specialized hardware.

1.4 Other features

~ "As data areas are separately
allocated to memory modules, it bacoms
possible to access these areas with a
complex addressing manner by simple
hardware, that is

543

* gtack addressing for hardware stack,

* post-increment for address
registers, and

* nddress calculation of variable
cells for global stack.

Moreover, PEK includes special
hardware for unification and
backtracking, such as

* matching circuit,
* auntomatiec trailing ecircuit, and
* automatic undoing circuit.

2 SYSTEM CONFIGURATION

System configuration is shown in
Fig.1l.

The system consists of an MCGBE0@
host processor and PEK. All IO
devices are connected to the host
processor wvia a E-88@. The host
processor initializes PEE and supports
I/0 operation during Prolog program
execution.

PEK is controlled (execution of
halt and step etc.} from the host
pracessor via the CMR register. Other
communication registers used are ICR
(Input Command Register, host to PEK)
and OCR (Output Command Register, PEK

to host]).
® index addressing for process memory,
Host
Ternfnal
System "ﬂ:"‘"t““‘
280 CE/M ﬂmﬁk
Ll Ak
Printer # Sequencer
weE
+ » Bbbit
e 168W
Heard
Disx ¥ »
20HB
e ™
Comman FEK
Floppy " Mamary
Disk g ¥ Pobit 320W
1M
fiet Work 1-.__3?““**
1}' _J

Fig.l! 8System Configuration

544

3 HARDWARE

Hardware configuration of PEE is
shown in Fig.2. The hardware consists
of approximately 688 ICs on the
following five PCHBs (45x28em, 38@pin).

[B0.1] CCU beard
Seguencer, WC5E, and interface with
MCEE#EE host processor.

[Ho.2] ALU board
ALU, bypass controllers, process
memory, hardware stack, ete.

[Ho.3] Unification board
@lekal =stack, trailing stack,
matching eirecuit, undo circuit ete.

[Fe.4]) Common memoryboard
Common memory and two address
registers, two read registers, and
two write registers.

[Ho.5] System evaluaticn board
Timer to measure exescution time,
counter to count number of micro-
instructicons executed.

3.1 Hord format

A word used in PEK consists of
l14-bit frame field and Z@-bit term
field to permit the transfer of
melecules. The term field consists of
a 4-bit tag field and a lé~bit value
field.

14 hits 4 hits 16 bits

i e

Tag Field | value Field |

e

| Prame Field

I

f=me——== Term Field s

The following 11 tags are
currently being considered for use.

integer

literal atom
undef

global variable
lacal variable
void variable
structure (term)
structure (list)
end of structure
clause

code

Lists are expressed with one-
dimensional vectors in order to reduce
memory size and the access times, ie.
lists have a separate tag and list
elements are stored in contiguous
addresses. To determine the length of
lists, a cell having a special tag EOS
{(End Of Structure} is added at the end
of each list.

Composite terms are also
represented in the similar structure
as lists.

[a, ble]

S FETIIE———
| list B=]—+
4

- o "

I
| T L3
+—>| lit a | lit b

e
1

lit ¢ | B8 |

+ — 4

3.2 Memory modules

PEE memory modules are
distributed according to their
application and may be accessed in
parallel. All memory ICs have an
access time of BS5nsec.

(1} wgs
WCS contains micro-programs. It has
a capacity of 96bit x 16KW and may
be accessed from the host processor.

(2) Common memory
This 28bit x 32EW memory is shared
with the MCEE888E host processor and
used to contain atom headers,
structures, etc. Access from PEE is
via two address registers (AD]1,
AD2), two read (RD1l, RD2) and two
write registeras (WR1, WR2).

(3) Process memory
This 2@8bit X 16KW memory is used to
store the management information
reguired for execution of Prolog
programs. Address is the sum of the
base register PBR and the value
{(+#~+255) of the OFF field in the
micro-instruction.

(4] ©Global stack
Used to store the wvalue cells of
glokal and local wvariables.
Addresses for the value cells are
calculated using registers FT1 or
FTZ (described latar).

{5) Trailing stack
This l4bit x 16KW stack memory is
used to store the addresses for
variable cells to be reset to
"undef" at backtracking. Uses the
stack pointer TSP.

{6} Hardware stack
A small 34bit x 4EW stack used
during unification. Uses the stack
pointar HSP.

(7) ERegister files
Both the internal and external
register files have a capacity of
3dbit x léwords.)

3.3 Internal buses

The system employs two source
buses (R-bus and S-bus) and one
destination bus (¥-bus). All have 34-

545

[1-oK]

[t ou]

]

WEE X 370402

AIOWS} LoWLO)

B4

440

War
114002
fouay
5832004

|

A334 145
1487

A X
11ans
ya015
20N IDH

AB3 434S
ELLTE

shu |y LK
I 0 T
T

ny
AN

[£"on]

e

“aweay

Tid '

pu3

aEURY

opuf e

Pl L U AL

(LR R

v XIW

e

L
L
=

3§A24L]
Bugyajey

T.

Jdgsuanhag

LA

LLng

9L
ITO4T

T X
11gRe

#9015
{paory

¥I015
GurIDag

h X
WaE0eZa
Jasuanag

3

&
=

L

e ameEﬁ.:..ﬁ_...M:.ﬂ—.-.m....

a3 1ug
LNEY

L]

SEBAPPY
auy|adig

A9T X 11496
S

[

104

| [L-on]

150H

L 4

HIl

1504

g 0%

91 X I4akE

alrd 435 6oy

& X yelbouy
9L % 30y

a|L4 seasibay
LEUIE3NT

o) L |

e

2503

SEEEAE IR TRy asi

uoTIBINLTIVCD eIRMpIRH

Oz

204

z-bB1a

546

bit width to enable the transfer of
malecules. Transfer from a source bus
to the destination bus is via the ALLU
or bypasses.

3.4 Seguencer

The seguencer consists of four
Am2909a (Advanced Micro Devices) 4=bit
slice LSIs. Am2925 clock generator
generates eight kinds of micro-cycles
from l2@nsec. to 4P@nsec. in 4Pnsec.
increments.

Micro-instruction fetch and
execution of instructions are
overlapped using the pipeline address
register and pipeline instruction
register. In case of a branch
instruction, the branch destination
address is generated during the first
half of the cycle and the instruction
of the destination is fetched in the
latter half. In case of a non=branch
instruction {continuous executieon},
the next instruction is fetched during
the first half of the cycle. This
pipeline processing enables a minimum
execution time of l12PFnsec. for
continuous execution, and execution
time of le@nsec. for most branch
instructions.

3.5 ALU

The ALU consists of nine Am2983A
4=bit slice L5Is which are divided
inte three blocks of 4, 1, and 4
corresponding to the three fields of
the word format. ALU operations are
performed independently for each
field, and also the operation result
flags are independent. WNine Am29785A
LE8Is are added as an external register
file to store a total of 32 registers.

3.6 Bypass controllers

Two bypasses are employed, the R-
bypass used to transfer data from the
R-bus to the Y-bus, and the S-bypass
used to transfer data from the S-bus
to the Y-bus. The benefits of the
bypass have already been shown in the
previous paper on a high level
language machine (Wada et al. 1983).
The use of bypasses permit, for
axample, data transfer from a source
bus to the destination bus and
simultanecus ALU operation.

3.7 Ehifters

Two shifters are usad, a left
shifter used when shifting the lower
14 bits of the term field to the frame
field, and a right shifter used when
shifting the frame field or the tag
field to the value field.

3.8 Matching cireuit

Puring unification, different
processings are regquired according to
the two term types to be matched. The
FTl and FTZ special 34-bit registers
are therefore provided to PEK to
permit l6-way jumps using the 9-bit
value consists of the two 4-bit tags
and the l-bhit comparison result of the
values of FT1 and FT2. For example,
whether two atoms are the same or not
can be determined in a single
instruction. If multi-way jump is
desgired with the value from only one
of the two registers, a term having a
special tag should be written into the
other register.

3.9 Automatic address calculation
for variablecells

Variable cell addresses are
caleculated autematically using the
registers FT1 and FT2. The sum of the
FTl frame field and the lower 8 bits
of the value field {index walue of the
variable, B87255), or the same wvalue
for FT2 may be used as the global
stack address. Selection of two
address sources 1s specified with the
MUX field in the micre-instruction.

Determination of whether the
variable is bound or unbound is by
checking the flag (UNDEF1 for FTL,
UNDEF2 for PT2)} without actually
reading the value from the global
stack.

The frame fields of the FT1 and
FT2 normally contain the global frame
addresses. Therefore, for local
variables, the frame fields of the FT1
or FT2 must be rewritten.

3.18 Automatic trailing

Backtracking regquires the undoing
of assignments, ie. resetting variable
values to "undef". Thus, at the
assignment to a variable, the variable
cell address must be pushed cnte the
trailing stack. FEK performs this
operation by hardware, ie. when the
write operation to the global stack is
executed, the address is automatically
pushed onto the trailing stack.
Automatic push operation is specified
with the TSC field in the micro-
instruction.

3.11 putomatic undoing

Undoing is alsoc performed
automatically in PEK by a sub-
seguencer. As no bus is used, undoing
may be performed in parallel with main
seguencer operations. Operation of
the undo sequencer is begun by writing
the number of undo operations into the
undo counter. FPopping from the

trajiling stack and writing into the

global stack are overlapped to permit
high speed undoc operation.

3.12 Pipelined reading of structures

Zs Prolog unification processing
ig performed for two structure data
elements, PEK contains two address
registers (ADl and AD2), two read
registers (EDl and RD2), and two write
registers (WR1l an WR2). Moreover, in
order to enable high speed read of
data in contiguous addresses, when
data i1s read from RDl or RDZ, ADl or
AD2 are auntomatically ineremented and
the read operation of the next data is
started. The data in the next address
will be placed in the read register
approximately 25@8nsec. later.
Determination of whether or not the
tag in the read register {RD1 or RD2)
is E0S is by checking a £lag (E0S1l or
EOQS2).

The frame field of the read
register has the same value with the
frame field stored in the address
register.

4 MICRO-INSTRUCTION FORMAT

Micro-instruction of PEK is
horizontal and 96-bit in width, and
contain 24 fields (Fig.3}.

* The 4-bit DEE field is used for
debugging and system evaluation and
comprises a halt bit, timer/ecounter
start and stop bits, and an
instruction counter bit.

* The CYC field is used for control of
the Am2225 clock generator. One of
the eight clocks (1280748@nsec.) may

547

flag multiplexer. It is used for
gelection of branch conditions.

The SEQ field specifies the
instruction for the AmZI909A
sequencer. It has a 4-level micro-
stack and permits subroutine ecalls
and loops etc. Branching using data
on the S5-bus as a destination
address is possiblae.

The ORE field is for multi-way jump.
When this bit is set to "1" multi-
way jump is executed according to
the output value from the matching
circuit.

The XWE and REWE fields are used to
specify the write operation to
external and internal registers.
Frame, tag, and value fields may he
specified independently. The number
of the register to be written is
specified with the RB field.

The 5C and CC fields are for control
of shift and carcy input to the ALU.
The CEM field is used to set the ALD
operation result flag in the status
register.

The EA field is used to select the
ALU R source.

The RBE and RA fields are used to
specify the 8 and R source register
{internal and external) number. The
REB field is alsoc used for
specification of the destinaticn
register number.

The ALS and ALF fields specify the
ALU shift operation and arithmetic
and logic operation. Operation is
performed independently for 3 fields
in the word format-

The MUX field is used for selection
of the glcbal stack address source.

The TSC and HSC field contrel the

be selected. trailing and hardware stacks
* The FMX field is for control of the respectively.
55 %1 a8 &2 ™ 7 74 7 &1 &% e
=
DEE cYC FHX SEQ EWE RWE 5C cc H E
b1 1 | 1 L1 1 L [I I [1
&3 58 55 5 4 &5 43 a1 37 2
RE RA ALS ALF TSC | HSC YD Y5 RS
L1 Ll Lot L1 | | | L1 | L L1
a1 27 19 o
55 OFF THH
1 1 1 I A I Ll 1 I TN T N T O [A I |

Fig.3 Micro-instructicen format

548

* The ¥D field is used to specify the
Y=bus destination.

* The ¥5 field is used for control of
Y-bus source and right shifter.

* The RS field is used to specify the
R-bus source.

* The 55 field is used for control of
S-bus source and left shifter.

* The OFF field is used to specify the
offset {(+F7+255) to the process
memory base register FPEBR.

* The IMM field is a 28-bit field used
to set the constant output to the B-=
bus. HNormally cutput to the 5-bus
term field, and output to the S-~bus
frame field when the left shifter is
used.

5 DEVELOPMENT SOFTWARE

5.1 Micro-assemnbler

T "Micro-instruction of PEEK is
horizontal and 96-bit in width, and
and contain 24 fields. An assembler
specifying the mnemonic for each field
was written initially, however it was
found that programs were difficult to
read. Therefore, & preprocessor
including a macro call function with
pattern matching was developed using
Prolog syvstem in the host processor.

The Am2225 clock generator used
in PEK can generate eight kinds of 4-
phase (Cl7C4) cleock, and the clock to
be used is selected by the I-bit CY¥C
field in the micro-instruction.
Therefore, the micro-assembler should
choose the most appropriate cycle at
assembly time.

Tweo programs to determine cycle
length were written and evaluated.
The Ffirst program determines the cycle
length by delimiting operation time
for each device into 4@nsec. units.
In this case, most conditions need not
be considered and cycle length may
therefore be determined simply.
Determination of cycle length with
hardware would employ this method.

The second program determines the
cycle length by finding the longest
data path and improved cycle time by
15% in comparison with the first
progran. The cycle time can be
improved by up to a further 4@% under
some special conditions. For example,
if the global stack address source has
been selected in the immediately
previous micro-instruction, a speed of
the reading from the global stack
would increase 96nsec.

5.2 Monitor/debugger
A monitor has been developed on
the MCE80E88 host processor for

debugging the hardware modules. This
monitor includes a screen editor, a
micro-agssembler, a disassembler, and
some debugging aids such as setting of
break points, dumping of register
contents, displaying flag conditions,
etec. to simplify development of test
Programs .

& INTERPRETER

The specifications of Prolog
language is scheduled to be compatible
to the DEC=18 Proleog (Warren 1%77) and
no expansion is ecurrently being
considered, and detailed interpreter
design is proceeding.

Simple Prolog interpreter have
been coded to evaluate the system
performance. In this wversion, all
variables are treated as global, and
dispensable functions, such as clause
indexing, tail recursion optimization,
are not implemented.

Two Prolog programs were axecuted
on this interpreter.

One is a program for appending a
list of length n to an empty list.

{1) append([],2.2).
{2) append([wlx],Y,[wl2]) :- append(X,Y,Z).
(3) »~ Eppeiﬂ{[luzu vee n] [1,E).

The other is for reversing a list
of length n.

{4) reverse([P|Q],5) :-

!, reversel(Q,R), append(R,[P],8).
{5) reverse([1,[]}.
(6) append([wWlx],Y,[wl2]) :-

|, append(X,¥,Z).

(7) append([],2,%}.
{8) ?= reverse(ll,2,...,n],5).

Table 1 shows the number of
executed instructions at the
interpretation of these programs. and
Table 2 shows the case of n=30. The
average cycle length is estimated to
be 17@nses. Therefore, the speed is
about 48K LIPS.

To evaluate the contribution of
the specialized hardware for
unification, an wnification process of
the append program was traced.

The number of executed
instructions was counted at the
unification of the body of (2) with
the head of (2) when goal (3) was
matched once with the head of (2).
all variables are considered as global
variables, and frames on the global
stack are assumed to have already been
reset to "undef". Fig.4 shows the
status immediately prior to the

Ragisters Comman Mamory
e %
B var k)
var s
m+ nll
E05
Global Stack
st —
"E""_'—.‘ e var ¥
W int [1154 —)
X list — lit nil
Y it nll E05
z urida f
Wt unde f var W
i unde f yar !
¥ unda f EDS
Fal unde f
war W'
var Z!
E05
Int I
Int 2
int n
1t ni |
EQS
Fig.4 Status before the unification
Table 1 The number of executed instructicns
of logical # of ewecuted F of instructlons | # of instructions
Infarenca Imstructions for control tor uni flcation
aopendi[1,2,..,n],[0,2) n* | 1450 + |49 490 + 94 @6n + 55
Iy 3 145 7 2 792 187
ravarsei[1,2,..,0],5) it = # | [—n% —n # 178 | 330"+ B5n + 100 —n"4 —p + 77
] 2 2 2 4

Tahle 2 The number of executed instructions (n=30)

§ of logical | # of axscuted | F of Instructions | # of instructlons | legicael Interence

I nfarence Instructions for control tor wni fication par second (LIPS}
appendi[i,2,..,30],0],2} k1] 4495 (L1} 2935 40.5 K
reverse((1,2,..,30],5} 495 o7z 32351 Jaasz .2 K

549

550

unification. Register R(x) contains
the caller argument list, and register
E{y), the gource argument List.
Source variables are identified by
addition of *.

The unification program was
traced under these conditions. Table
3 ghows the details. ‘'Fetch" includes
write instructions to registers FT1
and FT2, and detection of EOS flags.
"Match", "assign", "dereference", and
"push" include a multi-way jump
instruction using the matching
circuit.

T SUMMARY

This paper has described the
architecture and software of the
seguential Proleg machine PEK. This
machine includes specialized hardware
for unification and backtracking
essential to high speed execution of
Prolog programs.

Simple Prolog interpreter has
been developed +to assess the
performance of PEK. The performance
is about 48K LIPS that is eguivalent
to the performance of DEC-18 Prolog
campd ler on DEC-2@68.

Table 3 Trace of the unification

{13 cali I Instruction
{20 Inltialize 10 Instructions
I3 Set start sddrosses of
(07,20 and (DD LY, DN 2" 4 irstruetions
(4} Unify ¥ with [N'1%*] 10 Instructions
¥ dotch
* doraference
L2 p“h
(5) Unity Y with ¥ |
¥ fetch
® garetfercnog
® asslign
(6} Unlfy T with [Wi]2t]
¥ fetch

Tad Gl S

Instructions

[T -

=4

Imatructlons

T fe

* mgslon
Unl fy all with nl|

* fateh

¥ match
(8) Prepare for wnification of
[2,3,..,n] with [H*]x'] 4 Pnetructions
¥ pop & sat start sddressos 4
Unlfy 2 with W°

* fatch 4
* assign 3
1oy Unlfy [3,..,n] with X'
* fatch

|

{7 Instruetions

=

) 7 Instructians

% Instructians

L=]

" assign

(11} Raturn Z Instructlions

Tatal 72 lnstructions

REFERENCES

Nacyuki TAMURA, Koichi WADA, Hifeo MATSUDA,
Yukio KANEDA, and Sadac MAEKAWA: Prolog
Machine PEK (in Japanese}, Froc. of the Logic
Frogrammiing Conference °84, £-2, ICOT, 1984,

Yukio KANEDA, Maowuki TAMURA, Koichi WADR, and
Hideo MATSUDRA: Sequential PROLOC Machine PEK
Architecture and Software System,
International Workshop On High-Level Computer
Architecture, 1984.

Fodchi WALR, Yokio KANEDA, and Sadap MAEKMNR:
High-Speed Execution of FORTH and PASCAL
programs on a High-Level ILanguage Machine, 9-
th EURCMICRC, 1983.

Razuo TAKI, Hiroshi NISHIKAWR, akira YAMAMOTO,
and Minoru YOKOTA: Hardware Design and
Implementation of the Personal Sequential
Inference Machine (PSI), Proc. of the
International Conf. on Fifth Generation

Computer System, 1984, (to appear)

Evan TICK and David H.D.WARRER: Towards A
Pipelined PROLOG Processor, Proc. of the
International Symposium on Logic Programming,
pp.29-48, 1984, '

David H.D.WARREM: Implementing Prolog --
Campiling Predicate Logic Programs Vol.l,2,
nA.I.Research Report 0o.3%, 48, University of
Edinburgh, 1977.

Advanced Micro Devices Inc.: The Am2000 Family
Data Book.

